mirror of
https://github.com/GreemDev/Ryujinx
synced 2025-01-10 05:06:48 +01:00
23c844b2aa
* use Array.Empty() where instead of allocating new zero-length arrays * structure for loops in a way that the JIT will elide array/Span bounds checking * avoiding function calls in for loop condition tests * avoid LINQ in a hot path * conform with code style * fix mistake in GetNextWaitingObject() * fix GetNextWaitingObject() possibility of returning null if all list items have TimePoint == long.MaxValue * make GetNextWaitingObject() behave FIFO behavior for multiple items with the same TimePoint
192 lines
6.2 KiB
C#
192 lines
6.2 KiB
C#
using SixLabors.ImageSharp;
|
|
using SixLabors.ImageSharp.PixelFormats;
|
|
using System;
|
|
using System.Collections.Generic;
|
|
|
|
namespace Ryujinx.Ava.UI.Windows
|
|
{
|
|
static class IconColorPicker
|
|
{
|
|
private const int ColorsPerLine = 64;
|
|
private const int TotalColors = ColorsPerLine * ColorsPerLine;
|
|
|
|
private const int UvQuantBits = 3;
|
|
private const int UvQuantShift = BitsPerComponent - UvQuantBits;
|
|
|
|
private const int SatQuantBits = 5;
|
|
private const int SatQuantShift = BitsPerComponent - SatQuantBits;
|
|
|
|
private const int BitsPerComponent = 8;
|
|
|
|
private const int CutOffLuminosity = 64;
|
|
|
|
private readonly struct PaletteColor
|
|
{
|
|
public int Qck { get; }
|
|
public byte R { get; }
|
|
public byte G { get; }
|
|
public byte B { get; }
|
|
|
|
public PaletteColor(int qck, byte r, byte g, byte b)
|
|
{
|
|
Qck = qck;
|
|
R = r;
|
|
G = g;
|
|
B = b;
|
|
}
|
|
}
|
|
|
|
public static Color GetFilteredColor(Image<Bgra32> image)
|
|
{
|
|
var color = GetColor(image).ToPixel<Bgra32>();
|
|
|
|
// We don't want colors that are too dark.
|
|
// If the color is too dark, make it brighter by reducing the range
|
|
// and adding a constant color.
|
|
int luminosity = GetColorApproximateLuminosity(color.R, color.G, color.B);
|
|
if (luminosity < CutOffLuminosity)
|
|
{
|
|
color = Color.FromRgb(
|
|
(byte)Math.Min(CutOffLuminosity + color.R, byte.MaxValue),
|
|
(byte)Math.Min(CutOffLuminosity + color.G, byte.MaxValue),
|
|
(byte)Math.Min(CutOffLuminosity + color.B, byte.MaxValue));
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
public static Color GetColor(Image<Bgra32> image)
|
|
{
|
|
var colors = new PaletteColor[TotalColors];
|
|
|
|
var dominantColorBin = new Dictionary<int, int>();
|
|
|
|
var buffer = GetBuffer(image);
|
|
|
|
int w = image.Width;
|
|
|
|
int w8 = w << 8;
|
|
int h8 = image.Height << 8;
|
|
|
|
int xStep = w8 / ColorsPerLine;
|
|
int yStep = h8 / ColorsPerLine;
|
|
|
|
int i = 0;
|
|
int maxHitCount = 0;
|
|
|
|
for (int y = 0; y < image.Height; y++)
|
|
{
|
|
int yOffset = y * image.Width;
|
|
|
|
for (int x = 0; x < image.Width && i < TotalColors; x++)
|
|
{
|
|
int offset = x + yOffset;
|
|
|
|
byte cb = buffer[offset].B;
|
|
byte cg = buffer[offset].G;
|
|
byte cr = buffer[offset].R;
|
|
|
|
var qck = GetQuantizedColorKey(cr, cg, cb);
|
|
|
|
if (dominantColorBin.TryGetValue(qck, out int hitCount))
|
|
{
|
|
dominantColorBin[qck] = hitCount + 1;
|
|
|
|
if (maxHitCount < hitCount)
|
|
{
|
|
maxHitCount = hitCount;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dominantColorBin.Add(qck, 1);
|
|
}
|
|
|
|
colors[i++] = new PaletteColor(qck, cr, cg, cb);
|
|
}
|
|
}
|
|
|
|
int highScore = -1;
|
|
PaletteColor bestCandidate = default;
|
|
|
|
for (i = 0; i < TotalColors; i++)
|
|
{
|
|
var score = GetColorScore(dominantColorBin, maxHitCount, colors[i]);
|
|
|
|
if (highScore < score)
|
|
{
|
|
highScore = score;
|
|
bestCandidate = colors[i];
|
|
}
|
|
}
|
|
|
|
return Color.FromRgb(bestCandidate.R, bestCandidate.G, bestCandidate.B);
|
|
}
|
|
|
|
public static Bgra32[] GetBuffer(Image<Bgra32> image)
|
|
{
|
|
return image.TryGetSinglePixelSpan(out var data) ? data.ToArray() : Array.Empty<Bgra32>();
|
|
}
|
|
|
|
private static int GetColorScore(Dictionary<int, int> dominantColorBin, int maxHitCount, PaletteColor color)
|
|
{
|
|
var hitCount = dominantColorBin[color.Qck];
|
|
var balancedHitCount = BalanceHitCount(hitCount, maxHitCount);
|
|
var quantSat = (GetColorSaturation(color) >> SatQuantShift) << SatQuantShift;
|
|
var value = GetColorValue(color);
|
|
|
|
// If the color is rarely used on the image,
|
|
// then chances are that theres a better candidate, even if the saturation value
|
|
// is high. By multiplying the saturation value with a weight, we can lower
|
|
// it if the color is almost never used (hit count is low).
|
|
var satWeighted = quantSat;
|
|
var satWeight = balancedHitCount << 5;
|
|
if (satWeight < 0x100)
|
|
{
|
|
satWeighted = (satWeighted * satWeight) >> 8;
|
|
}
|
|
|
|
// Compute score from saturation and dominance of the color.
|
|
// We prefer more vivid colors over dominant ones, so give more weight to the saturation.
|
|
var score = ((satWeighted << 1) + balancedHitCount) * value;
|
|
|
|
return score;
|
|
}
|
|
|
|
private static int BalanceHitCount(int hitCount, int maxHitCount)
|
|
{
|
|
return (hitCount << 8) / maxHitCount;
|
|
}
|
|
|
|
private static int GetColorApproximateLuminosity(byte r, byte g, byte b)
|
|
{
|
|
return (r + g + b) / 3;
|
|
}
|
|
|
|
private static int GetColorSaturation(PaletteColor color)
|
|
{
|
|
int cMax = Math.Max(Math.Max(color.R, color.G), color.B);
|
|
|
|
if (cMax == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int cMin = Math.Min(Math.Min(color.R, color.G), color.B);
|
|
int delta = cMax - cMin;
|
|
return (delta << 8) / cMax;
|
|
}
|
|
|
|
private static int GetColorValue(PaletteColor color)
|
|
{
|
|
return Math.Max(Math.Max(color.R, color.G), color.B);
|
|
}
|
|
|
|
private static int GetQuantizedColorKey(byte r, byte g, byte b)
|
|
{
|
|
int u = ((-38 * r - 74 * g + 112 * b + 128) >> 8) + 128;
|
|
int v = ((112 * r - 94 * g - 18 * b + 128) >> 8) + 128;
|
|
return (v >> UvQuantShift) | ((u >> UvQuantShift) << UvQuantBits);
|
|
}
|
|
}
|
|
}
|