alsa-utils/topology/nhlt/intel/ssp/ssp-process.c
Jaska Uimonen f9e6010d5e topology: plugins - add Intel nhlt encoder plugin
Add Intel nhlt acpi table encoder plugin into topology2.0 processing.
Nhlt internal structure is defined in:
https://01.org/sites/default/files/595976_intel_sst_nhlt.pdf
Nhlt acpi table contain vendor specific binary data blobs that are used
in some Intel dsp platforms for configuring the dmic and ssp hardware.

The function of this code is mainly to generate the vendor specific
binary blobs, but as there is existing nhlt parser code and header in
kernel there's no point of re-inventing the container: just use the
existing nhlt acpi table format. Basically this code is creating similar
nhlt acpi table that you would get from: cat
/sys/firmware/acpi/tables/NHLT

This code will have implementation for dmic and ssp endpoints. Thus the
code will translate the topology dai tokens into vendor specific binary
blobs and pack them into nhlt acpi table. Ssp and dmic code is lifted
from Sound Open Firmware (sof) code base, thus it will have BSD-3
license.

This plugin can be enabled from command line with:

alsatplg -DPREPROCESS_PLUGINS="nhlt" -c foo.conf -p -o bar.tplg

You can also dump the nhlt binary into a file with additional define:

-DNHLT_BIN="nhlt.bin"

Link: https://github.com/alsa-project/alsa-utils/pull/129
Signed-off-by: Jaska Uimonen <jaska.uimonen@linux.intel.com>
Signed-off-by: Jaroslav Kysela <perex@perex.cz>
2022-05-03 13:24:03 +02:00

742 lines
21 KiB
C

// SPDX-License-Identifier: BSD-3-Clause
//
// Copyright(c) 2021 Intel Corporation. All rights reserved.
//
// Author: Liam Girdwood <liam.r.girdwood@linux.intel.com>
// Keyon Jie <yang.jie@linux.intel.com>
// Rander Wang <rander.wang@linux.intel.com>
// Jaska Uimonen <jaska.uimonen@linux.intel.com>
#include <stdint.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <alsa/input.h>
#include <alsa/output.h>
#include <alsa/conf.h>
#include <alsa/error.h>
#include "../intel-nhlt.h"
#include "../../nhlt.h"
#include "ssp-process.h"
#include "ssp-intel.h"
#include "ssp-internal.h"
#include "ssp-debug.h"
static int popcount(uint32_t value)
{
int bits_set = 0;
while (value) {
bits_set += value & 1;
value >>= 1;
}
return bits_set;
}
static int ssp_calculate_intern(struct intel_nhlt_params *nhlt, int hwi)
{
struct intel_ssp_params *ssp = (struct intel_ssp_params *)nhlt->ssp_params;
uint32_t active_tx_slots = 2;
uint32_t active_rx_slots = 2;
uint32_t inverted_frame = 0;
uint32_t inverted_bclk = 0;
uint32_t frame_end_padding;
uint32_t total_sample_size;
uint32_t slot_end_padding;
bool start_delay = false;
uint32_t frame_len = 0;
uint32_t sample_width;
uint32_t end_padding;
uint32_t data_size;
uint32_t bdiv_min;
bool cfs = false;
uint32_t clk_div;
uint32_t bdiv;
uint32_t tft;
uint32_t rft;
int di;
int i, j;
if (!ssp)
return -EINVAL;
di = ssp->ssp_count;
/* should be eventually the lp_mode defined in pipeline */
ssp->ssp_blob[di][hwi].gateway_attributes = 0;
for (j = 0; j < SSP_TDM_MAX_SLOT_MAP_COUNT; j++) {
for (i = 0; i < ssp->ssp_prm.hw_cfg[hwi].tdm_slots; i++)
ssp->ssp_blob[di][hwi].ts_group[j] |= (i << (i * 4));
for (; i < SSP_TDM_MAX_SLOT_MAP_COUNT; i++)
ssp->ssp_blob[di][hwi].ts_group[j] |= (0xF << (i * 4));
}
/* reset SSP settings */
/* sscr0 dynamic settings are DSS, EDSS, SCR, FRDC, ECS */
ssp->ssp_blob[di][hwi].ssc0 = SSCR0_PSP | SSCR0_RIM | SSCR0_TIM;
/* sscr1 dynamic settings are SFRMDIR, SCLKDIR, SCFR */
ssp->ssp_blob[di][hwi].ssc1 = SSCR1_TTE | SSCR1_TTELP | SSCR1_TRAIL | SSCR1_RSRE |
SSCR1_TSRE;
/* sscr2 dynamic setting is LJDFD */
ssp->ssp_blob[di][hwi].ssc2 = SSCR2_SDFD | SSCR2_TURM1;
/* sscr3 dynamic settings are TFT, RFT */
ssp->ssp_blob[di][hwi].ssc3 = 0;
/* sspsp dynamic settings are SCMODE, SFRMP, DMYSTRT, SFRMWDTH */
ssp->ssp_blob[di][hwi].sspsp = 0;
/* sspsp2 no dynamic setting */
ssp->ssp_blob[di][hwi].sspsp2 = 0x0;
/* ssioc dynamic setting is SFCR */
ssp->ssp_blob[di][hwi].ssioc = SSIOC_SCOE;
/* ssto no dynamic setting */
ssp->ssp_blob[di][hwi].sscto = 0x0;
/* sstsa dynamic setting is TTSA, default 2 slots */
ssp->ssp_blob[di][hwi].sstsa = SSTSA_SSTSA(ssp->ssp_prm.hw_cfg[hwi].tx_slots);
/* ssrsa dynamic setting is RTSA, default 2 slots */
ssp->ssp_blob[di][hwi].ssrsa = SSRSA_SSRSA(ssp->ssp_prm.hw_cfg[hwi].rx_slots);
switch (ssp->ssp_prm.hw_cfg[hwi].format & SSP_FMT_CLOCK_PROVIDER_MASK) {
case SSP_FMT_CBP_CFP:
ssp->ssp_blob[di][hwi].ssc1 |= SSCR1_SCLKDIR | SSCR1_SFRMDIR;
break;
case SSP_FMT_CBC_CFC:
ssp->ssp_blob[di][hwi].ssc1 |= SSCR1_SCFR;
cfs = true;
break;
case SSP_FMT_CBP_CFC:
ssp->ssp_blob[di][hwi].ssc1 |= SSCR1_SCLKDIR;
/* FIXME: this mode has not been tested */
cfs = true;
break;
case SSP_FMT_CBC_CFP:
ssp->ssp_blob[di][hwi].ssc1 |= SSCR1_SCFR | SSCR1_SFRMDIR;
/* FIXME: this mode has not been tested */
break;
default:
fprintf(stderr, "ssp_calculate(): format & PROVIDER_MASK EINVAL\n");
return -EINVAL;
}
/* clock signal polarity */
switch (ssp->ssp_prm.hw_cfg[hwi].format & SSP_FMT_INV_MASK) {
case SSP_FMT_NB_NF:
break;
case SSP_FMT_NB_IF:
inverted_frame = 1; /* handled later with format */
break;
case SSP_FMT_IB_IF:
inverted_bclk = 1; /* handled later with bclk idle */
inverted_frame = 1; /* handled later with format */
break;
case SSP_FMT_IB_NF:
inverted_bclk = 1; /* handled later with bclk idle */
break;
default:
fprintf(stderr, "ssp_calculate: format & INV_MASK EINVAL\n");
return -EINVAL;
}
/* supporting bclk idle state */
if (ssp->ssp_prm.clks_control &
SSP_INTEL_CLKCTRL_BCLK_IDLE_HIGH) {
/* bclk idle state high */
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_SCMODE((inverted_bclk ^ 0x3) & 0x3);
} else {
/* bclk idle state low */
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_SCMODE(inverted_bclk);
}
ssp->ssp_blob[di][hwi].ssc0 |= SSCR0_MOD | SSCR0_ACS;
/* Additional hardware settings */
/* Receiver Time-out Interrupt Disabled/Enabled */
ssp->ssp_blob[di][hwi].ssc1 |= (ssp->ssp_prm.quirks & SSP_INTEL_QUIRK_TINTE) ?
SSCR1_TINTE : 0;
/* Peripheral Trailing Byte Interrupts Disable/Enable */
ssp->ssp_blob[di][hwi].ssc1 |= (ssp->ssp_prm.quirks & SSP_INTEL_QUIRK_PINTE) ?
SSCR1_PINTE : 0;
/* Enable/disable internal loopback. Output of transmit serial
* shifter connected to input of receive serial shifter, internally.
*/
ssp->ssp_blob[di][hwi].ssc1 |= (ssp->ssp_prm.quirks & SSP_INTEL_QUIRK_LBM) ?
SSCR1_LBM : 0;
/* Transmit data are driven at the same/opposite clock edge specified
* in SSPSP.SCMODE[1:0]
*/
ssp->ssp_blob[di][hwi].ssc2 |= (ssp->ssp_prm.quirks & SSP_INTEL_QUIRK_SMTATF) ?
SSCR2_SMTATF : 0;
/* Receive data are sampled at the same/opposite clock edge specified
* in SSPSP.SCMODE[1:0]
*/
ssp->ssp_blob[di][hwi].ssc2 |= (ssp->ssp_prm.quirks & SSP_INTEL_QUIRK_MMRATF) ?
SSCR2_MMRATF : 0;
/* Enable/disable the fix for PSP consumer mode TXD wait for frame
* de-assertion before starting the second channel
*/
ssp->ssp_blob[di][hwi].ssc2 |= (ssp->ssp_prm.quirks & SSP_INTEL_QUIRK_PSPSTWFDFD) ?
SSCR2_PSPSTWFDFD : 0;
/* Enable/disable the fix for PSP provider mode FSRT with dummy stop &
* frame end padding capability
*/
ssp->ssp_blob[di][hwi].ssc2 |= (ssp->ssp_prm.quirks & SSP_INTEL_QUIRK_PSPSRWFDFD) ?
SSCR2_PSPSRWFDFD : 0;
if (!ssp->ssp_prm.hw_cfg[hwi].mclk_rate) {
fprintf(stderr, "ssp_calculate(): invalid MCLK = %u \n",
ssp->ssp_prm.hw_cfg[hwi].mclk_rate);
return -EINVAL;
}
if (!ssp->ssp_prm.hw_cfg[hwi].bclk_rate ||
ssp->ssp_prm.hw_cfg[hwi].bclk_rate > ssp->ssp_prm.hw_cfg[hwi].mclk_rate) {
fprintf(stderr, "ssp_calculate(): BCLK %u Hz = 0 or > MCLK %u Hz\n",
ssp->ssp_prm.hw_cfg[hwi].bclk_rate, ssp->ssp_prm.hw_cfg[hwi].mclk_rate);
return -EINVAL;
}
/* calc frame width based on BCLK and rate - must be divisible */
if (ssp->ssp_prm.hw_cfg[hwi].bclk_rate % ssp->ssp_prm.hw_cfg[hwi].fsync_rate) {
fprintf(stderr, "ssp_calculate(): BCLK %u is not divisible by rate %u\n",
ssp->ssp_prm.hw_cfg[hwi].bclk_rate, ssp->ssp_prm.hw_cfg[hwi].fsync_rate);
return -EINVAL;
}
/* must be enough BCLKs for data */
bdiv = ssp->ssp_prm.hw_cfg[hwi].bclk_rate / ssp->ssp_prm.hw_cfg[hwi].fsync_rate;
if (bdiv < ssp->ssp_prm.hw_cfg[hwi].tdm_slot_width * ssp->ssp_prm.hw_cfg[hwi].tdm_slots) {
fprintf(stderr, "ssp_calculate(): not enough BCLKs need %u\n",
ssp->ssp_prm.hw_cfg[hwi].tdm_slot_width *
ssp->ssp_prm.hw_cfg[hwi].tdm_slots);
return -EINVAL;
}
/* tdm_slot_width must be <= 38 for SSP */
if (ssp->ssp_prm.hw_cfg[hwi].tdm_slot_width > 38) {
fprintf(stderr, "ssp_calculate(): tdm_slot_width %u > 38\n",
ssp->ssp_prm.hw_cfg[hwi].tdm_slot_width);
return -EINVAL;
}
bdiv_min = ssp->ssp_prm.hw_cfg[hwi].tdm_slots *
(ssp->ssp_prm.tdm_per_slot_padding_flag ?
ssp->ssp_prm.hw_cfg[hwi].tdm_slot_width : ssp->ssp_prm.sample_valid_bits);
if (bdiv < bdiv_min) {
fprintf(stderr, "ssp_calculate(): bdiv(%u) < bdiv_min(%u)\n",
bdiv, bdiv_min);
return -EINVAL;
}
frame_end_padding = bdiv - bdiv_min;
if (frame_end_padding > SSPSP2_FEP_MASK) {
fprintf(stderr, "ssp_calculate(): frame_end_padding too big: %u\n",
frame_end_padding);
return -EINVAL;
}
/* format */
switch (ssp->ssp_prm.hw_cfg[hwi].format & SSP_FMT_FORMAT_MASK) {
case SSP_FMT_I2S:
start_delay = true;
ssp->ssp_blob[di][hwi].ssc0 |= SSCR0_FRDC(ssp->ssp_prm.hw_cfg[hwi].tdm_slots);
if (bdiv % 2) {
fprintf(stderr, "ssp_calculate(): bdiv %u is not divisible by 2\n",
bdiv);
return -EINVAL;
}
/* set asserted frame length to half frame length */
frame_len = bdiv / 2;
/*
* handle frame polarity, I2S default is falling/active low,
* non-inverted(inverted_frame=0) -- active low(SFRMP=0),
* inverted(inverted_frame=1) -- rising/active high(SFRMP=1),
* so, we should set SFRMP to inverted_frame.
*/
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_SFRMP(inverted_frame);
/*
* for I2S/LEFT_J, the padding has to happen at the end
* of each slot
*/
if (frame_end_padding % 2) {
fprintf(stderr, "ssp_calculate():frame_end_padding %u not divisible by 2\n",
frame_end_padding);
return -EINVAL;
}
slot_end_padding = frame_end_padding / 2;
if (slot_end_padding > SSP_INTEL_SLOT_PADDING_MAX) {
/* too big padding */
fprintf(stderr, "ssp_calculate(): slot_end_padding > %d\n",
SSP_INTEL_SLOT_PADDING_MAX);
return -EINVAL;
}
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_DMYSTOP(slot_end_padding);
slot_end_padding >>= SSPSP_DMYSTOP_BITS;
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_EDMYSTOP(slot_end_padding);
break;
case SSP_FMT_LEFT_J:
/* default start_delay value is set to false */
ssp->ssp_blob[di][hwi].ssc0 |= SSCR0_FRDC(ssp->ssp_prm.hw_cfg[hwi].tdm_slots);
/* LJDFD enable */
ssp->ssp_blob[di][hwi].ssc2 &= ~SSCR2_LJDFD;
if (bdiv % 2) {
fprintf(stderr, "ssp_calculate(): bdiv %u is not divisible by 2\n",
bdiv);
return -EINVAL;
}
/* set asserted frame length to half frame length */
frame_len = bdiv / 2;
/*
* handle frame polarity, LEFT_J default is rising/active high,
* non-inverted(inverted_frame=0) -- active high(SFRMP=1),
* inverted(inverted_frame=1) -- falling/active low(SFRMP=0),
* so, we should set SFRMP to !inverted_frame.
*/
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_SFRMP(!inverted_frame ? 1 : 0);
/*
* for I2S/LEFT_J, the padding has to happen at the end
* of each slot
*/
if (frame_end_padding % 2) {
fprintf(stderr, "ssp_set_config(): frame padding %u not divisible by 2\n",
frame_end_padding);
return -EINVAL;
}
slot_end_padding = frame_end_padding / 2;
if (slot_end_padding > 15) {
/* can't handle padding over 15 bits */
fprintf(stderr, "ssp_set_config(): slot_end_padding %u > 15 bits\n",
slot_end_padding);
return -EINVAL;
}
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_DMYSTOP(slot_end_padding);
slot_end_padding >>= SSPSP_DMYSTOP_BITS;
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_EDMYSTOP(slot_end_padding);
break;
case SSP_FMT_DSP_A:
start_delay = true;
/* fallthrough */
case SSP_FMT_DSP_B:
/* default start_delay value is set to false */
ssp->ssp_blob[di][hwi].ssc0 |= SSCR0_MOD |
SSCR0_FRDC(ssp->ssp_prm.hw_cfg[hwi].tdm_slots);
/* set asserted frame length */
frame_len = 1; /* default */
if (cfs && ssp->ssp_prm.frame_pulse_width > 0 &&
ssp->ssp_prm.frame_pulse_width <=
SSP_INTEL_FRAME_PULSE_WIDTH_MAX) {
frame_len = ssp->ssp_prm.frame_pulse_width;
}
/* frame_pulse_width must less or equal 38 */
if (ssp->ssp_prm.frame_pulse_width >
SSP_INTEL_FRAME_PULSE_WIDTH_MAX) {
fprintf(stderr, "ssp_set_config(): frame_pulse_width > %d\n",
SSP_INTEL_FRAME_PULSE_WIDTH_MAX);
return -EINVAL;
}
/*
* handle frame polarity, DSP_B default is rising/active high,
* non-inverted(inverted_frame=0) -- active high(SFRMP=1),
* inverted(inverted_frame=1) -- falling/active low(SFRMP=0),
* so, we should set SFRMP to !inverted_frame.
*/
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_SFRMP(!inverted_frame ? 1 : 0);
active_tx_slots = popcount(ssp->ssp_prm.hw_cfg[hwi].tx_slots);
active_rx_slots = popcount(ssp->ssp_prm.hw_cfg[hwi].rx_slots);
/*
* handle TDM mode, TDM mode has padding at the end of
* each slot. The amount of padding is equal to result of
* subtracting slot width and valid bits per slot.
*/
if (ssp->ssp_prm.tdm_per_slot_padding_flag) {
frame_end_padding = bdiv - ssp->ssp_prm.hw_cfg[hwi].tdm_slots *
ssp->ssp_prm.hw_cfg[hwi].tdm_slot_width;
slot_end_padding = ssp->ssp_prm.hw_cfg[hwi].tdm_slot_width -
ssp->ssp_prm.sample_valid_bits;
if (slot_end_padding >
SSP_INTEL_SLOT_PADDING_MAX) {
fprintf(stderr, "ssp_set_config(): slot_end_padding > %d\n",
SSP_INTEL_SLOT_PADDING_MAX);
return -EINVAL;
}
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_DMYSTOP(slot_end_padding);
slot_end_padding >>= SSPSP_DMYSTOP_BITS;
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_EDMYSTOP(slot_end_padding);
}
ssp->ssp_blob[di][hwi].sspsp2 |= (frame_end_padding & SSPSP2_FEP_MASK);
break;
default:
fprintf(stderr, "ssp_set_config(): invalid format 0x%04x\n",
ssp->ssp_prm.hw_cfg[hwi].format);
return -EINVAL;
}
if (start_delay)
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_FSRT;
ssp->ssp_blob[di][hwi].sspsp |= SSPSP_SFRMWDTH(frame_len);
data_size = ssp->ssp_prm.sample_valid_bits;
if (data_size > 16)
ssp->ssp_blob[di][hwi].ssc0 |= (SSCR0_EDSS | SSCR0_DSIZE(data_size - 16));
else
ssp->ssp_blob[di][hwi].ssc0 |= SSCR0_DSIZE(data_size);
end_padding = 0;
total_sample_size = ssp->ssp_prm.hw_cfg[hwi].tdm_slot_width *
ssp->ssp_prm.hw_cfg[hwi].tdm_slots;
while (ssp->ssp_prm.io_clk % ((total_sample_size + end_padding) *
ssp->ssp_prm.hw_cfg[hwi].fsync_rate)) {
if (++end_padding >= 256)
break;
}
if (end_padding >= 256)
return -EINVAL;
/* calc scr divisor */
clk_div = ssp->ssp_prm.io_clk / ((total_sample_size + end_padding) *
ssp->ssp_prm.hw_cfg[hwi].fsync_rate);
if (clk_div >= 4095)
return -EINVAL;
ssp->ssp_blob[di][hwi].ssc0 |= SSCR0_SCR(clk_div - 1);
/* setting TFT and RFT */
switch (ssp->ssp_prm.sample_valid_bits) {
case 16:
/* use 2 bytes for each slot */
sample_width = 2;
break;
case 24:
case 32:
/* use 4 bytes for each slot */
sample_width = 4;
break;
default:
fprintf(stderr, "ssp_set_config(): sample_valid_bits %u\n",
ssp->ssp_prm.sample_valid_bits);
return -EINVAL;
}
tft = MIN(SSP_FIFO_DEPTH - SSP_FIFO_WATERMARK,
sample_width * active_tx_slots);
rft = MIN(SSP_FIFO_DEPTH - SSP_FIFO_WATERMARK,
sample_width * active_rx_slots);
ssp->ssp_blob[di][hwi].ssc3 |= SSCR3_TX(tft) | SSCR3_RX(rft);
/* calc mn divisor */
if (ssp->ssp_prm.io_clk % ssp->ssp_prm.hw_cfg[hwi].mclk_rate) {
fprintf(stderr, "ssp_set_config(): io_clk not divisible with mclk\n");
return -EINVAL;
}
clk_div = ssp->ssp_prm.io_clk / ssp->ssp_prm.hw_cfg[hwi].mclk_rate;
if (clk_div > 1)
clk_div -= 2;
else
clk_div = 0xFFF; /* bypass clk divider */
ssp->ssp_blob[di][hwi].mdivr = clk_div;
/* clock will always go through the divider */
ssp->ssp_blob[di][hwi].ssc0 |= SSCR0_ECS;
/* enable divider for this clock id */
ssp->ssp_blob[di][hwi].mdivc |= BIT(ssp->ssp_prm.mclk_id);
/* set mclk source always for audio cardinal clock */
ssp->ssp_blob[di][hwi].mdivc |= MCDSS(SSP_CLOCK_AUDIO_CARDINAL);
/* set bclk source for audio cardinal clock */
ssp->ssp_blob[di][hwi].mdivc |= MNDSS(SSP_CLOCK_AUDIO_CARDINAL);
return 0;
}
int ssp_calculate(struct intel_nhlt_params *nhlt)
{
struct intel_ssp_params *ssp = (struct intel_ssp_params *)nhlt->ssp_params;
int i;
if (!ssp)
return -EINVAL;
ssp_print_internal(ssp);
/* calculate blob for every hw config */
for (i = 0; i < ssp->ssp_hw_config_count[ssp->ssp_count]; i++)
ssp_calculate_intern(nhlt, i);
ssp->ssp_count++;
ssp_print_calculated(ssp);
return 0;
}
int ssp_get_dir(struct intel_nhlt_params *nhlt, int dai_index, uint8_t *dir)
{
struct intel_ssp_params *ssp = (struct intel_ssp_params *)nhlt->ssp_params;
if (!ssp)
return -EINVAL;
*dir = ssp->ssp_prm.direction;
return 0;
}
int ssp_get_params(struct intel_nhlt_params *nhlt, int dai_index, uint32_t *virtualbus_id,
uint32_t *formats_count)
{
struct intel_ssp_params *ssp = (struct intel_ssp_params *)nhlt->ssp_params;
if (!ssp)
return -EINVAL;
*virtualbus_id = ssp->ssp_dai_index[dai_index];
*formats_count = ssp->ssp_hw_config_count[dai_index];
return 0;
}
int ssp_get_hw_params(struct intel_nhlt_params *nhlt, int hw_index, uint32_t *sample_rate,
uint16_t *channel_count, uint32_t *bits_per_sample)
{
struct intel_ssp_params *ssp = (struct intel_ssp_params *)nhlt->ssp_params;
if (!ssp)
return -EINVAL;
*channel_count = ssp->ssp_prm.hw_cfg[hw_index].tdm_slots;
*sample_rate = ssp->ssp_prm.hw_cfg[hw_index].fsync_rate;
*bits_per_sample = ssp->ssp_prm.hw_cfg[hw_index].tdm_slot_width;
return 0;
}
/*
* Build ssp vendor blob from calculated parameters.
*
* Supposed to be called after all ssp DAIs are parsed from topology and the final nhlt blob is
* generated.
*/
int ssp_get_vendor_blob_size(struct intel_nhlt_params *nhlt, size_t *size)
{
*size = sizeof(struct ssp_intel_config_data);
return 0;
}
int ssp_get_vendor_blob_count(struct intel_nhlt_params *nhlt)
{
struct intel_ssp_params *ssp = (struct intel_ssp_params *)nhlt->ssp_params;
if (!ssp || !ssp->ssp_count)
return -EINVAL;
return ssp->ssp_count;
}
/* Get the size of dynamic vendor blob to reserve proper amount of memory */
int ssp_get_vendor_blob(struct intel_nhlt_params *nhlt, uint8_t *vendor_blob,
int dai_index, int hw_config_index)
{
struct intel_ssp_params *ssp = (struct intel_ssp_params *)nhlt->ssp_params;
if (!ssp)
return -EINVAL;
/* top level struct */
memcpy(vendor_blob, &ssp->ssp_blob[dai_index][hw_config_index],
sizeof(struct ssp_intel_config_data));
return 0;
}
int ssp_set_params(struct intel_nhlt_params *nhlt, const char *dir, int dai_index, int io_clk,
int bclk_delay, int sample_bits, int mclk_id, int clks_control,
int frame_pulse_width, const char *tdm_padding_per_slot, const char *quirks)
{
struct intel_ssp_params *ssp = (struct intel_ssp_params *)nhlt->ssp_params;
if (!ssp)
return -EINVAL;
if (dir) {
if (!strcmp(dir, "playback"))
ssp->ssp_prm.direction = NHLT_ENDPOINT_DIRECTION_RENDER;
else if (!strcmp(dir, "capture"))
ssp->ssp_prm.direction = NHLT_ENDPOINT_DIRECTION_CAPTURE;
else if (!strcmp(dir, "duplex"))
ssp->ssp_prm.direction = NHLT_ENDPOINT_DIRECTION_FEEDBACK_FOR_RENDER + 1;
else
return -EINVAL;
}
ssp->ssp_dai_index[ssp->ssp_count] = dai_index;
ssp->ssp_prm.io_clk = io_clk;
ssp->ssp_prm.bclk_delay = bclk_delay;
ssp->ssp_prm.sample_valid_bits = sample_bits;
ssp->ssp_prm.mclk_id = mclk_id;
ssp->ssp_prm.clks_control = clks_control;
ssp->ssp_prm.frame_pulse_width = frame_pulse_width;
if (tdm_padding_per_slot && !strcmp(tdm_padding_per_slot, "true"))
ssp->ssp_prm.tdm_per_slot_padding_flag = 1;
else
ssp->ssp_prm.tdm_per_slot_padding_flag = 0;
if (quirks && !strcmp(quirks, "lbm_mode"))
ssp->ssp_prm.quirks = 64; /* 1 << 6 */
else
ssp->ssp_prm.quirks = 0;
/* reset hw config count for this ssp instance */
ssp->ssp_hw_config_count[ssp->ssp_count] = 0;
return 0;
}
int ssp_hw_set_params(struct intel_nhlt_params *nhlt, const char *format, const char *mclk,
const char *bclk, const char *bclk_invert, const char *fsync,
const char *fsync_invert, int mclk_freq, int bclk_freq, int fsync_freq,
int tdm_slots, int tdm_slot_width, int tx_slots, int rx_slots)
{
struct intel_ssp_params *ssp = (struct intel_ssp_params *)nhlt->ssp_params;
uint32_t hwi;
if (!ssp)
return -EINVAL;
/* check that the strings are defined ?*/
/* compose format out of clock related string variables */
hwi = ssp->ssp_hw_config_count[ssp->ssp_count];
if (!strcmp(format, "I2S")) {
ssp->ssp_prm.hw_cfg[hwi].format = SSP_FMT_I2S;
} else if (!strcmp(format, "RIGHT_J")) {
ssp->ssp_prm.hw_cfg[hwi].format = SSP_FMT_RIGHT_J;
} else if (!strcmp(format, "LEFT_J")) {
ssp->ssp_prm.hw_cfg[hwi].format = SSP_FMT_LEFT_J;
} else if (!strcmp(format, "DSP_A")) {
ssp->ssp_prm.hw_cfg[hwi].format = SSP_FMT_DSP_A;
} else if (!strcmp(format, "DSP_B")) {
ssp->ssp_prm.hw_cfg[hwi].format = SSP_FMT_DSP_B;
} else {
fprintf(stderr, "no valid format specified for ssp: %s\n", format);
return -EINVAL;
}
/* clock directions wrt codec */
if (bclk && !strcmp(bclk, "coded_provider")) {
/* codec is bclk provider */
if (fsync && !strcmp(fsync, "coded_provider"))
ssp->ssp_prm.hw_cfg[hwi].format |= SSP_FMT_CBP_CFP;
else
ssp->ssp_prm.hw_cfg[hwi].format |= SSP_FMT_CBP_CFC;
} else {
/* codec is bclk consumer */
if (fsync && !strcmp(fsync, "coded_provider"))
ssp->ssp_prm.hw_cfg[hwi].format |= SSP_FMT_CBC_CFP;
else
ssp->ssp_prm.hw_cfg[hwi].format |= SSP_FMT_CBC_CFC;
}
/* inverted clocks ? */
if (bclk_invert && !strcmp(bclk_invert, "true")) {
if (fsync_invert && !strcmp(fsync_invert, "true"))
ssp->ssp_prm.hw_cfg[hwi].format |= SSP_FMT_IB_IF;
else
ssp->ssp_prm.hw_cfg[hwi].format |= SSP_FMT_IB_NF;
} else {
if (fsync_invert && !strcmp(fsync_invert, "true"))
ssp->ssp_prm.hw_cfg[hwi].format |= SSP_FMT_NB_IF;
else
ssp->ssp_prm.hw_cfg[hwi].format |= SSP_FMT_NB_NF;
}
ssp->ssp_prm.hw_cfg[hwi].mclk_rate = mclk_freq;
ssp->ssp_prm.hw_cfg[hwi].bclk_rate = bclk_freq;
ssp->ssp_prm.hw_cfg[hwi].fsync_rate = fsync_freq;
ssp->ssp_prm.hw_cfg[hwi].tdm_slots = tdm_slots;
ssp->ssp_prm.hw_cfg[hwi].tdm_slot_width = tdm_slot_width;
ssp->ssp_prm.hw_cfg[hwi].tx_slots = tx_slots;
ssp->ssp_prm.hw_cfg[hwi].rx_slots = rx_slots;
ssp->ssp_hw_config_count[ssp->ssp_count]++;
return 0;
}
/* init ssp parameters, should be called before parsing dais */
int ssp_init_params(struct intel_nhlt_params *nhlt)
{
struct intel_ssp_params *ssp;
int i;
ssp = calloc(1, sizeof(struct intel_ssp_params));
if (!ssp)
return -EINVAL;
nhlt->ssp_params = ssp;
ssp->ssp_count = 0;
for (i = 0; i < SSP_MAX_DAIS; i++)
ssp->ssp_hw_config_count[i] = 0;
return 0;
}