alsa-utils/bat/analyze.c
Lu, Han d727c9d90e BAT: Add spectrum analysis functions
Add functions that detecting signal frequency through spectrum
analyzing.

Signed-off-by: Lu, Han <han.lu@intel.com>
Signed-off-by: Liam Girdwood <liam.r.girdwood@intel.com>
Signed-off-by: Bernard Gautier <bernard.gautier@intel.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-10-02 12:42:03 +02:00

315 lines
7.5 KiB
C

/*
* Copyright (C) 2013-2015 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include <fftw3.h>
#include "aconfig.h"
#include "gettext.h"
#include "common.h"
static void check_amplitude(struct bat *bat, double *buf)
{
double sum, average, amplitude;
int i, percent;
/* calculate average value */
for (i = 0, sum = 0.0; i < bat->frames; i++)
sum += buf[i];
average = sum / bat->frames;
/* calculate peak-to-average amplitude */
for (i = 0, sum = 0.0; i < bat->frames; i++)
sum += abs(buf[i] - average);
amplitude = sum / bat->frames * M_PI / 2.0;
/* calculate amplitude percentage against full range */
percent = amplitude * 100 / ((1 << ((bat->sample_size << 3) - 1)) - 1);
fprintf(bat->log, _("Amplitude: %.1f; Percentage: [%d]\n"),
amplitude, percent);
if (percent < 0)
fprintf(bat->err, _("ERROR: Amplitude can't be negative!\n"));
else if (percent < 1)
fprintf(bat->err, _("WARNING: Signal too weak!\n"));
else if (percent > 100)
fprintf(bat->err, _("WARNING: Signal overflow!\n"));
}
/**
*
* @return 0 if peak detected at right frequency,
* 1 if peak detected somewhere else
* 2 if DC detected
*/
int check_peak(struct bat *bat, struct analyze *a, int end, int peak, float hz,
float mean, float p, int channel, int start)
{
int err;
float hz_peak = (float) (peak) * hz;
float delta_rate = DELTA_RATE * bat->target_freq[channel];
float delta_HZ = DELTA_HZ;
float tolerance = (delta_rate > delta_HZ) ? delta_rate : delta_HZ;
fprintf(bat->log, _("Detected peak at %2.2f Hz of %2.2f dB\n"), hz_peak,
10.0 * log10(a->mag[peak] / mean));
fprintf(bat->log, _(" Total %3.1f dB from %2.2f to %2.2f Hz\n"),
10.0 * log10(p / mean), start * hz, end * hz);
if (hz_peak < DC_THRESHOLD) {
fprintf(bat->err, _(" WARNING: Found low peak %2.2f Hz,"),
hz_peak);
fprintf(bat->err, _(" very close to DC\n"));
err = FOUND_DC;
} else if (hz_peak < bat->target_freq[channel] - tolerance) {
fprintf(bat->err, _(" FAIL: Peak freq too low %2.2f Hz\n"),
hz_peak);
err = FOUND_WRONG_PEAK;
} else if (hz_peak > bat->target_freq[channel] + tolerance) {
fprintf(bat->err, _(" FAIL: Peak freq too high %2.2f Hz\n"),
hz_peak);
err = FOUND_WRONG_PEAK;
} else {
fprintf(bat->log, _(" PASS: Peak detected"));
fprintf(bat->log, _(" at target frequency\n"));
err = 0;
}
return err;
}
/**
* Search for main frequencies in fft results and compare it to target
*/
static int check(struct bat *bat, struct analyze *a, int channel)
{
float hz = 1.0 / ((float) bat->frames / (float) bat->rate);
float mean = 0.0, t, sigma = 0.0, p = 0.0;
int i, start = -1, end = -1, peak = 0, signals = 0;
int err = 0, N = bat->frames / 2;
/* calculate mean */
for (i = 0; i < N; i++)
mean += a->mag[i];
mean /= (float) N;
/* calculate standard deviation */
for (i = 0; i < N; i++) {
t = a->mag[i] - mean;
t *= t;
sigma += t;
}
sigma /= (float) N;
sigma = sqrtf(sigma);
/* clip any data less than k sigma + mean */
for (i = 0; i < N; i++) {
if (a->mag[i] > mean + bat->sigma_k * sigma) {
/* find peak start points */
if (start == -1) {
start = peak = end = i;
signals++;
} else {
if (a->mag[i] > a->mag[peak])
peak = i;
end = i;
}
p += a->mag[i];
} else if (start != -1) {
/* Check if peak is as expected */
err |= check_peak(bat, a, end, peak, hz, mean,
p, channel, start);
end = start = -1;
if (signals == MAX_PEAKS)
break;
}
}
if (signals == 0)
err = -ENOPEAK; /* No peak detected */
else if ((err == FOUND_DC) && (signals == 1))
err = -EONLYDC; /* Only DC detected */
else if ((err & FOUND_WRONG_PEAK) == FOUND_WRONG_PEAK)
err = -EBADPEAK; /* Bad peak detected */
else
err = 0; /* Correct peak detected */
fprintf(bat->log, _("Detected at least %d signal(s) in total\n"),
signals);
return err;
}
static void calc_magnitude(struct bat *bat, struct analyze *a, int N)
{
double r2, i2;
int i;
for (i = 1; i < N / 2; i++) {
r2 = a->out[i] * a->out[i];
i2 = a->out[N - i] * a->out[N - i];
a->mag[i] = sqrtf(r2 + i2);
}
a->mag[0] = 0.0;
}
static int find_and_check_harmonics(struct bat *bat, struct analyze *a,
int channel)
{
fftw_plan p;
int err = -ENOMEM, N = bat->frames;
/* Allocate FFT buffers */
a->in = (double *) fftw_malloc(sizeof(double) * bat->frames);
if (a->in == NULL)
goto out1;
a->out = (double *) fftw_malloc(sizeof(double) * bat->frames);
if (a->out == NULL)
goto out2;
a->mag = (double *) fftw_malloc(sizeof(double) * bat->frames);
if (a->mag == NULL)
goto out3;
/* create FFT plan */
p = fftw_plan_r2r_1d(N, a->in, a->out, FFTW_R2HC,
FFTW_MEASURE | FFTW_PRESERVE_INPUT);
if (p == NULL)
goto out4;
/* convert source PCM to doubles */
bat->convert_sample_to_double(a->buf, a->in, bat->frames);
/* check amplitude */
check_amplitude(bat, a->in);
/* run FFT */
fftw_execute(p);
/* FFT out is real and imaginary numbers - calc magnitude for each */
calc_magnitude(bat, a, N);
/* check data */
err = check(bat, a, channel);
fftw_destroy_plan(p);
out4:
fftw_free(a->mag);
out3:
fftw_free(a->out);
out2:
fftw_free(a->in);
out1:
return err;
}
/**
* Convert interleaved samples from channels in samples from a single channel
*/
static int reorder_data(struct bat *bat)
{
char *p, *new_bat_buf;
int ch, i, j;
if (bat->channels == 1)
return 0; /* No need for reordering */
p = malloc(bat->frames * bat->frame_size);
new_bat_buf = p;
if (p == NULL)
return -ENOMEM;
for (ch = 0; ch < bat->channels; ch++) {
for (j = 0; j < bat->frames; j++) {
for (i = 0; i < bat->sample_size; i++) {
*p++ = ((char *) (bat->buf))[j * bat->frame_size
+ ch * bat->sample_size + i];
}
}
}
free(bat->buf);
bat->buf = new_bat_buf;
return 0;
}
int analyze_capture(struct bat *bat)
{
int err = 0;
size_t items;
int c;
struct analyze a;
fprintf(bat->log, _("\nBAT analysis: signal has %d frames at %d Hz,"),
bat->frames, bat->rate);
fprintf(bat->log, _(" %d channels, %d bytes per sample.\n"),
bat->channels, bat->sample_size);
bat->buf = malloc(bat->frames * bat->frame_size);
if (bat->buf == NULL)
return -ENOMEM;
bat->fp = fopen(bat->capture.file, "rb");
if (bat->fp == NULL) {
fprintf(bat->err, _("Cannot open file for capture: %s %d\n"),
bat->capture.file, -errno);
err = -errno;
goto exit1;
}
/* Skip header */
err = read_wav_header(bat, bat->capture.file, bat->fp, true);
if (err != 0)
goto exit2;
items = fread(bat->buf, bat->frame_size, bat->frames, bat->fp);
if (items != bat->frames) {
err = -EIO;
goto exit2;
}
err = reorder_data(bat);
if (err != 0)
goto exit2;
for (c = 0; c < bat->channels; c++) {
fprintf(bat->log, _("\nChannel %i - "), c + 1);
fprintf(bat->log, _("Checking for target frequency %2.2f Hz\n"),
bat->target_freq[c]);
a.buf = bat->buf +
c * bat->frames * bat->frame_size
/ bat->channels;
err = find_and_check_harmonics(bat, &a, c);
}
exit2:
fclose(bat->fp);
exit1:
free(bat->buf);
return err;
}