alsa-utils/axfer/container-riff-wave.c

575 lines
15 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
//
// container-riff-wave.c - a parser/builder for a container of RIFF/Wave File.
//
// Copyright (c) 2018 Takashi Sakamoto <o-takashi@sakamocchi.jp>
//
// Licensed under the terms of the GNU General Public License, version 2.
#include "container.h"
#include "misc.h"
// Not portable to all of UNIX platforms.
#include <endian.h>
// References:
// - 'Resource Interchange File Format (RIFF)' at msdn.microsoft.com
// - 'Multiple channel audio data and WAVE files' at msdn.microsoft.com
// - RFC 2361 'WAVE and AVI Codec Registries' at ietf.org
// - 'mmreg.h' in Wine project
// - 'mmreg.h' in ReactOS project
#define RIFF_MAGIC "RIF" // A common part.
#define RIFF_CHUNK_ID_LE "RIFF"
#define RIFF_CHUNK_ID_BE "RIFX"
#define RIFF_FORM_WAVE "WAVE"
#define FMT_SUBCHUNK_ID "fmt "
#define DATA_SUBCHUNK_ID "data"
// See 'WAVE and AVI Codec Registries (Historic Registry)' in 'iana.org'.
// https://www.iana.org/assignments/wave-avi-codec-registry/
enum wave_format {
WAVE_FORMAT_PCM = 0x0001,
WAVE_FORMAT_ADPCM = 0x0002,
WAVE_FORMAT_IEEE_FLOAT = 0x0003,
WAVE_FORMAT_ALAW = 0x0006,
WAVE_FORMAT_MULAW = 0x0007,
WAVE_FORMAT_G723_ADPCM = 0x0014,
// The others are not supported.
};
struct format_map {
enum wave_format wformat;
snd_pcm_format_t format;
};
static const struct format_map format_maps[] = {
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_U8},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S16_LE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S16_BE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S24_LE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S24_BE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S32_LE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S32_BE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S24_3LE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S24_3BE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S20_3LE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S20_3BE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S18_3LE},
{WAVE_FORMAT_PCM, SND_PCM_FORMAT_S18_3BE},
{WAVE_FORMAT_IEEE_FLOAT, SND_PCM_FORMAT_FLOAT_LE},
{WAVE_FORMAT_IEEE_FLOAT, SND_PCM_FORMAT_FLOAT_BE},
{WAVE_FORMAT_IEEE_FLOAT, SND_PCM_FORMAT_FLOAT64_LE},
{WAVE_FORMAT_IEEE_FLOAT, SND_PCM_FORMAT_FLOAT64_BE},
{WAVE_FORMAT_ALAW, SND_PCM_FORMAT_A_LAW},
{WAVE_FORMAT_MULAW, SND_PCM_FORMAT_MU_LAW},
// Below sample formats are not currently supported, due to width of
// its sample.
// - WAVE_FORMAT_ADPCM
// - WAVE_FORMAT_G723_ADPCM
// - WAVE_FORMAT_G723_ADPCM
// - WAVE_FORMAT_G723_ADPCM
// - WAVE_FORMAT_G723_ADPCM
};
struct riff_chunk {
uint8_t id[4];
uint32_t size;
uint8_t data[0];
};
struct riff_chunk_data {
uint8_t id[4];
uint8_t subchunks[0];
};
struct riff_subchunk {
uint8_t id[4];
uint32_t size;
uint8_t data[0];
};
struct wave_fmt_subchunk {
uint8_t id[4];
uint32_t size;
uint16_t format;
uint16_t samples_per_frame;
uint32_t frames_per_second;
uint32_t average_bytes_per_second;
uint16_t bytes_per_frame;
uint16_t bits_per_sample;
uint8_t extension[0];
};
struct wave_data_subchunk {
uint8_t id[4];
uint32_t size;
uint8_t frames[0];
};
struct parser_state {
bool be;
enum wave_format format;
unsigned int samples_per_frame;
unsigned int frames_per_second;
unsigned int average_bytes_per_second;
unsigned int bytes_per_frame;
unsigned int bytes_per_sample;
unsigned int avail_bits_in_sample;
unsigned int byte_count;
};
static int parse_riff_chunk_header(struct parser_state *state,
struct riff_chunk *chunk,
uint64_t *byte_count)
{
if (!memcmp(chunk->id, RIFF_CHUNK_ID_BE, sizeof(chunk->id)))
state->be = true;
else if (!memcmp(chunk->id, RIFF_CHUNK_ID_LE, sizeof(chunk->id)))
state->be = false;
else
return -EINVAL;
if (state->be)
*byte_count = be32toh(chunk->size);
else
*byte_count = le32toh(chunk->size);
return 0;
}
static int parse_riff_chunk(struct container_context *cntr,
uint64_t *byte_count)
{
struct parser_state *state = cntr->private_data;
union {
struct riff_chunk chunk;
struct riff_chunk_data chunk_data;
} buf = {0};
int err;
// Chunk header. 4 bytes were alread read to detect container type.
memcpy(buf.chunk.id, cntr->magic, sizeof(cntr->magic));
err = container_recursive_read(cntr,
(char *)&buf.chunk + sizeof(cntr->magic),
sizeof(buf.chunk) - sizeof(cntr->magic));
if (err < 0)
return err;
if (cntr->eof)
return 0;
err = parse_riff_chunk_header(state, &buf.chunk, byte_count);
if (err < 0)
return err;
// Chunk data header.
err = container_recursive_read(cntr, &buf, sizeof(buf.chunk_data));
if (err < 0)
return err;
if (cntr->eof)
return 0;
if (memcmp(buf.chunk_data.id, RIFF_FORM_WAVE,
sizeof(buf.chunk_data.id)))
return -EINVAL;
return 0;
}
static int parse_wave_fmt_subchunk(struct parser_state *state,
struct wave_fmt_subchunk *subchunk)
{
if (state->be) {
state->format = be16toh(subchunk->format);
state->samples_per_frame = be16toh(subchunk->samples_per_frame);
state->frames_per_second = be32toh(subchunk->frames_per_second);
state->average_bytes_per_second =
be32toh(subchunk->average_bytes_per_second);
state->bytes_per_frame = be16toh(subchunk->bytes_per_frame);
state->avail_bits_in_sample =
be16toh(subchunk->bits_per_sample);
} else {
state->format = le16toh(subchunk->format);
state->samples_per_frame = le16toh(subchunk->samples_per_frame);
state->frames_per_second = le32toh(subchunk->frames_per_second);
state->average_bytes_per_second =
le32toh(subchunk->average_bytes_per_second);
state->bytes_per_frame = le16toh(subchunk->bytes_per_frame);
state->avail_bits_in_sample =
le16toh(subchunk->bits_per_sample);
}
if (state->average_bytes_per_second !=
state->bytes_per_frame * state->frames_per_second)
return -EINVAL;
return 0;
}
static int parse_wave_data_subchunk(struct parser_state *state,
struct wave_data_subchunk *subchunk)
{
if (state->be)
state->byte_count = be32toh(subchunk->size);
else
state->byte_count = le32toh(subchunk->size);
return 0;
}
static int parse_wave_subchunk(struct container_context *cntr)
{
union {
struct riff_subchunk subchunk;
struct wave_fmt_subchunk fmt_subchunk;
struct wave_data_subchunk data_subchunk;
} buf = {0};
enum {
SUBCHUNK_TYPE_UNKNOWN = -1,
SUBCHUNK_TYPE_FMT,
SUBCHUNK_TYPE_DATA,
} subchunk_type;
struct parser_state *state = cntr->private_data;
unsigned int required_size;
unsigned int subchunk_data_size;
int err;
while (1) {
err = container_recursive_read(cntr, &buf,
sizeof(buf.subchunk));
if (err < 0)
return err;
if (cntr->eof)
return 0;
// Calculate the size of subchunk data.
if (state->be)
subchunk_data_size = be32toh(buf.subchunk.size);
else
subchunk_data_size = le32toh(buf.subchunk.size);
// Detect type of subchunk.
if (!memcmp(buf.subchunk.id, FMT_SUBCHUNK_ID,
sizeof(buf.subchunk.id))) {
subchunk_type = SUBCHUNK_TYPE_FMT;
} else if (!memcmp(buf.subchunk.id, DATA_SUBCHUNK_ID,
sizeof(buf.subchunk.id))) {
subchunk_type = SUBCHUNK_TYPE_DATA;
} else {
subchunk_type = SUBCHUNK_TYPE_UNKNOWN;
}
if (subchunk_type != SUBCHUNK_TYPE_UNKNOWN) {
// Parse data of this subchunk.
if (subchunk_type == SUBCHUNK_TYPE_FMT) {
required_size =
sizeof(struct wave_fmt_subchunk) -
sizeof(struct riff_chunk);
} else {
required_size =
sizeof(struct wave_data_subchunk)-
sizeof(struct riff_chunk);
}
if (subchunk_data_size < required_size)
return -EINVAL;
err = container_recursive_read(cntr, &buf.subchunk.data,
required_size);
if (err < 0)
return err;
if (cntr->eof)
return 0;
subchunk_data_size -= required_size;
if (subchunk_type == SUBCHUNK_TYPE_FMT) {
err = parse_wave_fmt_subchunk(state,
&buf.fmt_subchunk);
} else if (subchunk_type == SUBCHUNK_TYPE_DATA) {
err = parse_wave_data_subchunk(state,
&buf.data_subchunk);
}
if (err < 0)
return err;
// Found frame data.
if (subchunk_type == SUBCHUNK_TYPE_DATA)
break;
}
// Go to next subchunk.
while (subchunk_data_size > 0) {
unsigned int consume;
if (subchunk_data_size > sizeof(buf))
consume = sizeof(buf);
else
consume = subchunk_data_size;
err = container_recursive_read(cntr, &buf, consume);
if (err < 0)
return err;
if (cntr->eof)
return 0;
subchunk_data_size -= consume;
}
}
return 0;
}
static int parse_riff_wave_format(struct container_context *cntr)
{
uint64_t byte_count;
int err;
err = parse_riff_chunk(cntr, &byte_count);
if (err < 0)
return err;
err = parse_wave_subchunk(cntr);
if (err < 0)
return err;
return 0;
}
static int wave_parser_pre_process(struct container_context *cntr,
snd_pcm_format_t *format,
unsigned int *samples_per_frame,
unsigned int *frames_per_second,
uint64_t *byte_count)
{
struct parser_state *state = cntr->private_data;
int phys_width;
const struct format_map *map;
int i;
int err;
err = parse_riff_wave_format(cntr);
if (err < 0)
return err;
phys_width = 8 * state->average_bytes_per_second /
state->samples_per_frame / state->frames_per_second;
for (i = 0; i < ARRAY_SIZE(format_maps); ++i) {
map = &format_maps[i];
if (state->format != map->wformat)
continue;
if (state->avail_bits_in_sample !=
snd_pcm_format_width(map->format))
continue;
if (phys_width != snd_pcm_format_physical_width(map->format))
continue;
if (state->be && snd_pcm_format_big_endian(map->format) != 1)
continue;
break;
}
if (i == ARRAY_SIZE(format_maps))
return -EINVAL;
// Set parameters.
*format = format_maps[i].format;
*samples_per_frame = state->samples_per_frame;
*frames_per_second = state->frames_per_second;
*byte_count = state->byte_count;
return 0;
}
struct builder_state {
bool be;
enum wave_format format;
unsigned int avail_bits_in_sample;
unsigned int bytes_per_sample;
unsigned int samples_per_frame;
unsigned int frames_per_second;
};
static void build_riff_chunk_header(struct riff_chunk *chunk,
uint64_t byte_count, bool be)
{
uint64_t data_size = sizeof(struct riff_chunk_data) +
sizeof(struct wave_fmt_subchunk) +
sizeof(struct wave_data_subchunk) + byte_count;
if (be) {
memcpy(chunk->id, RIFF_CHUNK_ID_BE, sizeof(chunk->id));
chunk->size = htobe32(data_size);
} else {
memcpy(chunk->id, RIFF_CHUNK_ID_LE, sizeof(chunk->id));
chunk->size = htole32(data_size);
}
}
static void build_subchunk_header(struct riff_subchunk *subchunk,
const char *const form, uint64_t size,
bool be)
{
memcpy(subchunk->id, form, sizeof(subchunk->id));
if (be)
subchunk->size = htobe32(size);
else
subchunk->size = htole32(size);
}
static void build_wave_format_subchunk(struct wave_fmt_subchunk *subchunk,
struct builder_state *state)
{
unsigned int bytes_per_frame =
state->bytes_per_sample * state->samples_per_frame;
unsigned int average_bytes_per_second = state->bytes_per_sample *
state->samples_per_frame * state->frames_per_second;
uint64_t size;
// No extensions.
size = sizeof(struct wave_fmt_subchunk) - sizeof(struct riff_subchunk);
build_subchunk_header((struct riff_subchunk *)subchunk, FMT_SUBCHUNK_ID,
size, state->be);
if (state->be) {
subchunk->format = htobe16(state->format);
subchunk->samples_per_frame = htobe16(state->samples_per_frame);
subchunk->frames_per_second = htobe32(state->frames_per_second);
subchunk->average_bytes_per_second =
htobe32(average_bytes_per_second);
subchunk->bytes_per_frame = htobe16(bytes_per_frame);
subchunk->bits_per_sample =
htobe16(state->avail_bits_in_sample);
} else {
subchunk->format = htole16(state->format);
subchunk->samples_per_frame = htole16(state->samples_per_frame);
subchunk->frames_per_second = htole32(state->frames_per_second);
subchunk->average_bytes_per_second =
htole32(average_bytes_per_second);
subchunk->bytes_per_frame = htole16(bytes_per_frame);
subchunk->bits_per_sample =
htole16(state->avail_bits_in_sample);
}
}
static void build_wave_data_subchunk(struct wave_data_subchunk *subchunk,
uint64_t byte_count, bool be)
{
build_subchunk_header((struct riff_subchunk *)subchunk,
DATA_SUBCHUNK_ID, byte_count, be);
}
static int write_riff_chunk_for_wave(struct container_context *cntr,
uint64_t byte_count)
{
struct builder_state *state = cntr->private_data;
union {
struct riff_chunk chunk;
struct riff_chunk_data chunk_data;
struct wave_fmt_subchunk fmt_subchunk;
struct wave_data_subchunk data_subchunk;
} buf = {0};
uint64_t total_byte_count;
int err;
// Chunk header.
total_byte_count = sizeof(struct riff_chunk_data) +
sizeof(struct wave_fmt_subchunk) +
sizeof(struct wave_data_subchunk);
if (byte_count > cntr->max_size - total_byte_count)
total_byte_count = cntr->max_size;
else
total_byte_count += byte_count;
build_riff_chunk_header(&buf.chunk, total_byte_count, state->be);
err = container_recursive_write(cntr, &buf, sizeof(buf.chunk));
if (err < 0)
return err;
// Chunk data header.
memcpy(buf.chunk_data.id, RIFF_FORM_WAVE, sizeof(buf.chunk_data.id));
err = container_recursive_write(cntr, &buf, sizeof(buf.chunk_data));
if (err < 0)
return err;
// A subchunk in the chunk data for WAVE format.
build_wave_format_subchunk(&buf.fmt_subchunk, state);
err = container_recursive_write(cntr, &buf, sizeof(buf.fmt_subchunk));
if (err < 0)
return err;
// A subchunk in the chunk data for WAVE data.
build_wave_data_subchunk(&buf.data_subchunk, byte_count, state->be);
return container_recursive_write(cntr, &buf, sizeof(buf.data_subchunk));
}
static int wave_builder_pre_process(struct container_context *cntr,
snd_pcm_format_t *format,
unsigned int *samples_per_frame,
unsigned int *frames_per_second,
uint64_t *byte_count)
{
struct builder_state *state = cntr->private_data;
int i;
// Validate parameters.
for (i = 0; i < ARRAY_SIZE(format_maps); ++i) {
if (format_maps[i].format == *format)
break;
}
if (i == ARRAY_SIZE(format_maps))
return -EINVAL;
state->format = format_maps[i].wformat;
state->avail_bits_in_sample = snd_pcm_format_width(*format);
state->bytes_per_sample = snd_pcm_format_physical_width(*format) / 8;
state->samples_per_frame = *samples_per_frame;
state->frames_per_second = *frames_per_second;
state->be = (snd_pcm_format_big_endian(*format) == 1);
return write_riff_chunk_for_wave(cntr, *byte_count);
}
static int wave_builder_post_process(struct container_context *cntr,
uint64_t handled_byte_count)
{
int err;
err = container_seek_offset(cntr, 0);
if (err < 0)
return err;
return write_riff_chunk_for_wave(cntr, handled_byte_count);
}
const struct container_parser container_parser_riff_wave = {
.format = CONTAINER_FORMAT_RIFF_WAVE,
.magic = RIFF_MAGIC,
.max_size = UINT32_MAX -
sizeof(struct riff_chunk_data) -
sizeof(struct wave_fmt_subchunk) -
sizeof(struct wave_data_subchunk),
.ops = {
.pre_process = wave_parser_pre_process,
},
.private_size = sizeof(struct parser_state),
};
const struct container_builder container_builder_riff_wave = {
.format = CONTAINER_FORMAT_RIFF_WAVE,
.max_size = UINT32_MAX -
sizeof(struct riff_chunk_data) -
sizeof(struct wave_fmt_subchunk) -
sizeof(struct wave_data_subchunk),
.ops = {
.pre_process = wave_builder_pre_process,
.post_process = wave_builder_post_process,
},
.private_size = sizeof(struct builder_state),
};