alsa-utils/bat/common.h
Tim Bird 9e525074d2 bat: Add 'readcapture' option to support analyzing external audio
If audio data is captured on another device (ie we are NOT using
loopback mode), then allow alsabat to analyze that data, by passing
a filename reference on the command line.

Add the '--readcapture' option to the argument parser. When
this option is specified, avoid doing a local capture, and instead
just read the audio data from the indicated file, and analyze that.

Fixes: https://github.com/alsa-project/alsa-utils/pull/166
Signed-off-by: Tim Bird <tim.bird@sony.com>
Signed-off-by: Jaroslav Kysela <perex@perex.cz>
2022-11-04 22:06:00 +01:00

264 lines
7.4 KiB
C

/*
* Copyright (C) 2013-2015 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define TEMP_RECORD_FILE_NAME "/tmp/bat.wav.XXXXXX"
#define DEFAULT_DEV_NAME "default"
#define OPT_BASE 300
#define OPT_LOG (OPT_BASE + 1)
#define OPT_READFILE (OPT_BASE + 2)
#define OPT_SAVEPLAY (OPT_BASE + 3)
#define OPT_LOCAL (OPT_BASE + 4)
#define OPT_STANDALONE (OPT_BASE + 5)
#define OPT_ROUNDTRIPLATENCY (OPT_BASE + 6)
#define OPT_SNRTHD_DB (OPT_BASE + 7)
#define OPT_SNRTHD_PC (OPT_BASE + 8)
#define OPT_READCAPTURE (OPT_BASE + 9)
#define COMPOSE(a, b, c, d) ((a) | ((b)<<8) | ((c)<<16) | ((d)<<24))
#define WAV_RIFF COMPOSE('R', 'I', 'F', 'F')
#define WAV_WAVE COMPOSE('W', 'A', 'V', 'E')
#define WAV_FMT COMPOSE('f', 'm', 't', ' ')
#define WAV_DATA COMPOSE('d', 'a', 't', 'a')
#define WAV_FORMAT_PCM 1 /* PCM WAVE file encoding */
#define MAX_CHANNELS 2
#define MIN_CHANNELS 1
#define MAX_PEAKS 10
#define MAX_FRAMES (10 * 1024 * 1024)
/* Given in ms */
#define CAPTURE_DELAY 500
/* signal frequency should be less than samplerate * RATE_FACTOR */
#define RATE_FACTOR 0.4
/* valid range of samplerate: (1 - RATE_RANGE, 1 + RATE_RANGE) * samplerate */
#define RATE_RANGE 0.05
/* Given in us */
#define MAX_BUFFERTIME 500000
/* devide factor, was 4, changed to 8 to remove reduce capture overrun */
#define DIV_BUFFERTIME 8
/* margin to avoid sign inversion when generate sine wav */
#define RANGE_FACTOR 0.95
#define MAX_BUFFERSIZE 200000
#define MIN_BUFFERSIZE 32
#define MAX_PERIODSIZE 200000
#define MIN_PERIODSIZE 32
/* default period size for tinyalsa */
#define TINYALSA_PERIODSIZE 1024
#define LATENCY_TEST_NUMBER 5
#define LATENCY_TEST_TIME_LIMIT 25
#define DIV_BUFFERSIZE 2
#define EBATBASE 1000
#define ENOPEAK (EBATBASE + 1)
#define EONLYDC (EBATBASE + 2)
#define EBADPEAK (EBATBASE + 3)
#define DC_THRESHOLD 7.01
/* tolerance of detected peak = max (DELTA_HZ, DELTA_RATE * target_freq).
* If DELTA_RATE is too high, BAT may not be able to recognize negative result;
* if too low, BAT may be too sensitive and results in uncecessary failure. */
#define DELTA_RATE 0.005
#define DELTA_HZ 1
#define FOUND_DC (1<<1)
#define FOUND_WRONG_PEAK (1<<0)
/* Truncate sample frames to (1 << N), for faster FFT analysis process. The
* valid range of N is (SHIFT_MIN, SHIFT_MAX). When N increases, the analysis
* will be more time-consuming, and the result will be more accurate. */
#define SHIFT_MAX (sizeof(int) * 8 - 2)
#define SHIFT_MIN 8
/* Define SNR range in dB.
* if the noise is equal to signal, SNR = 0.0dB;
* if the noise is zero, SNR is limited by RIFF wav data width:
* 8 bit --> 20.0 * log10f (powf(2.0, 8.0)) = 48.16 dB
* 16 bit --> 20.0 * log10f (powf(2.0, 16.0)) = 96.33 dB
* 24 bit --> 20.0 * log10f (powf(2.0, 24.0)) = 144.49 dB
* 32 bit --> 20.0 * log10f (powf(2.0, 32.0)) = 192.66 dB
* so define the SNR range (0.0, 200.0) dB, value out of range is invalid. */
#define SNR_DB_INVALID -1.0
#define SNR_DB_MIN 0.0
#define SNR_DB_MAX 200.0
static inline bool snr_is_valid(float db)
{
return (db > SNR_DB_MIN && db < SNR_DB_MAX);
}
struct wav_header {
unsigned int magic; /* 'RIFF' */
unsigned int length; /* file len */
unsigned int type; /* 'WAVE' */
};
struct wav_chunk_header {
unsigned int type; /* 'data' */
unsigned int length; /* sample count */
};
struct wav_fmt {
unsigned int magic; /* 'FMT '*/
unsigned int fmt_size; /* 16 or 18 */
unsigned short format; /* see WAV_FMT_* */
unsigned short channels;
unsigned int sample_rate; /* Frequency of sample */
unsigned int bytes_p_second;
unsigned short blocks_align; /* sample size; 1 or 2 bytes */
unsigned short sample_length; /* 8, 12 or 16 bit */
};
struct chunk_fmt {
unsigned short format; /* see WAV_FMT_* */
unsigned short channels;
unsigned int sample_rate; /* Frequency of sample */
unsigned int bytes_p_second;
unsigned short blocks_align; /* sample size; 1 or 2 bytes */
unsigned short sample_length; /* 8, 12 or 16 bit */
};
struct wav_container {
struct wav_header header;
struct wav_fmt format;
struct wav_chunk_header chunk;
};
struct bat;
enum _bat_pcm_format {
BAT_PCM_FORMAT_UNKNOWN = -1,
BAT_PCM_FORMAT_S16_LE = 0,
BAT_PCM_FORMAT_S32_LE,
BAT_PCM_FORMAT_U8,
BAT_PCM_FORMAT_S24_3LE,
BAT_PCM_FORMAT_MAX
};
enum _bat_op_mode {
MODE_UNKNOWN = -1,
MODE_SINGLE = 0,
MODE_LOOPBACK,
MODE_ANALYZE_ONLY,
MODE_LAST
};
enum latency_state {
LATENCY_STATE_COMPLETE_FAILURE = -1,
LATENCY_STATE_COMPLETE_SUCCESS = 0,
LATENCY_STATE_MEASURE_FOR_1_SECOND,
LATENCY_STATE_PLAY_AND_LISTEN,
LATENCY_STATE_WAITING,
};
struct pcm {
unsigned int card_tiny;
unsigned int device_tiny;
char *device;
char *file;
enum _bat_op_mode mode;
void *(*fct)(struct bat *);
};
struct sin_generator;
struct sin_generator {
double state_real;
double state_imag;
double phasor_real;
double phasor_imag;
float frequency;
float sample_rate;
float magnitude;
};
struct roundtrip_latency {
int number;
enum latency_state state;
float result[LATENCY_TEST_NUMBER];
int final_result;
int samples;
float sum;
int threshold;
int error;
bool is_capturing;
bool is_playing;
bool xrun_error;
};
struct noise_analyzer {
int nsamples; /* number of sample */
float *source; /* single-tone to be analyzed */
float *target; /* target single-tone as standard */
float rms_tgt; /* rms of target single-tone */
float snr_db; /* snr in dB */
};
struct bat {
unsigned int rate; /* sampling rate */
int channels; /* nb of channels */
int frames; /* nb of frames */
int frame_size; /* size of frame */
int sample_size; /* size of sample */
enum _bat_pcm_format format; /* PCM format */
int buffer_size; /* buffer size in frames */
int period_size; /* period size in frames */
float sigma_k; /* threshold for peak detection */
float snr_thd_db; /* threshold for noise detection (dB) */
float target_freq[MAX_CHANNELS];
int sinus_duration; /* number of frames for playback */
char *narg; /* argument string of duration */
char *logarg; /* path name of log file */
char *debugplay; /* path name to store playback signal */
char *capturefile; /* path name for previously saved recording */
bool standalone; /* enable to bypass analysis */
bool roundtriplatency; /* enable round trip latency */
struct pcm playback;
struct pcm capture;
struct roundtrip_latency latency;
unsigned int periods_played;
unsigned int periods_total;
bool period_is_limited;
FILE *fp;
FILE *log;
FILE *err;
void (*convert_sample_to_float)(void *, float *, int);
void (*convert_float_to_sample)(float *, void *, int, int);
void *buf; /* PCM Buffer */
bool local; /* true for internal test */
};
struct analyze {
void *buf;
float *in;
float *out;
float *mag;
};
void prepare_wav_info(struct wav_container *, struct bat *);
int read_wav_header(struct bat *, char *, FILE *, bool);
int write_wav_header(FILE *, struct wav_container *, struct bat *);
int update_wav_header(struct bat *, FILE *, int);
int generate_input_data(struct bat *, void *, int, int);