alsa-utils/alsaloop/alsaloop.c

910 lines
23 KiB
C
Raw Normal View History

/*
* A simple PCM loopback utility with adaptive sample rate support
*
* Author: Jaroslav Kysela <perex@perex.cz>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <getopt.h>
#include <alsa/asoundlib.h>
#include <sys/time.h>
#include <math.h>
#include <pthread.h>
#include <syslog.h>
#include <sys/signal.h>
#include "alsaloop.h"
struct loopback_thread {
int threaded;
pthread_t thread;
int exitcode;
struct loopback **loopbacks;
int loopbacks_count;
snd_output_t *output;
};
int quit = 0;
int verbose = 0;
int workarounds = 0;
int daemonize = 0;
int use_syslog = 0;
struct loopback **loopbacks = NULL;
int loopbacks_count = 0;
char **my_argv = NULL;
int my_argc = 0;
struct loopback_thread *threads;
int threads_count = 0;
pthread_t main_job;
int arg_default_xrun = 0;
static void my_exit(struct loopback_thread *thread, int exitcode)
{
int i;
for (i = 0; i < thread->loopbacks_count; i++)
pcmjob_done(thread->loopbacks[i]);
if (thread->threaded) {
thread->exitcode = exitcode;
pthread_exit(0);
}
exit(exitcode);
}
static int create_loopback_handle(struct loopback_handle **_handle,
const char *device,
const char *ctldev,
const char *id)
{
char idbuf[1024];
struct loopback_handle *handle;
handle = calloc(1, sizeof(*handle));
if (handle == NULL)
return -ENOMEM;
if (device == NULL)
device = "hw:0,0";
handle->device = strdup(device);
if (handle->device == NULL)
return -ENOMEM;
if (ctldev) {
handle->ctldev = strdup(ctldev);
if (handle->ctldev == NULL)
return -ENOMEM;
} else {
handle->ctldev = NULL;
}
snprintf(idbuf, sizeof(idbuf)-1, "%s %s", id, device);
idbuf[sizeof(idbuf)-1] = '\0';
handle->id = strdup(idbuf);
handle->access = SND_PCM_ACCESS_RW_INTERLEAVED;
handle->format = SND_PCM_FORMAT_S16_LE;
handle->rate = handle->rate_req = 48000;
handle->channels = 2;
handle->resample = 0;
*_handle = handle;
return 0;
}
static int create_loopback(struct loopback **_handle,
struct loopback_handle *play,
struct loopback_handle *capt,
snd_output_t *output)
{
struct loopback *handle;
handle = calloc(1, sizeof(*handle));
if (handle == NULL)
return -ENOMEM;
handle->play = play;
handle->capt = capt;
play->loopback = handle;
capt->loopback = handle;
handle->latency_req = 0;
handle->latency_reqtime = 10000;
handle->loop_time = ~0UL;
handle->loop_limit = ~0ULL;
handle->output = output;
handle->state = output;
#ifdef USE_SAMPLERATE
handle->src_enable = 1;
handle->src_converter_type = SRC_SINC_BEST_QUALITY;
#endif
*_handle = handle;
return 0;
}
static void set_loop_time(struct loopback *loop, unsigned long loop_time)
{
loop->loop_time = loop_time;
loop->loop_limit = loop->capt->rate * loop_time;
}
static void setscheduler(void)
{
struct sched_param sched_param;
if (sched_getparam(0, &sched_param) < 0) {
logit(LOG_WARNING, "Scheduler getparam failed.\n");
return;
}
sched_param.sched_priority = sched_get_priority_max(SCHED_RR);
if (!sched_setscheduler(0, SCHED_RR, &sched_param)) {
if (verbose)
logit(LOG_WARNING, "Scheduler set to Round Robin with priority %i\n", sched_param.sched_priority);
return;
}
if (verbose)
logit(LOG_INFO, "!!!Scheduler set to Round Robin with priority %i FAILED!\n", sched_param.sched_priority);
}
void help(void)
{
int k;
printf(
"Usage: alsaloop [OPTION]...\n\n"
"-h,--help help\n"
"-g,--config configuration file (one line = one job specified)\n"
"-d,--daemonize daemonize the main process and use syslog for errors\n"
"-P,--pdevice playback device\n"
"-C,--cdevice capture device\n"
"-X,--pctl playback ctl device\n"
"-Y,--cctl capture ctl device\n"
"-l,--latency requested latency in frames\n"
"-t,--tlatency requested latency in usec (1/1000000sec)\n"
"-f,--format sample format\n"
"-c,--channels channels\n"
"-r,--rate rate\n"
"-n,--resample resample in alsa-lib\n"
"-A,--samplerate use converter (0=sincbest,1=sincmedium,2=sincfastest,\n"
" 3=zerohold,4=linear)\n"
"-B,--buffer buffer size in frames\n"
"-E,--period period size in frames\n"
"-s,--seconds duration of loop in seconds\n"
"-b,--nblock non-block mode (very early process wakeup)\n"
"-S,--sync sync mode(0=none,1=simple,2=captshift,3=playshift,4=samplerate,\n"
" 5=auto)\n"
"-a,--slave stream parameters slave mode (0=auto, 1=on, 2=off)\n"
"-T,--thread thread number (-1 = create unique)\n"
"-m,--mixer redirect mixer, argument is:\n"
" SRC_SLAVE_ID(PLAYBACK)[@DST_SLAVE_ID(CAPTURE)]\n"
"-O,--ossmixer rescan and redirect oss mixer, argument is:\n"
" ALSA_ID@OSS_ID (for example: \"Master@VOLUME\")\n"
"-e,--effect apply an effect (bandpass filter sweep)\n"
"-v,--verbose verbose mode (more -v means more verbose)\n"
"-w,--workaround use workaround (serialopen)\n"
"-U,--xrun xrun profiling\n"
);
printf("\nRecognized sample formats are:");
for (k = 0; k < SND_PCM_FORMAT_LAST; ++k) {
const char *s = snd_pcm_format_name(k);
if (s)
printf(" %s", s);
}
printf("\n\n");
printf(
"Tip #1 (usable 500ms latency, good CPU usage, superb xrun prevention):\n"
" alsaloop -t 500000\n"
"Tip #2 (superb 1ms latency, but heavy CPU usage):\n"
" alsaloop -t 1000\n"
);
}
static long timediff(struct timeval t1, struct timeval t2)
{
signed long l;
t1.tv_sec -= t2.tv_sec;
l = (signed long) t1.tv_usec - (signed long) t2.tv_usec;
if (l < 0) {
t1.tv_sec--;
l = 1000000 + l;
l %= 1000000;
}
return (t1.tv_sec * 1000000) + l;
}
static void add_loop(struct loopback *loop)
{
loopbacks = realloc(loopbacks, (loopbacks_count + 1) *
sizeof(struct loopback *));
if (loopbacks == NULL) {
logit(LOG_CRIT, "No enough memory\n");
exit(EXIT_FAILURE);
}
loopbacks[loopbacks_count++] = loop;
}
static int init_mixer_control(struct loopback_control *control,
char *id)
{
int err;
err = snd_ctl_elem_id_malloc(&control->id);
if (err < 0)
return err;
err = snd_ctl_elem_info_malloc(&control->info);
if (err < 0)
return err;
err = snd_ctl_elem_value_malloc(&control->value);
if (err < 0)
return err;
err = control_parse_id(id, control->id);
if (err < 0)
return err;
return 0;
}
static int add_mixers(struct loopback *loop,
char **mixers,
int mixers_count)
{
struct loopback_mixer *mixer, *last = NULL;
char *str1;
int err;
while (mixers_count > 0) {
mixer = calloc(1, sizeof(*mixer));
if (mixer == NULL)
return -ENOMEM;
if (last)
last->next = mixer;
else
loop->controls = mixer;
last = mixer;
str1 = strchr(*mixers, '@');
if (str1)
*str1 = '\0';
err = init_mixer_control(&mixer->src, *mixers);
if (err < 0) {
logit(LOG_CRIT, "Wrong mixer control ID syntax '%s'\n", *mixers);
return -EINVAL;
}
err = init_mixer_control(&mixer->dst, str1 ? str1 + 1 : *mixers);
if (err < 0) {
logit(LOG_CRIT, "Wrong mixer control ID syntax '%s'\n", str1 ? str1 + 1 : *mixers);
return -EINVAL;
}
if (str1)
*str1 = '@';
mixers++;
mixers_count--;
}
return 0;
}
static int add_oss_mixers(struct loopback *loop,
char **mixers,
int mixers_count)
{
struct loopback_ossmixer *mixer, *last = NULL;
char *str1, *str2;
while (mixers_count > 0) {
mixer = calloc(1, sizeof(*mixer));
if (mixer == NULL)
return -ENOMEM;
if (last)
last->next = mixer;
else
loop->oss_controls = mixer;
last = mixer;
str1 = strchr(*mixers, ',');
if (str1)
*str1 = '\0';
str2 = strchr(str1 ? str1 + 1 : *mixers, '@');
if (str2)
*str2 = '\0';
mixer->alsa_id = strdup(*mixers);
if (str1)
mixer->alsa_index = atoi(str1);
mixer->oss_id = strdup(str2 ? str2 + 1 : *mixers);
if (mixer->alsa_id == NULL || mixer->oss_id == NULL) {
logit(LOG_CRIT, "Not enough memory");
return -ENOMEM;
}
if (str1)
*str1 = ',';
if (str2)
*str2 = ',';
mixers++;
mixers_count--;
}
return 0;
}
static int parse_config_file(const char *file, snd_output_t *output);
static int parse_config(int argc, char *argv[], snd_output_t *output,
int cmdline)
{
struct option long_option[] =
{
{"help", 0, NULL, 'h'},
{"config", 1, NULL, 'g'},
{"daemonize", 0, NULL, 'd'},
{"pdevice", 1, NULL, 'P'},
{"cdevice", 1, NULL, 'C'},
{"pctl", 1, NULL, 'X'},
{"cctl", 1, NULL, 'Y'},
{"latency", 1, NULL, 'l'},
{"tlatency", 1, NULL, 't'},
{"format", 1, NULL, 'f'},
{"channels", 1, NULL, 'c'},
{"rate", 1, NULL, 'r'},
{"buffer", 1, NULL, 'B'},
{"period", 1, NULL, 'E'},
{"seconds", 1, NULL, 's'},
{"nblock", 0, NULL, 'b'},
{"effect", 0, NULL, 'e'},
{"verbose", 0, NULL, 'v'},
{"resample", 0, NULL, 'n'},
{"samplerate", 1, NULL, 'A'},
{"sync", 1, NULL, 'S'},
{"slave", 1, NULL, 'a'},
{"thread", 1, NULL, 'T'},
{"mixer", 1, NULL, 'm'},
{"ossmixer", 1, NULL, 'O'},
{"workaround", 1, NULL, 'w'},
{"xrun", 0, NULL, 'U'},
{NULL, 0, NULL, 0},
};
int err, morehelp;
char *arg_config = NULL;
char *arg_pdevice = NULL;
char *arg_cdevice = NULL;
char *arg_pctl = NULL;
char *arg_cctl = NULL;
unsigned int arg_latency_req = 0;
unsigned int arg_latency_reqtime = 10000;
snd_pcm_format_t arg_format = SND_PCM_FORMAT_S16_LE;
unsigned int arg_channels = 2;
unsigned int arg_rate = 48000;
snd_pcm_uframes_t arg_buffer_size = 0;
snd_pcm_uframes_t arg_period_size = 0;
unsigned long arg_loop_time = ~0UL;
int arg_nblock = 0;
int arg_effect = 0;
int arg_resample = 0;
int arg_samplerate = SRC_SINC_FASTEST + 1;
int arg_sync = SYNC_TYPE_AUTO;
int arg_slave = SLAVE_TYPE_AUTO;
int arg_thread = 0;
struct loopback *loop = NULL;
char *arg_mixers[MAX_MIXERS];
int arg_mixers_count = 0;
char *arg_ossmixers[MAX_MIXERS];
int arg_ossmixers_count = 0;
int arg_xrun = arg_default_xrun;
morehelp = 0;
while (1) {
int c;
if ((c = getopt_long(argc, argv,
"hdg:P:C:X:Y:l:t:F:f:c:r:s:benvA:S:a:m:T:O:w:U",
long_option, NULL)) < 0)
break;
switch (c) {
case 'h':
morehelp++;
break;
case 'g':
arg_config = strdup(optarg);
break;
case 'd':
daemonize = 1;
use_syslog = 1;
openlog("alsaloop", LOG_NDELAY|LOG_PID, LOG_DAEMON);
break;
case 'P':
arg_pdevice = strdup(optarg);
break;
case 'C':
arg_cdevice = strdup(optarg);
break;
case 'X':
arg_pctl = strdup(optarg);
break;
case 'Y':
arg_cctl = strdup(optarg);
break;
case 'l':
err = atoi(optarg);
arg_latency_req = err >= 4 ? err : 4;
break;
case 't':
err = atoi(optarg);
arg_latency_reqtime = err >= 500 ? err : 500;
break;
case 'f':
arg_format = snd_pcm_format_value(optarg);
if (arg_format == SND_PCM_FORMAT_UNKNOWN) {
logit(LOG_WARNING, "Unknown format, setting to default S16_LE\n");
arg_format = SND_PCM_FORMAT_S16_LE;
}
break;
case 'c':
err = atoi(optarg);
arg_channels = err >= 1 && err < 1024 ? err : 1;
break;
case 'r':
err = atoi(optarg);
arg_rate = err >= 4000 && err < 200000 ? err : 44100;
break;
case 'B':
err = atoi(optarg);
arg_buffer_size = err >= 32 && err < 200000 ? err : 0;
break;
case 'E':
err = atoi(optarg);
arg_period_size = err >= 32 && err < 200000 ? err : 0;
break;
case 's':
err = atoi(optarg);
arg_loop_time = err >= 1 && err <= 100000 ? err : 30;
break;
case 'b':
arg_nblock = 1;
break;
case 'e':
arg_effect = 1;
break;
case 'n':
arg_resample = 1;
break;
case 'A':
if (strcasecmp(optarg, "sincbest") == 0)
arg_samplerate = SRC_SINC_BEST_QUALITY;
else if (strcasecmp(optarg, "sincmedium") == 0)
arg_samplerate = SRC_SINC_MEDIUM_QUALITY;
else if (strcasecmp(optarg, "sincfastest") == 0)
arg_samplerate = SRC_SINC_FASTEST;
else if (strcasecmp(optarg, "zerohold") == 0)
arg_samplerate = SRC_ZERO_ORDER_HOLD;
else if (strcasecmp(optarg, "linear") == 0)
arg_samplerate = SRC_LINEAR;
else
arg_samplerate = atoi(optarg);
if (arg_samplerate < 0 || arg_samplerate > SRC_LINEAR)
arg_sync = SRC_SINC_FASTEST;
arg_samplerate += 1;
break;
case 'S':
if (strcasecmp(optarg, "samplerate") == 0)
arg_sync = SYNC_TYPE_SAMPLERATE;
else if (optarg[0] == 'n')
arg_sync = SYNC_TYPE_NONE;
else if (optarg[0] == 's')
arg_sync = SYNC_TYPE_SIMPLE;
else if (optarg[0] == 'c')
arg_sync = SYNC_TYPE_CAPTRATESHIFT;
else if (optarg[0] == 'p')
arg_sync = SYNC_TYPE_PLAYRATESHIFT;
else if (optarg[0] == 'r')
arg_sync = SYNC_TYPE_SAMPLERATE;
else
arg_sync = atoi(optarg);
if (arg_sync < 0 || arg_sync > SYNC_TYPE_LAST)
arg_sync = SYNC_TYPE_AUTO;
break;
case 'a':
if (optarg[0] == 'a')
arg_slave = SLAVE_TYPE_AUTO;
else if (strcasecmp(optarg, "on") == 0)
arg_slave = SLAVE_TYPE_ON;
else if (strcasecmp(optarg, "off") == 0)
arg_slave = SLAVE_TYPE_OFF;
else
arg_slave = atoi(optarg);
if (arg_slave < 0 || arg_slave > SLAVE_TYPE_LAST)
arg_slave = SLAVE_TYPE_AUTO;
break;
case 'T':
arg_thread = atoi(optarg);
if (arg_thread < 0)
arg_thread = 10000000 + loopbacks_count;
break;
case 'm':
if (arg_mixers_count >= MAX_MIXERS) {
logit(LOG_CRIT, "Maximum redirected mixer controls reached (max %i)\n", (int)MAX_MIXERS);
exit(EXIT_FAILURE);
}
arg_mixers[arg_mixers_count++] = optarg;
break;
case 'O':
if (arg_ossmixers_count >= MAX_MIXERS) {
logit(LOG_CRIT, "Maximum redirected mixer controls reached (max %i)\n", (int)MAX_MIXERS);
exit(EXIT_FAILURE);
}
arg_ossmixers[arg_ossmixers_count++] = optarg;
break;
case 'v':
verbose++;
break;
case 'w':
if (strcasecmp(optarg, "serialopen") == 0)
workarounds |= WORKAROUND_SERIALOPEN;
break;
case 'U':
arg_xrun = 1;
if (cmdline)
arg_default_xrun = 1;
break;
}
}
if (morehelp) {
help();
exit(EXIT_SUCCESS);
}
if (arg_config == NULL) {
struct loopback_handle *play;
struct loopback_handle *capt;
err = create_loopback_handle(&play, arg_pdevice, arg_pctl, "playback");
if (err < 0) {
logit(LOG_CRIT, "Unable to create playback handle.\n");
exit(EXIT_FAILURE);
}
err = create_loopback_handle(&capt, arg_cdevice, arg_cctl, "capture");
if (err < 0) {
logit(LOG_CRIT, "Unable to create capture handle.\n");
exit(EXIT_FAILURE);
}
err = create_loopback(&loop, play, capt, output);
if (err < 0) {
logit(LOG_CRIT, "Unable to create loopback handle.\n");
exit(EXIT_FAILURE);
}
play->format = capt->format = arg_format;
play->rate = play->rate_req = capt->rate = capt->rate_req = arg_rate;
play->channels = capt->channels = arg_channels;
play->buffer_size_req = capt->buffer_size_req = arg_buffer_size;
play->period_size_req = capt->period_size_req = arg_period_size;
play->resample = capt->resample = arg_resample;
play->nblock = capt->nblock = arg_nblock ? 1 : 0;
loop->latency_req = arg_latency_req;
loop->latency_reqtime = arg_latency_reqtime;
loop->sync = arg_sync;
loop->slave = arg_slave;
loop->thread = arg_thread;
loop->xrun = arg_xrun;
err = add_mixers(loop, arg_mixers, arg_mixers_count);
if (err < 0) {
logit(LOG_CRIT, "Unable to add mixer controls.\n");
exit(EXIT_FAILURE);
}
err = add_oss_mixers(loop, arg_ossmixers, arg_ossmixers_count);
if (err < 0) {
logit(LOG_CRIT, "Unable to add ossmixer controls.\n");
exit(EXIT_FAILURE);
}
#ifdef USE_SAMPLERATE
loop->src_enable = arg_samplerate > 0;
if (loop->src_enable)
loop->src_converter_type = arg_samplerate - 1;
#else
if (arg_samplerate > 0) {
logit(LOG_CRIT, "No libsamplerate support.\n");
exit(EXIT_FAILURE);
}
#endif
set_loop_time(loop, arg_loop_time);
add_loop(loop);
return 0;
}
return parse_config_file(arg_config, output);
}
static int parse_config_file(const char *file, snd_output_t *output)
{
FILE *fp;
char line[2048], word[2048];
char *str, *ptr;
int argc, c, err = 0;
char **argv;
fp = fopen(file, "r");
if (fp == NULL) {
logit(LOG_CRIT, "Unable to open file '%s': %s\n", file, strerror(errno));
return -EIO;
}
while (!feof(fp)) {
if (fgets(line, sizeof(line)-1, fp) == NULL)
break;
line[sizeof(line)-1] = '\0';
my_argv = realloc(my_argv, my_argc + MAX_ARGS * sizeof(char *));
if (my_argv == NULL)
return -ENOMEM;
argv = my_argv + my_argc;
argc = 0;
argv[argc++] = strdup("<prog>");
my_argc++;
str = line;
while (*str) {
ptr = word;
while (*str && (*str == ' ' || *str < ' '))
str++;
if (*str == '#')
goto __next;
if (*str == '\'' || *str == '\"') {
c = *str++;
while (*str && *str != c)
*ptr++ = *str++;
if (*str == c)
str++;
} else {
while (*str && *str != ' ' && *str != '\t')
*ptr++ = *str++;
}
if (ptr != word) {
if (*(ptr-1) == '\n')
ptr--;
*ptr = '\0';
if (argc >= MAX_ARGS) {
logit(LOG_CRIT, "Too many arguments.");
goto __error;
}
argv[argc++] = strdup(word);
my_argc++;
}
}
/* erase runtime variables for getopt */
optarg = NULL;
optind = opterr = 1;
optopt = '?';
err = parse_config(argc, argv, output, 0);
__next:
if (err < 0)
break;
err = 0;
}
__error:
fclose(fp);
return err;
}
static void thread_job1(void *_data)
{
struct loopback_thread *thread = _data;
snd_output_t *output = thread->output;
struct pollfd *pfds = NULL;
int pfds_count = 0;
int i, j, err;
setscheduler();
for (i = 0; i < thread->loopbacks_count; i++) {
err = pcmjob_init(thread->loopbacks[i]);
if (err < 0) {
logit(LOG_CRIT, "Loopback initialization failure.\n");
my_exit(thread, EXIT_FAILURE);
}
}
for (i = 0; i < thread->loopbacks_count; i++) {
err = pcmjob_start(thread->loopbacks[i]);
if (err < 0) {
logit(LOG_CRIT, "Loopback start failure.\n");
my_exit(thread, EXIT_FAILURE);
}
pfds_count += thread->loopbacks[i]->pollfd_count;
}
pfds = calloc(pfds_count, sizeof(struct pollfd));
if (pfds == NULL || pfds_count <= 0) {
logit(LOG_CRIT, "Poll FDs allocation failed.\n");
my_exit(thread, EXIT_FAILURE);
}
while (!quit) {
struct timeval tv1, tv2;
for (i = j = 0; i < thread->loopbacks_count; i++) {
err = pcmjob_pollfds_init(thread->loopbacks[i], &pfds[j]);
if (err < 0) {
logit(LOG_CRIT, "Poll FD initialization failed.\n");
my_exit(thread, EXIT_FAILURE);
}
j += err;
}
if (verbose > 10)
gettimeofday(&tv1, NULL);
err = poll(pfds, j, -1);
if (err < 0)
err = -errno;
if (verbose > 10) {
gettimeofday(&tv2, NULL);
snd_output_printf(output, "pool took %lius\n", timediff(tv2, tv1));
}
if (err < 0) {
if (err == -EINTR || err == -ERESTART)
continue;
logit(LOG_CRIT, "Poll failed: %s\n", strerror(-err));
my_exit(thread, EXIT_FAILURE);
}
for (i = j = 0; i < thread->loopbacks_count; i++) {
struct loopback *loop = thread->loopbacks[i];
if (j < loop->active_pollfd_count) {
err = pcmjob_pollfds_handle(loop, &pfds[j]);
if (err < 0) {
logit(LOG_CRIT, "pcmjob failed.\n");
exit(EXIT_FAILURE);
}
}
j += loop->active_pollfd_count;
}
}
my_exit(thread, EXIT_SUCCESS);
}
static void thread_job(struct loopback_thread *thread)
{
if (!thread->threaded) {
thread_job1(thread);
return;
}
pthread_create(&thread->thread, NULL, (void *) &thread_job1,
(void *) thread);
}
static void send_to_all(int sig)
{
struct loopback_thread *thread;
int i;
for (i = 0; i < threads_count; i++) {
thread = &threads[i];
if (thread->threaded)
pthread_kill(thread->thread, sig);
}
}
static void signal_handler(int sig)
{
quit = 1;
send_to_all(SIGUSR2);
}
static void signal_handler_state(int sig)
{
pthread_t self = pthread_self();
struct loopback_thread *thread;
int i, j;
if (pthread_equal(main_job, self))
send_to_all(SIGUSR1);
for (i = 0; i < threads_count; i++) {
thread = &threads[i];
if (thread->thread == self) {
for (j = 0; j < thread->loopbacks_count; j++)
pcmjob_state(thread->loopbacks[j]);
}
}
signal(sig, signal_handler_state);
}
static void signal_handler_ignore(int sig)
{
signal(sig, signal_handler_ignore);
}
int main(int argc, char *argv[])
{
snd_output_t *output;
int i, j, k, l, err;
err = snd_output_stdio_attach(&output, stdout, 0);
if (err < 0) {
logit(LOG_CRIT, "Output failed: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
err = parse_config(argc, argv, output, 1);
if (err < 0) {
logit(LOG_CRIT, "Unable to parse arguments or configuration...\n");
exit(EXIT_FAILURE);
}
while (my_argc > 0)
free(my_argv[--my_argc]);
free(my_argv);
if (loopbacks_count <= 0) {
logit(LOG_CRIT, "No loopback defined...\n");
exit(EXIT_FAILURE);
}
if (daemonize) {
if (daemon(0, 0) < 0) {
logit(LOG_CRIT, "daemon() failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
i = fork();
if (i < 0) {
logit(LOG_CRIT, "fork() failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
if (i > 0) {
/* wait(&i); */
exit(EXIT_SUCCESS);
}
}
/* we must sort thread IDs */
j = -1;
do {
k = 0x7fffffff;
for (i = 0; i < loopbacks_count; i++) {
if (loopbacks[i]->thread < k &&
loopbacks[i]->thread > j)
k = loopbacks[i]->thread;
}
j++;
for (i = 0; i < loopbacks_count; i++) {
if (loopbacks[i]->thread == k)
loopbacks[i]->thread = j;
}
} while (k != 0x7fffffff);
/* fix maximum thread id */
for (i = 0, j = -1; i < loopbacks_count; i++) {
if (loopbacks[i]->thread > j)
j = loopbacks[i]->thread;
}
j += 1;
threads = calloc(1, sizeof(struct loopback_thread) * j);
if (threads == NULL) {
logit(LOG_CRIT, "No enough memory\n");
exit(EXIT_FAILURE);
}
/* sort all threads */
for (k = 0; k < j; k++) {
for (i = l = 0; i < loopbacks_count; i++)
if (loopbacks[i]->thread == k)
l++;
threads[k].loopbacks = malloc(l * sizeof(struct loopback *));
threads[k].loopbacks_count = l;
threads[k].output = output;
threads[k].threaded = j > 1;
for (i = l = 0; i < loopbacks_count; i++)
if (loopbacks[i]->thread == k)
threads[k].loopbacks[l++] = loopbacks[i];
}
threads_count = j;
main_job = pthread_self();
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
signal(SIGABRT, signal_handler);
signal(SIGUSR1, signal_handler_state);
signal(SIGUSR2, signal_handler_ignore);
for (k = 0; k < threads_count; k++)
thread_job(&threads[k]);
if (j > 1) {
for (k = 0; k < threads_count; k++)
pthread_join(threads[k].thread, NULL);
}
if (use_syslog)
closelog();
exit(EXIT_SUCCESS);
}