alsa-utils/bat/analyze.c
Delio Brignoli 039e4cad48 bat: really skip analysis of the first period and update related comment
Prior to this change bat/analyze.c would skip the last period of the recording, contrary to
what the comment in the code which stated the first period was meant to be skipped.

The comment has been updated to state that both the first and last period are skipped and the code
has been updated to match.

Closes: https://github.com/alsa-project/alsa-utils/pull/237
Signed-off-by: Delio Brignoli <dbrignoli@audioscience.com>
Signed-off-by: Jaroslav Kysela <perex@perex.cz>
2023-10-17 13:28:13 +02:00

515 lines
12 KiB
C

/*
* Copyright (C) 2013-2015 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "aconfig.h"
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include <fftw3.h>
#include "gettext.h"
#include "common.h"
#include "bat-signal.h"
static void check_amplitude(struct bat *bat, float *buf)
{
float sum, average, amplitude;
int i, percent;
/* calculate average value */
for (i = 0, sum = 0.0, average = 0.0; i < bat->frames; i++)
sum += buf[i];
average = sum / bat->frames;
/* calculate peak-to-average amplitude */
for (i = 0, sum = 0.0; i < bat->frames; i++)
sum += fabsf(buf[i] - average);
amplitude = sum / bat->frames * M_PI / 2.0;
/* calculate amplitude percentage against full range */
percent = amplitude * 100 / ((1 << ((bat->sample_size << 3) - 1)) - 1);
fprintf(bat->log, _("Amplitude: %.1f; Percentage: [%d]\n"),
amplitude, percent);
if (percent < 0)
fprintf(bat->err, _("ERROR: Amplitude can't be negative!\n"));
else if (percent < 1)
fprintf(bat->err, _("WARNING: Signal too weak!\n"));
else if (percent > 100)
fprintf(bat->err, _("WARNING: Signal overflow!\n"));
}
/**
*
* @return 0 if peak detected at right frequency,
* 1 if peak detected somewhere else
* 2 if DC detected
*/
int check_peak(struct bat *bat, struct analyze *a, int end, int peak, float hz,
float mean, float p, int channel, int start)
{
int err;
float hz_peak = (float) (peak) * hz;
float delta_rate = DELTA_RATE * bat->target_freq[channel];
float delta_HZ = DELTA_HZ;
float tolerance = (delta_rate > delta_HZ) ? delta_rate : delta_HZ;
fprintf(bat->log, _("Detected peak at %2.2f Hz of %2.2f dB\n"), hz_peak,
10.0 * log10f(a->mag[peak] / mean));
fprintf(bat->log, _(" Total %3.1f dB from %2.2f to %2.2f Hz\n"),
10.0 * log10f(p / mean), start * hz, end * hz);
if (hz_peak < DC_THRESHOLD) {
fprintf(bat->err, _(" WARNING: Found low peak %2.2f Hz,"),
hz_peak);
fprintf(bat->err, _(" very close to DC\n"));
err = FOUND_DC;
} else if (hz_peak < bat->target_freq[channel] - tolerance) {
fprintf(bat->err, _(" FAIL: Peak freq too low %2.2f Hz\n"),
hz_peak);
err = FOUND_WRONG_PEAK;
} else if (hz_peak > bat->target_freq[channel] + tolerance) {
fprintf(bat->err, _(" FAIL: Peak freq too high %2.2f Hz\n"),
hz_peak);
err = FOUND_WRONG_PEAK;
} else {
fprintf(bat->log, _(" PASS: Peak detected"));
fprintf(bat->log, _(" at target frequency\n"));
err = 0;
}
return err;
}
/**
* Search for main frequencies in fft results and compare it to target
*/
static int check(struct bat *bat, struct analyze *a, int channel)
{
float hz = 1.0 / ((float) bat->frames / (float) bat->rate);
float mean = 0.0, t, sigma = 0.0, p = 0.0;
int i, start = -1, end = -1, peak = 0, signals = 0;
int err = 0, N = bat->frames / 2;
/* calculate mean */
for (i = 0; i < N; i++)
mean += a->mag[i];
mean /= (float) N;
/* calculate standard deviation */
for (i = 0; i < N; i++) {
t = a->mag[i] - mean;
t *= t;
sigma += t;
}
sigma /= (float) N;
sigma = sqrtf(sigma);
/* clip any data less than k sigma + mean */
for (i = 0; i < N; i++) {
if (a->mag[i] > mean + bat->sigma_k * sigma) {
/* find peak start points */
if (start == -1) {
start = peak = end = i;
signals++;
} else {
if (a->mag[i] > a->mag[peak])
peak = i;
end = i;
}
p += a->mag[i];
} else if (start != -1) {
/* Check if peak is as expected */
err |= check_peak(bat, a, end, peak, hz, mean,
p, channel, start);
end = start = -1;
if (signals == MAX_PEAKS)
break;
}
}
if (signals == 0)
err = -ENOPEAK; /* No peak detected */
else if ((err == FOUND_DC) && (signals == 1))
err = -EONLYDC; /* Only DC detected */
else if ((err & FOUND_WRONG_PEAK) == FOUND_WRONG_PEAK)
err = -EBADPEAK; /* Bad peak detected */
else
err = 0; /* Correct peak detected */
fprintf(bat->log, _("Detected at least %d signal(s) in total\n"),
signals);
return err;
}
static void calc_magnitude(struct bat *bat, struct analyze *a, int N)
{
float r2, i2;
int i;
for (i = 1; i < N / 2; i++) {
r2 = a->out[i] * a->out[i];
i2 = a->out[N - i] * a->out[N - i];
a->mag[i] = sqrtf(r2 + i2);
}
a->mag[0] = 0.0;
}
static int find_and_check_harmonics(struct bat *bat, struct analyze *a,
int channel)
{
fftwf_plan p;
int err = -ENOMEM, N = bat->frames;
/* Allocate FFT buffers */
a->in = (float *) fftwf_malloc(sizeof(float) * bat->frames);
if (a->in == NULL)
goto out1;
a->out = (float *) fftwf_malloc(sizeof(float) * bat->frames);
if (a->out == NULL)
goto out2;
a->mag = (float *) fftwf_malloc(sizeof(float) * bat->frames);
if (a->mag == NULL)
goto out3;
/* create FFT plan */
p = fftwf_plan_r2r_1d(N, a->in, a->out, FFTW_R2HC,
FFTW_MEASURE | FFTW_PRESERVE_INPUT);
if (p == NULL)
goto out4;
/* convert source PCM to floats */
bat->convert_sample_to_float(a->buf, a->in, bat->frames);
/* check amplitude */
check_amplitude(bat, a->in);
/* run FFT */
fftwf_execute(p);
/* FFT out is real and imaginary numbers - calc magnitude for each */
calc_magnitude(bat, a, N);
/* check data */
err = check(bat, a, channel);
fftwf_destroy_plan(p);
out4:
fftwf_free(a->mag);
out3:
fftwf_free(a->out);
out2:
fftwf_free(a->in);
out1:
return err;
}
static int calculate_noise_one_period(struct bat *bat,
struct noise_analyzer *na, float *src,
int length, int channel)
{
int i, shift = 0;
float tmp, rms, gain, residual;
float a = 0.0, b = 1.0;
/* step 1. phase compensation */
if (length < 2 * na->nsamples)
return -EINVAL;
/* search for the beginning of a sine period */
for (i = 0, tmp = 0.0, shift = -1; i < na->nsamples; i++) {
/* find i where src[i] >= 0 && src[i+1] < 0 */
if (src[i] < 0.0)
continue;
if (src[i + 1] < 0.0) {
tmp = src[i] - src[i + 1];
a = src[i] / tmp;
b = -src[i + 1] / tmp;
shift = i;
break;
}
}
/* didn't find the beginning of a sine period */
if (shift == -1)
return -EINVAL;
/* shift sine waveform to source[0] = 0.0 */
for (i = 0; i < na->nsamples; i++)
na->source[i] = a * src[i + shift + 1] + b * src[i + shift];
/* step 2. gain compensation */
/* calculate rms of signal amplitude */
for (i = 0, tmp = 0.0; i < na->nsamples; i++)
tmp += na->source[i] * na->source[i];
rms = sqrtf(tmp / na->nsamples);
gain = na->rms_tgt / rms;
for (i = 0; i < na->nsamples; i++)
na->source[i] *= gain;
/* step 3. calculate snr in dB */
for (i = 0, tmp = 0.0, residual = 0.0; i < na->nsamples; i++) {
tmp = fabsf(na->target[i] - na->source[i]);
residual += tmp * tmp;
}
tmp = na->rms_tgt / sqrtf(residual / na->nsamples);
na->snr_db = 20.0 * log10f(tmp);
return 0;
}
static int calculate_noise(struct bat *bat, float *src, int channel)
{
int err = 0;
struct noise_analyzer na;
float freq = bat->target_freq[channel];
float tmp, sum_snr_pc, avg_snr_pc, avg_snr_db;
int offset, i, cnt_noise, cnt_clean;
/* num of samples in each sine period */
int nsamples = (int) ceilf(bat->rate / freq);
/* each section has 2 sine periods, the first one for locating
* and the second one for noise calculating */
int nsamples_per_section = nsamples * 2;
/* all sine periods will be calculated except the first and last one */
int nsection = bat->frames / nsamples - 1;
fprintf(bat->log, _("samples per period: %d\n"), nsamples);
fprintf(bat->log, _("total sections to detect: %d\n"), nsection);
na.source = (float *)malloc(sizeof(float) * nsamples);
if (!na.source) {
err = -ENOMEM;
goto out1;
}
na.target = (float *)malloc(sizeof(float) * nsamples);
if (!na.target) {
err = -ENOMEM;
goto out2;
}
/* generate standard single-tone signal */
err = generate_sine_wave_raw_mono(bat, na.target, freq, nsamples);
if (err < 0)
goto out3;
na.nsamples = nsamples;
/* calculate rms of standard signal */
for (i = 0, tmp = 0.0; i < nsamples; i++)
tmp += na.target[i] * na.target[i];
na.rms_tgt = sqrtf(tmp / nsamples);
/* calculate average noise level */
sum_snr_pc = 0.0;
cnt_clean = cnt_noise = 0;
for (i = 1, offset = nsamples; i < nsection; i++) {
na.snr_db = SNR_DB_INVALID;
err = calculate_noise_one_period(bat, &na, src + offset,
nsamples_per_section, channel);
if (err < 0)
goto out3;
if (na.snr_db > bat->snr_thd_db) {
cnt_clean++;
sum_snr_pc += 100.0 / powf(10.0, na.snr_db / 20.0);
} else {
cnt_noise++;
}
offset += nsamples;
}
if (cnt_noise > 0) {
fprintf(bat->err, _("Noise detected at %d points.\n"),
cnt_noise);
err = -cnt_noise;
if (cnt_clean == 0)
goto out3;
} else {
fprintf(bat->log, _("No noise detected.\n"));
}
avg_snr_pc = sum_snr_pc / cnt_clean;
avg_snr_db = 20.0 * log10f(100.0 / avg_snr_pc);
fprintf(bat->log, _("Average SNR is %.2f dB (%.2f %%) at %d points.\n"),
avg_snr_db, avg_snr_pc, cnt_clean);
out3:
free(na.target);
out2:
free(na.source);
out1:
return err;
}
static int find_and_check_noise(struct bat *bat, void *buf, int channel)
{
int err = 0;
float *source;
source = (float *)malloc(sizeof(float) * bat->frames);
if (!source)
return -ENOMEM;
/* convert source PCM to floats */
bat->convert_sample_to_float(buf, source, bat->frames);
/* adjust waveform and calculate noise */
err = calculate_noise(bat, source, channel);
free(source);
return err;
}
/**
* Convert interleaved samples from channels in samples from a single channel
*/
static int reorder_data(struct bat *bat)
{
char *p, *new_bat_buf;
int ch, i, j;
if (bat->channels == 1)
return 0; /* No need for reordering */
p = malloc(bat->frames * bat->frame_size);
new_bat_buf = p;
if (p == NULL)
return -ENOMEM;
for (ch = 0; ch < bat->channels; ch++) {
for (j = 0; j < bat->frames; j++) {
for (i = 0; i < bat->sample_size; i++) {
*p++ = ((char *) (bat->buf))[j * bat->frame_size
+ ch * bat->sample_size + i];
}
}
}
free(bat->buf);
bat->buf = new_bat_buf;
return 0;
}
/* truncate sample frames for faster FFT analysis process */
static int truncate_frames(struct bat *bat)
{
int shift = SHIFT_MAX;
for (; shift > SHIFT_MIN; shift--)
if (bat->frames & (1 << shift)) {
bat->frames = 1 << shift;
return 0;
}
return -EINVAL;
}
int analyze_capture(struct bat *bat)
{
int err = 0;
size_t items;
int c;
struct analyze a;
err = truncate_frames(bat);
if (err < 0) {
fprintf(bat->err, _("Invalid frame number for analysis: %d\n"),
bat->frames);
return err;
}
fprintf(bat->log, _("\nBAT analysis: signal has %d frames at %d Hz,"),
bat->frames, bat->rate);
fprintf(bat->log, _(" %d channels, %d bytes per sample.\n"),
bat->channels, bat->sample_size);
bat->buf = malloc(bat->frames * bat->frame_size);
if (bat->buf == NULL)
return -ENOMEM;
bat->fp = fopen(bat->capture.file, "rb");
err = -errno;
if (bat->fp == NULL) {
fprintf(bat->err, _("Cannot open file: %s %d\n"),
bat->capture.file, err);
goto exit1;
}
/* Skip header */
err = read_wav_header(bat, bat->capture.file, bat->fp, true);
if (err != 0)
goto exit2;
items = fread(bat->buf, bat->frame_size, bat->frames, bat->fp);
if (items != bat->frames) {
err = -EIO;
goto exit2;
}
err = reorder_data(bat);
if (err != 0)
goto exit2;
for (c = 0; c < bat->channels; c++) {
fprintf(bat->log, _("\nChannel %i - "), c + 1);
fprintf(bat->log, _("Checking for target frequency %2.2f Hz\n"),
bat->target_freq[c]);
a.buf = bat->buf +
c * bat->frames * bat->frame_size
/ bat->channels;
if (!bat->standalone) {
err = find_and_check_harmonics(bat, &a, c);
if (err != 0)
goto exit2;
}
if (snr_is_valid(bat->snr_thd_db)) {
fprintf(bat->log, _("\nChecking for SNR: "));
fprintf(bat->log, _("Threshold is %.2f dB (%.2f%%)\n"),
bat->snr_thd_db, 100.0
/ powf(10.0, bat->snr_thd_db / 20.0));
err = find_and_check_noise(bat, a.buf, c);
if (err != 0)
goto exit2;
}
}
exit2:
fclose(bat->fp);
exit1:
free(bat->buf);
return err;
}