Ryujinx/Ryujinx.Tests/Cpu/CpuTest.cs

600 lines
22 KiB
C#
Raw Normal View History

using ChocolArm64;
using ChocolArm64.Memory;
using ChocolArm64.State;
using NUnit.Framework;
using Ryujinx.Tests.Unicorn;
using System;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
using System.Threading;
namespace Ryujinx.Tests.Cpu
{
[TestFixture]
public class CpuTest
{
protected long Position { get; private set; }
private long Size;
private long EntryPoint;
private IntPtr RamPointer;
private AMemory Memory;
private AThread Thread;
private static bool UnicornAvailable;
private UnicornAArch64 UnicornEmu;
static CpuTest()
{
UnicornAvailable = UnicornAArch64.IsAvailable();
if (!UnicornAvailable)
{
Console.WriteLine("WARNING: Could not find Unicorn.");
}
}
[SetUp]
public void Setup()
{
Position = 0x1000;
Size = 0x1000;
EntryPoint = Position;
ATranslator Translator = new ATranslator();
RamPointer = Marshal.AllocHGlobal(new IntPtr(Size));
Memory = new AMemory(RamPointer);
Memory.Map(Position, 0, Size);
Thread = new AThread(Translator, Memory, EntryPoint);
if (UnicornAvailable)
{
UnicornEmu = new UnicornAArch64();
UnicornEmu.MemoryMap((ulong)Position, (ulong)Size, MemoryPermission.READ | MemoryPermission.EXEC);
UnicornEmu.PC = (ulong)EntryPoint;
}
}
[TearDown]
public void Teardown()
{
Marshal.FreeHGlobal(RamPointer);
Memory = null;
Thread = null;
UnicornEmu = null;
}
protected void Reset()
{
Teardown();
Setup();
}
protected void Opcode(uint Opcode)
{
Thread.Memory.WriteUInt32(Position, Opcode);
if (UnicornAvailable)
{
UnicornEmu.MemoryWrite32((ulong)Position, Opcode);
}
Position += 4;
}
protected void SetThreadState(ulong X0 = 0, ulong X1 = 0, ulong X2 = 0, ulong X3 = 0, ulong X31 = 0,
Vector128<float> V0 = default(Vector128<float>),
Vector128<float> V1 = default(Vector128<float>),
Vector128<float> V2 = default(Vector128<float>),
Vector128<float> V3 = default(Vector128<float>),
bool Overflow = false, bool Carry = false, bool Zero = false, bool Negative = false,
int Fpcr = 0x0, int Fpsr = 0x0)
{
2018-02-18 20:28:07 +01:00
Thread.ThreadState.X0 = X0;
Thread.ThreadState.X1 = X1;
Thread.ThreadState.X2 = X2;
Thread.ThreadState.X3 = X3;
Thread.ThreadState.X31 = X31;
2018-02-18 20:28:07 +01:00
Thread.ThreadState.V0 = V0;
Thread.ThreadState.V1 = V1;
Thread.ThreadState.V2 = V2;
Thread.ThreadState.V3 = V3;
Thread.ThreadState.Overflow = Overflow;
Thread.ThreadState.Carry = Carry;
Thread.ThreadState.Zero = Zero;
Thread.ThreadState.Negative = Negative;
Thread.ThreadState.Fpcr = Fpcr;
Thread.ThreadState.Fpsr = Fpsr;
if (UnicornAvailable)
{
UnicornEmu.X[0] = X0;
UnicornEmu.X[1] = X1;
UnicornEmu.X[2] = X2;
UnicornEmu.X[3] = X3;
UnicornEmu.SP = X31;
UnicornEmu.Q[0] = V0;
UnicornEmu.Q[1] = V1;
UnicornEmu.Q[2] = V2;
UnicornEmu.Q[3] = V3;
UnicornEmu.OverflowFlag = Overflow;
UnicornEmu.CarryFlag = Carry;
UnicornEmu.ZeroFlag = Zero;
UnicornEmu.NegativeFlag = Negative;
UnicornEmu.Fpcr = Fpcr;
UnicornEmu.Fpsr = Fpsr;
}
}
protected void ExecuteOpcodes()
{
using (ManualResetEvent Wait = new ManualResetEvent(false))
{
Thread.ThreadState.Break += (sender, e) => Thread.StopExecution();
Thread.WorkFinished += (sender, e) => Wait.Set();
Thread.Execute();
Wait.WaitOne();
}
if (UnicornAvailable)
{
UnicornEmu.RunForCount((ulong)(Position - EntryPoint - 8) / 4);
}
}
protected AThreadState GetThreadState() => Thread.ThreadState;
protected AThreadState SingleOpcode(uint Opcode,
ulong X0 = 0, ulong X1 = 0, ulong X2 = 0, ulong X3 = 0, ulong X31 = 0,
Vector128<float> V0 = default(Vector128<float>),
Vector128<float> V1 = default(Vector128<float>),
Vector128<float> V2 = default(Vector128<float>),
Vector128<float> V3 = default(Vector128<float>),
bool Overflow = false, bool Carry = false, bool Zero = false, bool Negative = false,
int Fpcr = 0x0, int Fpsr = 0x0)
{
this.Opcode(Opcode);
this.Opcode(0xD4200000); // BRK #0
this.Opcode(0xD65F03C0); // RET
SetThreadState(X0, X1, X2, X3, X31, V0, V1, V2, V3, Overflow, Carry, Zero, Negative, Fpcr, Fpsr);
ExecuteOpcodes();
return GetThreadState();
}
/// <summary>Rounding Mode control field.</summary>
public enum RMode
{
/// <summary>Round to Nearest (RN) mode.</summary>
RN,
/// <summary>Round towards Plus Infinity (RP) mode.</summary>
RP,
/// <summary>Round towards Minus Infinity (RM) mode.</summary>
RM,
/// <summary>Round towards Zero (RZ) mode.</summary>
RZ
};
/// <summary>Floating-point Control Register.</summary>
protected enum FPCR
{
/// <summary>Rounding Mode control field.</summary>
RMode = 22,
/// <summary>Flush-to-zero mode control bit.</summary>
FZ = 24,
/// <summary>Default NaN mode control bit.</summary>
DN = 25,
/// <summary>Alternative half-precision control bit.</summary>
AHP = 26
}
/// <summary>Floating-point Status Register.</summary>
[Flags] protected enum FPSR
{
None = 0,
/// <summary>Invalid Operation cumulative floating-point exception bit.</summary>
IOC = 1 << 0,
/// <summary>Divide by Zero cumulative floating-point exception bit.</summary>
DZC = 1 << 1,
/// <summary>Overflow cumulative floating-point exception bit.</summary>
OFC = 1 << 2,
/// <summary>Underflow cumulative floating-point exception bit.</summary>
UFC = 1 << 3,
/// <summary>Inexact cumulative floating-point exception bit.</summary>
IXC = 1 << 4,
/// <summary>Input Denormal cumulative floating-point exception bit.</summary>
IDC = 1 << 7,
/// <summary>Cumulative saturation bit.</summary>
QC = 1 << 27
}
[Flags] protected enum FpSkips
{
None = 0,
IfNaN_S = 1,
IfNaN_D = 2,
IfUnderflow = 4,
IfOverflow = 8
}
protected enum FpTolerances
{
None,
UpToOneUlps_S,
UpToOneUlps_D
}
protected void CompareAgainstUnicorn(
FPSR FpsrMask = FPSR.None,
FpSkips FpSkips = FpSkips.None,
FpTolerances FpTolerances = FpTolerances.None)
{
if (!UnicornAvailable)
{
return;
}
if (FpSkips != FpSkips.None)
{
ManageFpSkips(FpSkips);
}
Assert.That(Thread.ThreadState.X0, Is.EqualTo(UnicornEmu.X[0]));
Assert.That(Thread.ThreadState.X1, Is.EqualTo(UnicornEmu.X[1]));
Assert.That(Thread.ThreadState.X2, Is.EqualTo(UnicornEmu.X[2]));
Assert.That(Thread.ThreadState.X3, Is.EqualTo(UnicornEmu.X[3]));
Assert.That(Thread.ThreadState.X4, Is.EqualTo(UnicornEmu.X[4]));
Assert.That(Thread.ThreadState.X5, Is.EqualTo(UnicornEmu.X[5]));
Assert.That(Thread.ThreadState.X6, Is.EqualTo(UnicornEmu.X[6]));
Assert.That(Thread.ThreadState.X7, Is.EqualTo(UnicornEmu.X[7]));
Assert.That(Thread.ThreadState.X8, Is.EqualTo(UnicornEmu.X[8]));
Assert.That(Thread.ThreadState.X9, Is.EqualTo(UnicornEmu.X[9]));
Assert.That(Thread.ThreadState.X10, Is.EqualTo(UnicornEmu.X[10]));
Assert.That(Thread.ThreadState.X11, Is.EqualTo(UnicornEmu.X[11]));
Assert.That(Thread.ThreadState.X12, Is.EqualTo(UnicornEmu.X[12]));
Assert.That(Thread.ThreadState.X13, Is.EqualTo(UnicornEmu.X[13]));
Assert.That(Thread.ThreadState.X14, Is.EqualTo(UnicornEmu.X[14]));
Assert.That(Thread.ThreadState.X15, Is.EqualTo(UnicornEmu.X[15]));
Assert.That(Thread.ThreadState.X16, Is.EqualTo(UnicornEmu.X[16]));
Assert.That(Thread.ThreadState.X17, Is.EqualTo(UnicornEmu.X[17]));
Assert.That(Thread.ThreadState.X18, Is.EqualTo(UnicornEmu.X[18]));
Assert.That(Thread.ThreadState.X19, Is.EqualTo(UnicornEmu.X[19]));
Assert.That(Thread.ThreadState.X20, Is.EqualTo(UnicornEmu.X[20]));
Assert.That(Thread.ThreadState.X21, Is.EqualTo(UnicornEmu.X[21]));
Assert.That(Thread.ThreadState.X22, Is.EqualTo(UnicornEmu.X[22]));
Assert.That(Thread.ThreadState.X23, Is.EqualTo(UnicornEmu.X[23]));
Assert.That(Thread.ThreadState.X24, Is.EqualTo(UnicornEmu.X[24]));
Assert.That(Thread.ThreadState.X25, Is.EqualTo(UnicornEmu.X[25]));
Assert.That(Thread.ThreadState.X26, Is.EqualTo(UnicornEmu.X[26]));
Assert.That(Thread.ThreadState.X27, Is.EqualTo(UnicornEmu.X[27]));
Assert.That(Thread.ThreadState.X28, Is.EqualTo(UnicornEmu.X[28]));
Assert.That(Thread.ThreadState.X29, Is.EqualTo(UnicornEmu.X[29]));
Assert.That(Thread.ThreadState.X30, Is.EqualTo(UnicornEmu.X[30]));
Assert.That(Thread.ThreadState.X31, Is.EqualTo(UnicornEmu.SP));
if (FpTolerances == FpTolerances.None)
{
Assert.That(Thread.ThreadState.V0, Is.EqualTo(UnicornEmu.Q[0]));
}
else
{
ManageFpTolerances(FpTolerances);
}
Assert.That(Thread.ThreadState.V1, Is.EqualTo(UnicornEmu.Q[1]));
Assert.That(Thread.ThreadState.V2, Is.EqualTo(UnicornEmu.Q[2]));
Assert.That(Thread.ThreadState.V3, Is.EqualTo(UnicornEmu.Q[3]));
Assert.That(Thread.ThreadState.V4, Is.EqualTo(UnicornEmu.Q[4]));
Assert.That(Thread.ThreadState.V5, Is.EqualTo(UnicornEmu.Q[5]));
Assert.That(Thread.ThreadState.V6, Is.EqualTo(UnicornEmu.Q[6]));
Assert.That(Thread.ThreadState.V7, Is.EqualTo(UnicornEmu.Q[7]));
Assert.That(Thread.ThreadState.V8, Is.EqualTo(UnicornEmu.Q[8]));
Assert.That(Thread.ThreadState.V9, Is.EqualTo(UnicornEmu.Q[9]));
Assert.That(Thread.ThreadState.V10, Is.EqualTo(UnicornEmu.Q[10]));
Assert.That(Thread.ThreadState.V11, Is.EqualTo(UnicornEmu.Q[11]));
Assert.That(Thread.ThreadState.V12, Is.EqualTo(UnicornEmu.Q[12]));
Assert.That(Thread.ThreadState.V13, Is.EqualTo(UnicornEmu.Q[13]));
Assert.That(Thread.ThreadState.V14, Is.EqualTo(UnicornEmu.Q[14]));
Assert.That(Thread.ThreadState.V15, Is.EqualTo(UnicornEmu.Q[15]));
Assert.That(Thread.ThreadState.V16, Is.EqualTo(UnicornEmu.Q[16]));
Assert.That(Thread.ThreadState.V17, Is.EqualTo(UnicornEmu.Q[17]));
Assert.That(Thread.ThreadState.V18, Is.EqualTo(UnicornEmu.Q[18]));
Assert.That(Thread.ThreadState.V19, Is.EqualTo(UnicornEmu.Q[19]));
Assert.That(Thread.ThreadState.V20, Is.EqualTo(UnicornEmu.Q[20]));
Assert.That(Thread.ThreadState.V21, Is.EqualTo(UnicornEmu.Q[21]));
Assert.That(Thread.ThreadState.V22, Is.EqualTo(UnicornEmu.Q[22]));
Assert.That(Thread.ThreadState.V23, Is.EqualTo(UnicornEmu.Q[23]));
Assert.That(Thread.ThreadState.V24, Is.EqualTo(UnicornEmu.Q[24]));
Assert.That(Thread.ThreadState.V25, Is.EqualTo(UnicornEmu.Q[25]));
Assert.That(Thread.ThreadState.V26, Is.EqualTo(UnicornEmu.Q[26]));
Assert.That(Thread.ThreadState.V27, Is.EqualTo(UnicornEmu.Q[27]));
Assert.That(Thread.ThreadState.V28, Is.EqualTo(UnicornEmu.Q[28]));
Assert.That(Thread.ThreadState.V29, Is.EqualTo(UnicornEmu.Q[29]));
Assert.That(Thread.ThreadState.V30, Is.EqualTo(UnicornEmu.Q[30]));
Assert.That(Thread.ThreadState.V31, Is.EqualTo(UnicornEmu.Q[31]));
Assert.That(Thread.ThreadState.V31, Is.EqualTo(UnicornEmu.Q[31]));
Assert.That(Thread.ThreadState.Fpcr, Is.EqualTo(UnicornEmu.Fpcr));
Assert.That(Thread.ThreadState.Fpsr & (int)FpsrMask, Is.EqualTo(UnicornEmu.Fpsr & (int)FpsrMask));
Assert.That(Thread.ThreadState.Overflow, Is.EqualTo(UnicornEmu.OverflowFlag));
Assert.That(Thread.ThreadState.Carry, Is.EqualTo(UnicornEmu.CarryFlag));
Assert.That(Thread.ThreadState.Zero, Is.EqualTo(UnicornEmu.ZeroFlag));
Assert.That(Thread.ThreadState.Negative, Is.EqualTo(UnicornEmu.NegativeFlag));
}
private void ManageFpSkips(FpSkips FpSkips)
{
if (FpSkips.HasFlag(FpSkips.IfNaN_S))
{
if (float.IsNaN(VectorExtractSingle(UnicornEmu.Q[0], (byte)0)))
{
Assert.Ignore("NaN test.");
}
}
else if (FpSkips.HasFlag(FpSkips.IfNaN_D))
{
if (double.IsNaN(VectorExtractDouble(UnicornEmu.Q[0], (byte)0)))
{
Assert.Ignore("NaN test.");
}
}
if (FpSkips.HasFlag(FpSkips.IfUnderflow))
{
if ((UnicornEmu.Fpsr & (int)FPSR.UFC) != 0)
{
Assert.Ignore("Underflow test.");
}
}
if (FpSkips.HasFlag(FpSkips.IfOverflow))
{
if ((UnicornEmu.Fpsr & (int)FPSR.OFC) != 0)
{
Assert.Ignore("Overflow test.");
}
}
}
private void ManageFpTolerances(FpTolerances FpTolerances)
{
if (!Is.EqualTo(UnicornEmu.Q[0]).ApplyTo(Thread.ThreadState.V0).IsSuccess)
{
if (FpTolerances == FpTolerances.UpToOneUlps_S)
{
if (IsNormalOrSubnormal_S(VectorExtractSingle(UnicornEmu.Q[0], (byte)0)) &&
IsNormalOrSubnormal_S(VectorExtractSingle(Thread.ThreadState.V0, (byte)0)))
{
Assert.That (VectorExtractSingle(Thread.ThreadState.V0, (byte)0),
Is.EqualTo(VectorExtractSingle(UnicornEmu.Q[0], (byte)0)).Within(1).Ulps);
Assert.That (VectorExtractSingle(Thread.ThreadState.V0, (byte)1),
Is.EqualTo(VectorExtractSingle(UnicornEmu.Q[0], (byte)1)).Within(1).Ulps);
Assert.That (VectorExtractSingle(Thread.ThreadState.V0, (byte)2),
Is.EqualTo(VectorExtractSingle(UnicornEmu.Q[0], (byte)2)).Within(1).Ulps);
Assert.That (VectorExtractSingle(Thread.ThreadState.V0, (byte)3),
Is.EqualTo(VectorExtractSingle(UnicornEmu.Q[0], (byte)3)).Within(1).Ulps);
Console.WriteLine(FpTolerances);
}
else
{
Assert.That(Thread.ThreadState.V0, Is.EqualTo(UnicornEmu.Q[0]));
}
}
if (FpTolerances == FpTolerances.UpToOneUlps_D)
{
if (IsNormalOrSubnormal_D(VectorExtractDouble(UnicornEmu.Q[0], (byte)0)) &&
IsNormalOrSubnormal_D(VectorExtractDouble(Thread.ThreadState.V0, (byte)0)))
{
Assert.That (VectorExtractDouble(Thread.ThreadState.V0, (byte)0),
Is.EqualTo(VectorExtractDouble(UnicornEmu.Q[0], (byte)0)).Within(1).Ulps);
Assert.That (VectorExtractDouble(Thread.ThreadState.V0, (byte)1),
Is.EqualTo(VectorExtractDouble(UnicornEmu.Q[0], (byte)1)).Within(1).Ulps);
Console.WriteLine(FpTolerances);
}
else
{
Assert.That(Thread.ThreadState.V0, Is.EqualTo(UnicornEmu.Q[0]));
}
}
}
bool IsNormalOrSubnormal_S(float f) => float.IsNormal(f) || float.IsSubnormal(f);
bool IsNormalOrSubnormal_D(double d) => double.IsNormal(d) || double.IsSubnormal(d);
}
protected static Vector128<float> MakeVectorE0(double E0)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
return Sse.StaticCast<long, float>(Sse2.SetVector128(0, BitConverter.DoubleToInt64Bits(E0)));
}
protected static Vector128<float> MakeVectorE0E1(double E0, double E1)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
return Sse.StaticCast<long, float>(
Sse2.SetVector128(BitConverter.DoubleToInt64Bits(E1), BitConverter.DoubleToInt64Bits(E0)));
}
protected static Vector128<float> MakeVectorE1(double E1)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
return Sse.StaticCast<long, float>(Sse2.SetVector128(BitConverter.DoubleToInt64Bits(E1), 0));
}
protected static float VectorExtractSingle(Vector128<float> Vector, byte Index)
{
if (!Sse41.IsSupported)
{
throw new PlatformNotSupportedException();
}
int Value = Sse41.Extract(Sse.StaticCast<float, int>(Vector), Index);
return BitConverter.Int32BitsToSingle(Value);
}
protected static double VectorExtractDouble(Vector128<float> Vector, byte Index)
{
if (!Sse41.IsSupported)
{
throw new PlatformNotSupportedException();
}
long Value = Sse41.Extract(Sse.StaticCast<float, long>(Vector), Index);
return BitConverter.Int64BitsToDouble(Value);
}
protected static Vector128<float> MakeVectorE0(ulong E0)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
return Sse.StaticCast<ulong, float>(Sse2.SetVector128(0, E0));
}
protected static Vector128<float> MakeVectorE0E1(ulong E0, ulong E1)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
return Sse.StaticCast<ulong, float>(Sse2.SetVector128(E1, E0));
}
protected static Vector128<float> MakeVectorE1(ulong E1)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
return Sse.StaticCast<ulong, float>(Sse2.SetVector128(E1, 0));
}
protected static ulong GetVectorE0(Vector128<float> Vector)
{
if (!Sse41.IsSupported)
{
throw new PlatformNotSupportedException();
}
return Sse41.Extract(Sse.StaticCast<float, ulong>(Vector), (byte)0);
}
protected static ulong GetVectorE1(Vector128<float> Vector)
{
if (!Sse41.IsSupported)
{
throw new PlatformNotSupportedException();
}
return Sse41.Extract(Sse.StaticCast<float, ulong>(Vector), (byte)1);
}
protected static ushort GenNormal_H()
{
uint Rnd;
do Rnd = TestContext.CurrentContext.Random.NextUShort();
while (( Rnd & 0x7C00u) == 0u ||
(~Rnd & 0x7C00u) == 0u);
return (ushort)Rnd;
}
protected static ushort GenSubnormal_H()
{
uint Rnd;
do Rnd = TestContext.CurrentContext.Random.NextUShort();
while ((Rnd & 0x03FFu) == 0u);
return (ushort)(Rnd & 0x83FFu);
}
protected static uint GenNormal_S()
{
uint Rnd;
do Rnd = TestContext.CurrentContext.Random.NextUInt();
while (( Rnd & 0x7F800000u) == 0u ||
(~Rnd & 0x7F800000u) == 0u);
return Rnd;
}
protected static uint GenSubnormal_S()
{
uint Rnd;
do Rnd = TestContext.CurrentContext.Random.NextUInt();
while ((Rnd & 0x007FFFFFu) == 0u);
return Rnd & 0x807FFFFFu;
}
protected static ulong GenNormal_D()
{
ulong Rnd;
do Rnd = TestContext.CurrentContext.Random.NextULong();
while (( Rnd & 0x7FF0000000000000ul) == 0ul ||
(~Rnd & 0x7FF0000000000000ul) == 0ul);
return Rnd;
}
protected static ulong GenSubnormal_D()
{
ulong Rnd;
do Rnd = TestContext.CurrentContext.Random.NextULong();
while ((Rnd & 0x000FFFFFFFFFFFFFul) == 0ul);
return Rnd & 0x800FFFFFFFFFFFFFul;
}
}
}