alsa-utils/bat/analyze.c
Jaroslav Kysela feb9c4cdec reshuffle included files to include config.h as first
config.h may contain defines like _FILE_OFFSET_BITS which influence
the system wide include files (off_t types, open -> open64 function
usage etc.).

Related: https://github.com/alsa-project/alsa-utils/pull/223
Signed-off-by: Jaroslav Kysela <perex@perex.cz>
2023-08-30 18:48:23 +02:00

515 lines
12 KiB
C

/*
* Copyright (C) 2013-2015 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "aconfig.h"
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include <fftw3.h>
#include "gettext.h"
#include "common.h"
#include "bat-signal.h"
static void check_amplitude(struct bat *bat, float *buf)
{
float sum, average, amplitude;
int i, percent;
/* calculate average value */
for (i = 0, sum = 0.0, average = 0.0; i < bat->frames; i++)
sum += buf[i];
average = sum / bat->frames;
/* calculate peak-to-average amplitude */
for (i = 0, sum = 0.0; i < bat->frames; i++)
sum += fabsf(buf[i] - average);
amplitude = sum / bat->frames * M_PI / 2.0;
/* calculate amplitude percentage against full range */
percent = amplitude * 100 / ((1 << ((bat->sample_size << 3) - 1)) - 1);
fprintf(bat->log, _("Amplitude: %.1f; Percentage: [%d]\n"),
amplitude, percent);
if (percent < 0)
fprintf(bat->err, _("ERROR: Amplitude can't be negative!\n"));
else if (percent < 1)
fprintf(bat->err, _("WARNING: Signal too weak!\n"));
else if (percent > 100)
fprintf(bat->err, _("WARNING: Signal overflow!\n"));
}
/**
*
* @return 0 if peak detected at right frequency,
* 1 if peak detected somewhere else
* 2 if DC detected
*/
int check_peak(struct bat *bat, struct analyze *a, int end, int peak, float hz,
float mean, float p, int channel, int start)
{
int err;
float hz_peak = (float) (peak) * hz;
float delta_rate = DELTA_RATE * bat->target_freq[channel];
float delta_HZ = DELTA_HZ;
float tolerance = (delta_rate > delta_HZ) ? delta_rate : delta_HZ;
fprintf(bat->log, _("Detected peak at %2.2f Hz of %2.2f dB\n"), hz_peak,
10.0 * log10f(a->mag[peak] / mean));
fprintf(bat->log, _(" Total %3.1f dB from %2.2f to %2.2f Hz\n"),
10.0 * log10f(p / mean), start * hz, end * hz);
if (hz_peak < DC_THRESHOLD) {
fprintf(bat->err, _(" WARNING: Found low peak %2.2f Hz,"),
hz_peak);
fprintf(bat->err, _(" very close to DC\n"));
err = FOUND_DC;
} else if (hz_peak < bat->target_freq[channel] - tolerance) {
fprintf(bat->err, _(" FAIL: Peak freq too low %2.2f Hz\n"),
hz_peak);
err = FOUND_WRONG_PEAK;
} else if (hz_peak > bat->target_freq[channel] + tolerance) {
fprintf(bat->err, _(" FAIL: Peak freq too high %2.2f Hz\n"),
hz_peak);
err = FOUND_WRONG_PEAK;
} else {
fprintf(bat->log, _(" PASS: Peak detected"));
fprintf(bat->log, _(" at target frequency\n"));
err = 0;
}
return err;
}
/**
* Search for main frequencies in fft results and compare it to target
*/
static int check(struct bat *bat, struct analyze *a, int channel)
{
float hz = 1.0 / ((float) bat->frames / (float) bat->rate);
float mean = 0.0, t, sigma = 0.0, p = 0.0;
int i, start = -1, end = -1, peak = 0, signals = 0;
int err = 0, N = bat->frames / 2;
/* calculate mean */
for (i = 0; i < N; i++)
mean += a->mag[i];
mean /= (float) N;
/* calculate standard deviation */
for (i = 0; i < N; i++) {
t = a->mag[i] - mean;
t *= t;
sigma += t;
}
sigma /= (float) N;
sigma = sqrtf(sigma);
/* clip any data less than k sigma + mean */
for (i = 0; i < N; i++) {
if (a->mag[i] > mean + bat->sigma_k * sigma) {
/* find peak start points */
if (start == -1) {
start = peak = end = i;
signals++;
} else {
if (a->mag[i] > a->mag[peak])
peak = i;
end = i;
}
p += a->mag[i];
} else if (start != -1) {
/* Check if peak is as expected */
err |= check_peak(bat, a, end, peak, hz, mean,
p, channel, start);
end = start = -1;
if (signals == MAX_PEAKS)
break;
}
}
if (signals == 0)
err = -ENOPEAK; /* No peak detected */
else if ((err == FOUND_DC) && (signals == 1))
err = -EONLYDC; /* Only DC detected */
else if ((err & FOUND_WRONG_PEAK) == FOUND_WRONG_PEAK)
err = -EBADPEAK; /* Bad peak detected */
else
err = 0; /* Correct peak detected */
fprintf(bat->log, _("Detected at least %d signal(s) in total\n"),
signals);
return err;
}
static void calc_magnitude(struct bat *bat, struct analyze *a, int N)
{
float r2, i2;
int i;
for (i = 1; i < N / 2; i++) {
r2 = a->out[i] * a->out[i];
i2 = a->out[N - i] * a->out[N - i];
a->mag[i] = sqrtf(r2 + i2);
}
a->mag[0] = 0.0;
}
static int find_and_check_harmonics(struct bat *bat, struct analyze *a,
int channel)
{
fftwf_plan p;
int err = -ENOMEM, N = bat->frames;
/* Allocate FFT buffers */
a->in = (float *) fftwf_malloc(sizeof(float) * bat->frames);
if (a->in == NULL)
goto out1;
a->out = (float *) fftwf_malloc(sizeof(float) * bat->frames);
if (a->out == NULL)
goto out2;
a->mag = (float *) fftwf_malloc(sizeof(float) * bat->frames);
if (a->mag == NULL)
goto out3;
/* create FFT plan */
p = fftwf_plan_r2r_1d(N, a->in, a->out, FFTW_R2HC,
FFTW_MEASURE | FFTW_PRESERVE_INPUT);
if (p == NULL)
goto out4;
/* convert source PCM to floats */
bat->convert_sample_to_float(a->buf, a->in, bat->frames);
/* check amplitude */
check_amplitude(bat, a->in);
/* run FFT */
fftwf_execute(p);
/* FFT out is real and imaginary numbers - calc magnitude for each */
calc_magnitude(bat, a, N);
/* check data */
err = check(bat, a, channel);
fftwf_destroy_plan(p);
out4:
fftwf_free(a->mag);
out3:
fftwf_free(a->out);
out2:
fftwf_free(a->in);
out1:
return err;
}
static int calculate_noise_one_period(struct bat *bat,
struct noise_analyzer *na, float *src,
int length, int channel)
{
int i, shift = 0;
float tmp, rms, gain, residual;
float a = 0.0, b = 1.0;
/* step 1. phase compensation */
if (length < 2 * na->nsamples)
return -EINVAL;
/* search for the beginning of a sine period */
for (i = 0, tmp = 0.0, shift = -1; i < na->nsamples; i++) {
/* find i where src[i] >= 0 && src[i+1] < 0 */
if (src[i] < 0.0)
continue;
if (src[i + 1] < 0.0) {
tmp = src[i] - src[i + 1];
a = src[i] / tmp;
b = -src[i + 1] / tmp;
shift = i;
break;
}
}
/* didn't find the beginning of a sine period */
if (shift == -1)
return -EINVAL;
/* shift sine waveform to source[0] = 0.0 */
for (i = 0; i < na->nsamples; i++)
na->source[i] = a * src[i + shift + 1] + b * src[i + shift];
/* step 2. gain compensation */
/* calculate rms of signal amplitude */
for (i = 0, tmp = 0.0; i < na->nsamples; i++)
tmp += na->source[i] * na->source[i];
rms = sqrtf(tmp / na->nsamples);
gain = na->rms_tgt / rms;
for (i = 0; i < na->nsamples; i++)
na->source[i] *= gain;
/* step 3. calculate snr in dB */
for (i = 0, tmp = 0.0, residual = 0.0; i < na->nsamples; i++) {
tmp = fabsf(na->target[i] - na->source[i]);
residual += tmp * tmp;
}
tmp = na->rms_tgt / sqrtf(residual / na->nsamples);
na->snr_db = 20.0 * log10f(tmp);
return 0;
}
static int calculate_noise(struct bat *bat, float *src, int channel)
{
int err = 0;
struct noise_analyzer na;
float freq = bat->target_freq[channel];
float tmp, sum_snr_pc, avg_snr_pc, avg_snr_db;
int offset, i, cnt_noise, cnt_clean;
/* num of samples in each sine period */
int nsamples = (int) ceilf(bat->rate / freq);
/* each section has 2 sine periods, the first one for locating
* and the second one for noise calculating */
int nsamples_per_section = nsamples * 2;
/* all sine periods will be calculated except the first one */
int nsection = bat->frames / nsamples - 1;
fprintf(bat->log, _("samples per period: %d\n"), nsamples);
fprintf(bat->log, _("total sections to detect: %d\n"), nsection);
na.source = (float *)malloc(sizeof(float) * nsamples);
if (!na.source) {
err = -ENOMEM;
goto out1;
}
na.target = (float *)malloc(sizeof(float) * nsamples);
if (!na.target) {
err = -ENOMEM;
goto out2;
}
/* generate standard single-tone signal */
err = generate_sine_wave_raw_mono(bat, na.target, freq, nsamples);
if (err < 0)
goto out3;
na.nsamples = nsamples;
/* calculate rms of standard signal */
for (i = 0, tmp = 0.0; i < nsamples; i++)
tmp += na.target[i] * na.target[i];
na.rms_tgt = sqrtf(tmp / nsamples);
/* calculate average noise level */
sum_snr_pc = 0.0;
cnt_clean = cnt_noise = 0;
for (i = 0, offset = 0; i < nsection; i++) {
na.snr_db = SNR_DB_INVALID;
err = calculate_noise_one_period(bat, &na, src + offset,
nsamples_per_section, channel);
if (err < 0)
goto out3;
if (na.snr_db > bat->snr_thd_db) {
cnt_clean++;
sum_snr_pc += 100.0 / powf(10.0, na.snr_db / 20.0);
} else {
cnt_noise++;
}
offset += nsamples;
}
if (cnt_noise > 0) {
fprintf(bat->err, _("Noise detected at %d points.\n"),
cnt_noise);
err = -cnt_noise;
if (cnt_clean == 0)
goto out3;
} else {
fprintf(bat->log, _("No noise detected.\n"));
}
avg_snr_pc = sum_snr_pc / cnt_clean;
avg_snr_db = 20.0 * log10f(100.0 / avg_snr_pc);
fprintf(bat->log, _("Average SNR is %.2f dB (%.2f %%) at %d points.\n"),
avg_snr_db, avg_snr_pc, cnt_clean);
out3:
free(na.target);
out2:
free(na.source);
out1:
return err;
}
static int find_and_check_noise(struct bat *bat, void *buf, int channel)
{
int err = 0;
float *source;
source = (float *)malloc(sizeof(float) * bat->frames);
if (!source)
return -ENOMEM;
/* convert source PCM to floats */
bat->convert_sample_to_float(buf, source, bat->frames);
/* adjust waveform and calculate noise */
err = calculate_noise(bat, source, channel);
free(source);
return err;
}
/**
* Convert interleaved samples from channels in samples from a single channel
*/
static int reorder_data(struct bat *bat)
{
char *p, *new_bat_buf;
int ch, i, j;
if (bat->channels == 1)
return 0; /* No need for reordering */
p = malloc(bat->frames * bat->frame_size);
new_bat_buf = p;
if (p == NULL)
return -ENOMEM;
for (ch = 0; ch < bat->channels; ch++) {
for (j = 0; j < bat->frames; j++) {
for (i = 0; i < bat->sample_size; i++) {
*p++ = ((char *) (bat->buf))[j * bat->frame_size
+ ch * bat->sample_size + i];
}
}
}
free(bat->buf);
bat->buf = new_bat_buf;
return 0;
}
/* truncate sample frames for faster FFT analysis process */
static int truncate_frames(struct bat *bat)
{
int shift = SHIFT_MAX;
for (; shift > SHIFT_MIN; shift--)
if (bat->frames & (1 << shift)) {
bat->frames = 1 << shift;
return 0;
}
return -EINVAL;
}
int analyze_capture(struct bat *bat)
{
int err = 0;
size_t items;
int c;
struct analyze a;
err = truncate_frames(bat);
if (err < 0) {
fprintf(bat->err, _("Invalid frame number for analysis: %d\n"),
bat->frames);
return err;
}
fprintf(bat->log, _("\nBAT analysis: signal has %d frames at %d Hz,"),
bat->frames, bat->rate);
fprintf(bat->log, _(" %d channels, %d bytes per sample.\n"),
bat->channels, bat->sample_size);
bat->buf = malloc(bat->frames * bat->frame_size);
if (bat->buf == NULL)
return -ENOMEM;
bat->fp = fopen(bat->capture.file, "rb");
err = -errno;
if (bat->fp == NULL) {
fprintf(bat->err, _("Cannot open file: %s %d\n"),
bat->capture.file, err);
goto exit1;
}
/* Skip header */
err = read_wav_header(bat, bat->capture.file, bat->fp, true);
if (err != 0)
goto exit2;
items = fread(bat->buf, bat->frame_size, bat->frames, bat->fp);
if (items != bat->frames) {
err = -EIO;
goto exit2;
}
err = reorder_data(bat);
if (err != 0)
goto exit2;
for (c = 0; c < bat->channels; c++) {
fprintf(bat->log, _("\nChannel %i - "), c + 1);
fprintf(bat->log, _("Checking for target frequency %2.2f Hz\n"),
bat->target_freq[c]);
a.buf = bat->buf +
c * bat->frames * bat->frame_size
/ bat->channels;
if (!bat->standalone) {
err = find_and_check_harmonics(bat, &a, c);
if (err != 0)
goto exit2;
}
if (snr_is_valid(bat->snr_thd_db)) {
fprintf(bat->log, _("\nChecking for SNR: "));
fprintf(bat->log, _("Threshold is %.2f dB (%.2f%%)\n"),
bat->snr_thd_db, 100.0
/ powf(10.0, bat->snr_thd_db / 20.0));
err = find_and_check_noise(bat, a.buf, c);
if (err != 0)
goto exit2;
}
}
exit2:
fclose(bat->fp);
exit1:
free(bat->buf);
return err;
}