/* * Copyright (C) 2000-2004 James Courtier-Dutton * Copyright (C) 2005 Nathan Hurst * * This file is part of the speaker-test tool. * * This small program sends a simple sinusoidal wave to your speakers. * * speaker-test is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * speaker-test is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA * * * Main program by James Courtier-Dutton (including some source code fragments from the alsa project.) * Some cleanup from Daniel Caujolle-Bert * Pink noise option added Nathan Hurst, * based on generator by Phil Burk (pink.c) * * Changelog: * 0.0.8 Added support for pink noise output. * Changelog: * 0.0.7 Added support for more than 6 channels. * Changelog: * 0.0.6 Added support for different sample formats. * * $Id: speaker_test.c,v 1.00 2003/11/26 19:43:38 jcdutton Exp $ */ #include #include #include #include #include #include #include #include #include #include #define ALSA_PCM_NEW_HW_PARAMS_API #define ALSA_PCM_NEW_SW_PARAMS_API #include #include #include #include "pink.h" #include "aconfig.h" #include "gettext.h" #include "version.h" #ifdef ENABLE_NLS #include #endif #ifdef SND_CHMAP_API_VERSION #define CONFIG_SUPPORT_CHMAP 1 #endif enum { TEST_PINK_NOISE = 1, TEST_SINE, TEST_WAV, TEST_PATTERN, }; #define MAX_CHANNELS 16 #if __BYTE_ORDER == __LITTLE_ENDIAN #define COMPOSE_ID(a,b,c,d) ((a) | ((b)<<8) | ((c)<<16) | ((d)<<24)) #define LE_SHORT(v) (v) #define LE_INT(v) (v) #define BE_SHORT(v) bswap_16(v) #define BE_INT(v) bswap_32(v) #else /* __BIG_ENDIAN */ #define COMPOSE_ID(a,b,c,d) ((d) | ((c)<<8) | ((b)<<16) | ((a)<<24)) #define LE_SHORT(v) bswap_16(v) #define LE_INT(v) bswap_32(v) #define BE_SHORT(v) (v) #define BE_INT(v) (v) #endif static char *device = "default"; /* playback device */ static snd_pcm_format_t format = SND_PCM_FORMAT_S16; /* sample format */ static unsigned int rate = 48000; /* stream rate */ static unsigned int channels = 1; /* count of channels */ static unsigned int speaker = 0; /* count of channels */ static unsigned int buffer_time = 0; /* ring buffer length in us */ static unsigned int period_time = 0; /* period time in us */ static unsigned int nperiods = 4; /* number of periods */ static double freq = 440.0; /* sinusoidal wave frequency in Hz */ static int test_type = TEST_PINK_NOISE; /* Test type. 1 = noise, 2 = sine wave */ static pink_noise_t pink; static snd_pcm_uframes_t buffer_size; static snd_pcm_uframes_t period_size; static const char *given_test_wav_file = NULL; static char *wav_file_dir = SOUNDSDIR; static int debug = 0; static snd_pcm_t *pcm_handle = NULL; #ifdef CONFIG_SUPPORT_CHMAP static snd_pcm_chmap_t *channel_map; static int channel_map_set; #endif static const char *const channel_name[MAX_CHANNELS] = { /* 0 */ N_("Front Left"), /* 1 */ N_("Front Right"), /* 2 */ N_("Rear Left"), /* 3 */ N_("Rear Right"), /* 4 */ N_("Center"), /* 5 */ N_("LFE"), /* 6 */ N_("Side Left"), /* 7 */ N_("Side Right"), /* 8 */ N_("Channel 9"), /* 9 */ N_("Channel 10"), /* 10 */ N_("Channel 11"), /* 11 */ N_("Channel 12"), /* 12 */ N_("Channel 13"), /* 13 */ N_("Channel 14"), /* 14 */ N_("Channel 15"), /* 15 */ N_("Channel 16") }; static const int channels4[] = { 0, /* Front Left */ 1, /* Front Right */ 3, /* Rear Right */ 2, /* Rear Left */ }; static const int channels6[] = { 0, /* Front Left */ 4, /* Center */ 1, /* Front Right */ 3, /* Rear Right */ 2, /* Rear Left */ 5, /* LFE */ }; static const int channels8[] = { 0, /* Front Left */ 4, /* Center */ 1, /* Front Right */ 7, /* Side Right */ 3, /* Rear Right */ 2, /* Rear Left */ 6, /* Side Left */ 5, /* LFE */ }; static int get_mapped_channel(int chn) { #ifdef CONFIG_SUPPORT_CHMAP static const int maps[MAX_CHANNELS] = { SND_CHMAP_FL, SND_CHMAP_FR, SND_CHMAP_RL, SND_CHMAP_RR, SND_CHMAP_FC, SND_CHMAP_LFE, SND_CHMAP_SL, SND_CHMAP_SR, }; if (channel_map && maps[chn]) { int i; for (i = 0; i < channel_map->channels; i++) { if (channel_map->pos[i] == maps[chn]) return i; } } #endif return chn; } static int get_speaker_channel(int chn) { #ifdef CONFIG_SUPPORT_CHMAP if (channel_map_set) return chn; #endif switch (channels) { case 4: chn = channels4[chn]; break; case 6: chn = channels6[chn]; break; case 8: chn = channels8[chn]; break; } return get_mapped_channel(chn); } static const char *get_channel_name(int chn) { #ifdef CONFIG_SUPPORT_CHMAP if (channel_map_set && chn < channel_map->channels) { const char *name = snd_pcm_chmap_long_name(channel_map->pos[chn]); return name ? name : "Unknown"; } #endif return gettext(channel_name[chn]); } static const int supported_formats[] = { SND_PCM_FORMAT_S8, SND_PCM_FORMAT_S16_LE, SND_PCM_FORMAT_S16_BE, SND_PCM_FORMAT_FLOAT_LE, SND_PCM_FORMAT_S32_LE, SND_PCM_FORMAT_S32_BE, -1 }; static void generate_sine(uint8_t *frames, int channel, int count, double *_phase) { double phase = *_phase; double max_phase = 1.0 / freq; double step = 1.0 / (double)rate; double res; float fres; int chn; int32_t ires; int8_t *samp8 = (int8_t*) frames; int16_t *samp16 = (int16_t*) frames; int32_t *samp32 = (int32_t*) frames; float *samp_f = (float*) frames; while (count-- > 0) { for(chn=0;chn> 24; } else { *samp8++ = 0; } break; case SND_PCM_FORMAT_S16_LE: if (chn==channel) { res = (sin((phase * 2 * M_PI) / max_phase - M_PI)) * 0x03fffffff; /* Don't use MAX volume */ ires = res; *samp16++ = LE_SHORT(ires >> 16); } else { *samp16++ = 0; } break; case SND_PCM_FORMAT_S16_BE: if (chn==channel) { res = (sin((phase * 2 * M_PI) / max_phase - M_PI)) * 0x03fffffff; /* Don't use MAX volume */ ires = res; *samp16++ = BE_SHORT(ires >> 16); } else { *samp16++ = 0; } break; case SND_PCM_FORMAT_FLOAT_LE: if (chn==channel) { res = (sin((phase * 2 * M_PI) / max_phase - M_PI)) * 0.75 ; /* Don't use MAX volume */ fres = res; *samp_f++ = fres; } else { *samp_f++ = 0.0; } break; case SND_PCM_FORMAT_S32_LE: if (chn==channel) { res = (sin((phase * 2 * M_PI) / max_phase - M_PI)) * 0x03fffffff; /* Don't use MAX volume */ ires = res; *samp32++ = LE_INT(ires); } else { *samp32++ = 0; } break; case SND_PCM_FORMAT_S32_BE: if (chn==channel) { res = (sin((phase * 2 * M_PI) / max_phase - M_PI)) * 0x03fffffff; /* Don't use MAX volume */ ires = res; *samp32++ = BE_INT(ires); } else { *samp32++ = 0; } break; default: ; } } phase += step; if (phase >= max_phase) phase -= max_phase; } *_phase = phase; } /* Pink noise is a better test than sine wave because we can tell * where pink noise is coming from more easily that a sine wave. */ static void generate_pink_noise( uint8_t *frames, int channel, int count) { double res; int chn; int32_t ires; int8_t *samp8 = (int8_t*) frames; int16_t *samp16 = (int16_t*) frames; int32_t *samp32 = (int32_t*) frames; while (count-- > 0) { for(chn=0;chn> 24; } else { *samp8++ = 0; } break; case SND_PCM_FORMAT_S16_LE: if (chn==channel) { res = generate_pink_noise_sample(&pink) * 0x03fffffff; /* Don't use MAX volume */ ires = res; *samp16++ = LE_SHORT(ires >> 16); } else { *samp16++ = 0; } break; case SND_PCM_FORMAT_S16_BE: if (chn==channel) { res = generate_pink_noise_sample(&pink) * 0x03fffffff; /* Don't use MAX volume */ ires = res; *samp16++ = BE_SHORT(ires >> 16); } else { *samp16++ = 0; } break; case SND_PCM_FORMAT_S32_LE: if (chn==channel) { res = generate_pink_noise_sample(&pink) * 0x03fffffff; /* Don't use MAX volume */ ires = res; *samp32++ = LE_INT(ires); } else { *samp32++ = 0; } break; case SND_PCM_FORMAT_S32_BE: if (chn==channel) { res = generate_pink_noise_sample(&pink) * 0x03fffffff; /* Don't use MAX volume */ ires = res; *samp32++ = BE_INT(ires); } else { *samp32++ = 0; } break; default: ; } } } } /* * useful for tests */ static void generate_pattern(uint8_t *frames, int channel, int count, int *_pattern) { int pattern = *_pattern; int chn; int8_t *samp8 = (int8_t*) frames; int16_t *samp16 = (int16_t*) frames; int32_t *samp32 = (int32_t*) frames; float *samp_f = (float*) frames; while (count-- > 0) { for(chn=0;chn 0) { printf(_("Requested period time %u us\n"), period_time); err = snd_pcm_hw_params_set_period_time_near(handle, params, &period_time, NULL); if (err < 0) { fprintf(stderr, _("Unable to set period time %u us for playback: %s\n"), period_time, snd_strerror(err)); return err; } } if (buffer_time > 0) { printf(_("Requested buffer time %u us\n"), buffer_time); err = snd_pcm_hw_params_set_buffer_time_near(handle, params, &buffer_time, NULL); if (err < 0) { fprintf(stderr, _("Unable to set buffer time %u us for playback: %s\n"), buffer_time, snd_strerror(err)); return err; } } if (! buffer_time && ! period_time) { buffer_size = buffer_size_max; if (! period_time) buffer_size = (buffer_size / nperiods) * nperiods; printf(_("Using max buffer size %lu\n"), buffer_size); err = snd_pcm_hw_params_set_buffer_size_near(handle, params, &buffer_size); if (err < 0) { fprintf(stderr, _("Unable to set buffer size %lu for playback: %s\n"), buffer_size, snd_strerror(err)); return err; } } if (! buffer_time || ! period_time) { printf(_("Periods = %u\n"), nperiods); err = snd_pcm_hw_params_set_periods_near(handle, params, &nperiods, NULL); if (err < 0) { fprintf(stderr, _("Unable to set nperiods %u for playback: %s\n"), nperiods, snd_strerror(err)); return err; } } /* write the parameters to device */ err = snd_pcm_hw_params(handle, params); if (err < 0) { fprintf(stderr, _("Unable to set hw params for playback: %s\n"), snd_strerror(err)); return err; } snd_pcm_hw_params_get_buffer_size(params, &buffer_size); snd_pcm_hw_params_get_period_size(params, &period_size, NULL); printf(_("was set period_size = %lu\n"),period_size); printf(_("was set buffer_size = %lu\n"),buffer_size); if (2*period_size > buffer_size) { fprintf(stderr, _("buffer to small, could not use\n")); return -EINVAL; } return 0; } static int set_swparams(snd_pcm_t *handle, snd_pcm_sw_params_t *swparams) { int err; /* get the current swparams */ err = snd_pcm_sw_params_current(handle, swparams); if (err < 0) { fprintf(stderr, _("Unable to determine current swparams for playback: %s\n"), snd_strerror(err)); return err; } /* start the transfer when a buffer is full */ err = snd_pcm_sw_params_set_start_threshold(handle, swparams, buffer_size); if (err < 0) { fprintf(stderr, _("Unable to set start threshold mode for playback: %s\n"), snd_strerror(err)); return err; } /* allow the transfer when at least period_size frames can be processed */ err = snd_pcm_sw_params_set_avail_min(handle, swparams, period_size); if (err < 0) { fprintf(stderr, _("Unable to set avail min for playback: %s\n"), snd_strerror(err)); return err; } /* write the parameters to the playback device */ err = snd_pcm_sw_params(handle, swparams); if (err < 0) { fprintf(stderr, _("Unable to set sw params for playback: %s\n"), snd_strerror(err)); return err; } return 0; } #ifdef CONFIG_SUPPORT_CHMAP static int config_chmap(snd_pcm_t *handle, const char *mapstr) { int err; if (mapstr) { channel_map = snd_pcm_chmap_parse_string(mapstr); if (!channel_map) { fprintf(stderr, _("Unable to parse channel map string: %s\n"), mapstr); return -EINVAL; } err = snd_pcm_set_chmap(handle, channel_map); if (err < 0) { fprintf(stderr, _("Unable to set channel map: %s\n"), mapstr); return err; } channel_map_set = 1; return 0; } channel_map = snd_pcm_get_chmap(handle); return 0; } #endif /* * Underrun and suspend recovery */ static int xrun_recovery(snd_pcm_t *handle, int err) { if (err == -EPIPE) { /* under-run */ err = snd_pcm_prepare(handle); if (err < 0) fprintf(stderr, _("Can't recovery from underrun, prepare failed: %s\n"), snd_strerror(err)); return 0; } else if (err == -ESTRPIPE) { while ((err = snd_pcm_resume(handle)) == -EAGAIN) sleep(1); /* wait until the suspend flag is released */ if (err < 0) { err = snd_pcm_prepare(handle); if (err < 0) fprintf(stderr, _("Can't recovery from suspend, prepare failed: %s\n"), snd_strerror(err)); } return 0; } return err; } /* * Handle WAV files */ static const char *wav_file[MAX_CHANNELS]; static int wav_file_size[MAX_CHANNELS]; struct wave_header { struct { uint32_t magic; uint32_t length; uint32_t type; } hdr; struct { uint32_t type; uint32_t length; } chunk1; struct { uint16_t format; uint16_t channels; uint32_t rate; uint32_t bytes_per_sec; uint16_t sample_size; uint16_t sample_bits; } body; struct { uint32_t type; uint32_t length; } chunk; }; #define WAV_RIFF COMPOSE_ID('R','I','F','F') #define WAV_WAVE COMPOSE_ID('W','A','V','E') #define WAV_FMT COMPOSE_ID('f','m','t',' ') #define WAV_DATA COMPOSE_ID('d','a','t','a') #define WAV_PCM_CODE 1 static const char *search_for_file(const char *name) { char *file; if (*name == '/') return strdup(name); file = malloc(strlen(wav_file_dir) + strlen(name) + 2); if (file) sprintf(file, "%s/%s", wav_file_dir, name); return file; } static int check_wav_file(int channel, const char *name) { struct wave_header header; int fd; wav_file[channel] = search_for_file(name); if (! wav_file[channel]) { fprintf(stderr, _("No enough memory\n")); return -ENOMEM; } if ((fd = open(wav_file[channel], O_RDONLY)) < 0) { fprintf(stderr, _("Cannot open WAV file %s\n"), wav_file[channel]); return -EINVAL; } if (read(fd, &header, sizeof(header)) < (int)sizeof(header)) { fprintf(stderr, _("Invalid WAV file %s\n"), wav_file[channel]); goto error; } if (header.hdr.magic != WAV_RIFF || header.hdr.type != WAV_WAVE) { fprintf(stderr, _("Not a WAV file: %s\n"), wav_file[channel]); goto error; } if (header.body.format != LE_SHORT(WAV_PCM_CODE)) { fprintf(stderr, _("Unsupported WAV format %d for %s\n"), LE_SHORT(header.body.format), wav_file[channel]); goto error; } if (header.body.channels != LE_SHORT(1)) { fprintf(stderr, _("%s is not a mono stream (%d channels)\n"), wav_file[channel], LE_SHORT(header.body.channels)); goto error; } if (header.body.rate != LE_INT(rate)) { fprintf(stderr, _("Sample rate doesn't match (%d) for %s\n"), LE_INT(header.body.rate), wav_file[channel]); goto error; } if (header.body.sample_bits != LE_SHORT(16)) { fprintf(stderr, _("Unsupported sample format bits %d for %s\n"), LE_SHORT(header.body.sample_bits), wav_file[channel]); goto error; } if (header.chunk.type != WAV_DATA) { fprintf(stderr, _("Invalid WAV file %s\n"), wav_file[channel]); goto error; } wav_file_size[channel] = LE_INT(header.chunk.length); close(fd); return 0; error: close(fd); return -EINVAL; } static int setup_wav_file(int chn) { static const char *const wavs[MAX_CHANNELS] = { "Front_Left.wav", "Front_Right.wav", "Rear_Left.wav", "Rear_Right.wav", "Front_Center.wav", "Rear_Center.wav", /* FIXME: should be "Bass" or so */ "Side_Left.wav", "Side_Right.wav", "Channel_9.wav", "Channel_10.wav", "Channel_11.wav", "Channel_12.wav", "Channel_13.wav", "Channel_14.wav", "Channel_15.wav", "Channel_16.wav" }; if (given_test_wav_file) return check_wav_file(chn, given_test_wav_file); else return check_wav_file(chn, wavs[chn]); } static int read_wav(uint16_t *buf, int channel, int offset, int bufsize) { static FILE *wavfp = NULL; int size; if (! wav_file[channel]) { fprintf(stderr, _("Undefined channel %d\n"), channel); return -EINVAL; } if (offset >= wav_file_size[channel]) return 0; /* finished */ if (! offset) { if (wavfp) fclose(wavfp); wavfp = fopen(wav_file[channel], "r"); if (! wavfp) return -errno; if (fseek(wavfp, sizeof(struct wave_header), SEEK_SET) < 0) return -errno; } if (offset + bufsize > wav_file_size[channel]) bufsize = wav_file_size[channel] - offset; bufsize /= channels; for (size = 0; size < bufsize; size += 2) { int chn; for (chn = 0; chn < channels; chn++) { if (chn == channel) { if (fread(buf, 2, 1, wavfp) != 1) return size; } else *buf = 0; buf++; } } return size; } /* * Transfer method - write only */ static int write_buffer(snd_pcm_t *handle, uint8_t *ptr, int cptr) { int err; while (cptr > 0) { err = snd_pcm_writei(handle, ptr, cptr); if (err == -EAGAIN) continue; if (err < 0) { fprintf(stderr, _("Write error: %d,%s\n"), err, snd_strerror(err)); if (xrun_recovery(handle, err) < 0) { fprintf(stderr, _("xrun_recovery failed: %d,%s\n"), err, snd_strerror(err)); return -1; } break; /* skip one period */ } ptr += snd_pcm_frames_to_bytes(handle, err); cptr -= err; } return 0; } static int write_loop(snd_pcm_t *handle, int channel, int periods, uint8_t *frames) { double phase = 0; int pattern = 0; int err, n; fflush(stdout); if (test_type == TEST_WAV) { int bufsize = snd_pcm_frames_to_bytes(handle, period_size); n = 0; while ((err = read_wav((uint16_t *)frames, channel, n, bufsize)) > 0) { n += err; if ((err = write_buffer(handle, frames, snd_pcm_bytes_to_frames(handle, err * channels))) < 0) break; } if (buffer_size > n) { snd_pcm_drain(handle); snd_pcm_prepare(handle); } return err; } if (periods <= 0) periods = 1; for(n = 0; n < periods; n++) { if (test_type == TEST_PINK_NOISE) generate_pink_noise(frames, channel, period_size); else if (test_type == TEST_PATTERN) generate_pattern(frames, channel, period_size, &pattern); else generate_sine(frames, channel, period_size, &phase); if ((err = write_buffer(handle, frames, period_size)) < 0) return err; } if (buffer_size > n * period_size) { snd_pcm_drain(handle); snd_pcm_prepare(handle); } return 0; } static int prg_exit(int code) { if (pcm_handle) snd_pcm_close(pcm_handle); exit(code); return code; } static void signal_handler(int sig) { static int in_aborting; if (in_aborting) return; in_aborting = 1; prg_exit(EXIT_FAILURE); } static void help(void) { const int *fmt; printf( _("Usage: speaker-test [OPTION]... \n" "-h,--help help\n" "-D,--device playback device\n" "-r,--rate stream rate in Hz\n" "-c,--channels count of channels in stream\n" "-f,--frequency sine wave frequency in Hz\n" "-F,--format sample format\n" "-b,--buffer ring buffer size in us\n" "-p,--period period size in us\n" "-P,--nperiods number of periods\n" "-t,--test pink=use pink noise, sine=use sine wave, wav=WAV file\n" "-l,--nloops specify number of loops to test, 0 = infinite\n" "-s,--speaker single speaker test. Values 1=Left, 2=right, etc\n" "-w,--wavfile Use the given WAV file as a test sound\n" "-W,--wavdir Specify the directory containing WAV files\n" "-m,--chmap Specify the channel map to override\n" "\n")); printf(_("Recognized sample formats are:")); for (fmt = supported_formats; *fmt >= 0; fmt++) { const char *s = snd_pcm_format_name(*fmt); if (s) printf(" %s", s); } printf("\n\n"); } int main(int argc, char *argv[]) { snd_pcm_t *handle; int err, morehelp; snd_pcm_hw_params_t *hwparams; snd_pcm_sw_params_t *swparams; uint8_t *frames; int chn; const int *fmt; double time1,time2,time3; unsigned int n, nloops; struct timeval tv1,tv2; #ifdef CONFIG_SUPPORT_CHMAP const char *chmap = NULL; #endif static const struct option long_option[] = { {"help", 0, NULL, 'h'}, {"device", 1, NULL, 'D'}, {"rate", 1, NULL, 'r'}, {"channels", 1, NULL, 'c'}, {"frequency", 1, NULL, 'f'}, {"format", 1, NULL, 'F'}, {"buffer", 1, NULL, 'b'}, {"period", 1, NULL, 'p'}, {"nperiods", 1, NULL, 'P'}, {"test", 1, NULL, 't'}, {"nloops", 1, NULL, 'l'}, {"speaker", 1, NULL, 's'}, {"wavfile", 1, NULL, 'w'}, {"wavdir", 1, NULL, 'W'}, {"debug", 0, NULL, 'd'}, #ifdef CONFIG_SUPPORT_CHMAP {"chmap", 1, NULL, 'm'}, #endif {NULL, 0, NULL, 0 }, }; #ifdef ENABLE_NLS setlocale(LC_ALL, ""); textdomain(PACKAGE); #endif snd_pcm_hw_params_alloca(&hwparams); snd_pcm_sw_params_alloca(&swparams); nloops = 0; morehelp = 0; printf("\nspeaker-test %s\n\n", SND_UTIL_VERSION_STR); while (1) { int c; if ((c = getopt_long(argc, argv, "hD:r:c:f:F:b:p:P:t:l:s:w:W:d" #ifdef CONFIG_SUPPORT_CHMAP "m:" #endif , long_option, NULL)) < 0) break; switch (c) { case 'h': morehelp++; break; case 'D': device = strdup(optarg); break; case 'F': format = snd_pcm_format_value(optarg); for (fmt = supported_formats; *fmt >= 0; fmt++) if (*fmt == format) break; if (*fmt < 0) { fprintf(stderr, "Format %s is not supported...\n", snd_pcm_format_name(format)); exit(EXIT_FAILURE); } break; case 'r': rate = atoi(optarg); rate = rate < 4000 ? 4000 : rate; rate = rate > 384000 ? 384000 : rate; break; case 'c': channels = atoi(optarg); channels = channels < 1 ? 1 : channels; channels = channels > 1024 ? 1024 : channels; break; case 'f': freq = atof(optarg); freq = freq < 30.0 ? 30.0 : freq; freq = freq > 5000.0 ? 5000.0 : freq; break; case 'b': buffer_time = atoi(optarg); buffer_time = buffer_time > 1000000 ? 1000000 : buffer_time; break; case 'p': period_time = atoi(optarg); period_time = period_time > 1000000 ? 1000000 : period_time; break; case 'P': nperiods = atoi(optarg); if (nperiods < 2 || nperiods > 1024) { fprintf(stderr, _("Invalid number of periods %d\n"), nperiods); exit(1); } break; case 't': if (*optarg == 'p') test_type = TEST_PINK_NOISE; else if (*optarg == 's') test_type = TEST_SINE; else if (*optarg == 'w') test_type = TEST_WAV; else if (*optarg == 't') test_type = TEST_PATTERN; else if (isdigit(*optarg)) { test_type = atoi(optarg); if (test_type < TEST_PINK_NOISE || test_type > TEST_PATTERN) { fprintf(stderr, _("Invalid test type %s\n"), optarg); exit(1); } } else { fprintf(stderr, _("Invalid test type %s\n"), optarg); exit(1); } break; case 'l': nloops = atoi(optarg); break; case 's': speaker = atoi(optarg); speaker = speaker < 1 ? 0 : speaker; speaker = speaker > channels ? 0 : speaker; if (speaker==0) { fprintf(stderr, _("Invalid parameter for -s option.\n")); exit(EXIT_FAILURE); } break; case 'w': given_test_wav_file = optarg; break; case 'W': wav_file_dir = optarg; break; case 'd': debug = 1; break; #ifdef CONFIG_SUPPORT_CHMAP case 'm': chmap = optarg; break; #endif default: fprintf(stderr, _("Unknown option '%c'\n"), c); exit(EXIT_FAILURE); break; } } if (morehelp) { help(); exit(EXIT_SUCCESS); } if (test_type == TEST_WAV) format = SND_PCM_FORMAT_S16_LE; /* fixed format */ printf(_("Playback device is %s\n"), device); printf(_("Stream parameters are %iHz, %s, %i channels\n"), rate, snd_pcm_format_name(format), channels); switch (test_type) { case TEST_PINK_NOISE: printf(_("Using 16 octaves of pink noise\n")); break; case TEST_SINE: printf(_("Sine wave rate is %.4fHz\n"), freq); break; case TEST_WAV: printf(_("WAV file(s)\n")); break; } signal(SIGINT, signal_handler); signal(SIGTERM, signal_handler); signal(SIGABRT, signal_handler); if ((err = snd_pcm_open(&handle, device, SND_PCM_STREAM_PLAYBACK, 0)) < 0) { printf(_("Playback open error: %d,%s\n"), err,snd_strerror(err)); prg_exit(EXIT_FAILURE); } pcm_handle = handle; if ((err = set_hwparams(handle, hwparams, SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) { printf(_("Setting of hwparams failed: %s\n"), snd_strerror(err)); prg_exit(EXIT_FAILURE); } if ((err = set_swparams(handle, swparams)) < 0) { printf(_("Setting of swparams failed: %s\n"), snd_strerror(err)); prg_exit(EXIT_FAILURE); } #ifdef CONFIG_SUPPORT_CHMAP err = config_chmap(handle, chmap); if (err < 0) prg_exit(EXIT_FAILURE); #endif if (debug) { snd_output_t *log; err = snd_output_stdio_attach(&log, stderr, 0); if (err >= 0) { snd_pcm_dump(handle, log); snd_output_close(log); } } frames = malloc(snd_pcm_frames_to_bytes(handle, period_size)); if (test_type == TEST_PINK_NOISE) initialize_pink_noise(&pink, 16); if (frames == NULL) { fprintf(stderr, _("No enough memory\n")); prg_exit(EXIT_FAILURE); } if (speaker==0) { if (test_type == TEST_WAV) { for (chn = 0; chn < channels; chn++) { if (setup_wav_file(chn) < 0) prg_exit(EXIT_FAILURE); } } for (n = 0; ! nloops || n < nloops; n++) { gettimeofday(&tv1, NULL); for(chn = 0; chn < channels; chn++) { int channel = get_speaker_channel(chn); printf(" %d - %s\n", channel, get_channel_name(channel)); err = write_loop(handle, channel, ((rate*3)/period_size), frames); if (err < 0) { fprintf(stderr, _("Transfer failed: %s\n"), snd_strerror(err)); prg_exit(EXIT_SUCCESS); } } gettimeofday(&tv2, NULL); time1 = (double)tv1.tv_sec + ((double)tv1.tv_usec / 1000000.0); time2 = (double)tv2.tv_sec + ((double)tv2.tv_usec / 1000000.0); time3 = time2 - time1; printf(_("Time per period = %lf\n"), time3 ); } } else { chn = get_speaker_channel(speaker - 1); if (test_type == TEST_WAV) { if (setup_wav_file(chn) < 0) prg_exit(EXIT_FAILURE); } printf(" - %s\n", get_channel_name(chn)); err = write_loop(handle, chn, ((rate*5)/period_size), frames); if (err < 0) { fprintf(stderr, _("Transfer failed: %s\n"), snd_strerror(err)); } } free(frames); return prg_exit(EXIT_SUCCESS); }