android_kernel_motorola_sm6225/arch/ppc64/kernel/prom_init.c

2052 lines
55 KiB
C
Raw Normal View History

/*
*
*
* Procedures for interfacing to Open Firmware.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG_PROM
#include <stdarg.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/abs_addr.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/pci.h>
#include <asm/iommu.h>
#include <asm/bootinfo.h>
#include <asm/ppcdebug.h>
#include <asm/btext.h>
#include <asm/sections.h>
#include <asm/machdep.h>
#ifdef CONFIG_LOGO_LINUX_CLUT224
#include <linux/linux_logo.h>
extern const struct linux_logo logo_linux_clut224;
#endif
/*
* Properties whose value is longer than this get excluded from our
* copy of the device tree. This value does need to be big enough to
* ensure that we don't lose things like the interrupt-map property
* on a PCI-PCI bridge.
*/
#define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024)
/*
* Eventually bump that one up
*/
#define DEVTREE_CHUNK_SIZE 0x100000
/*
* This is the size of the local memory reserve map that gets copied
* into the boot params passed to the kernel. That size is totally
* flexible as the kernel just reads the list until it encounters an
* entry with size 0, so it can be changed without breaking binary
* compatibility
*/
#define MEM_RESERVE_MAP_SIZE 8
/*
* prom_init() is called very early on, before the kernel text
* and data have been mapped to KERNELBASE. At this point the code
* is running at whatever address it has been loaded at, so
* references to extern and static variables must be relocated
* explicitly. The procedure reloc_offset() returns the address
* we're currently running at minus the address we were linked at.
* (Note that strings count as static variables.)
*
* Because OF may have mapped I/O devices into the area starting at
* KERNELBASE, particularly on CHRP machines, we can't safely call
* OF once the kernel has been mapped to KERNELBASE. Therefore all
* OF calls should be done within prom_init(), and prom_init()
* and all routines called within it must be careful to relocate
* references as necessary.
*
* Note that the bss is cleared *after* prom_init runs, so we have
* to make sure that any static or extern variables it accesses
* are put in the data segment.
*/
#define PROM_BUG() do { \
prom_printf("kernel BUG at %s line 0x%x!\n", \
RELOC(__FILE__), __LINE__); \
__asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
} while (0)
#ifdef DEBUG_PROM
#define prom_debug(x...) prom_printf(x)
#else
#define prom_debug(x...)
#endif
typedef u32 prom_arg_t;
struct prom_args {
u32 service;
u32 nargs;
u32 nret;
prom_arg_t args[10];
prom_arg_t *rets; /* Pointer to return values in args[16]. */
};
struct prom_t {
unsigned long entry;
ihandle root;
ihandle chosen;
int cpu;
ihandle stdout;
ihandle disp_node;
struct prom_args args;
unsigned long version;
unsigned long root_size_cells;
unsigned long root_addr_cells;
};
struct pci_reg_property {
struct pci_address addr;
u32 size_hi;
u32 size_lo;
};
struct mem_map_entry {
u64 base;
u64 size;
};
typedef u32 cell_t;
extern void __start(unsigned long r3, unsigned long r4, unsigned long r5);
extern void enter_prom(struct prom_args *args, unsigned long entry);
extern void copy_and_flush(unsigned long dest, unsigned long src,
unsigned long size, unsigned long offset);
extern unsigned long klimit;
/* prom structure */
static struct prom_t __initdata prom;
#define PROM_SCRATCH_SIZE 256
static char __initdata of_stdout_device[256];
static char __initdata prom_scratch[PROM_SCRATCH_SIZE];
static unsigned long __initdata dt_header_start;
static unsigned long __initdata dt_struct_start, dt_struct_end;
static unsigned long __initdata dt_string_start, dt_string_end;
static unsigned long __initdata prom_initrd_start, prom_initrd_end;
static int __initdata iommu_force_on;
static int __initdata ppc64_iommu_off;
static int __initdata of_platform;
static char __initdata prom_cmd_line[COMMAND_LINE_SIZE];
static unsigned long __initdata prom_memory_limit;
static unsigned long __initdata prom_tce_alloc_start;
static unsigned long __initdata prom_tce_alloc_end;
static unsigned long __initdata alloc_top;
static unsigned long __initdata alloc_top_high;
static unsigned long __initdata alloc_bottom;
static unsigned long __initdata rmo_top;
static unsigned long __initdata ram_top;
static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE];
static int __initdata mem_reserve_cnt;
static cell_t __initdata regbuf[1024];
#define MAX_CPU_THREADS 2
/* TO GO */
#ifdef CONFIG_HMT
struct {
unsigned int pir;
unsigned int threadid;
} hmt_thread_data[NR_CPUS];
#endif /* CONFIG_HMT */
/*
* This are used in calls to call_prom. The 4th and following
* arguments to call_prom should be 32-bit values. 64 bit values
* are truncated to 32 bits (and fortunately don't get interpreted
* as two arguments).
*/
#define ADDR(x) (u32) ((unsigned long)(x) - offset)
/*
* Error results ... some OF calls will return "-1" on error, some
* will return 0, some will return either. To simplify, here are
* macros to use with any ihandle or phandle return value to check if
* it is valid
*/
#define PROM_ERROR (-1u)
#define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR)
#define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR)
/* This is the one and *ONLY* place where we actually call open
* firmware from, since we need to make sure we're running in 32b
* mode when we do. We switch back to 64b mode upon return.
*/
static int __init call_prom(const char *service, int nargs, int nret, ...)
{
int i;
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
va_list list;
_prom->args.service = ADDR(service);
_prom->args.nargs = nargs;
_prom->args.nret = nret;
_prom->args.rets = (prom_arg_t *)&(_prom->args.args[nargs]);
va_start(list, nret);
for (i=0; i < nargs; i++)
_prom->args.args[i] = va_arg(list, prom_arg_t);
va_end(list);
for (i=0; i < nret ;i++)
_prom->args.rets[i] = 0;
enter_prom(&_prom->args, _prom->entry);
return (nret > 0) ? _prom->args.rets[0] : 0;
}
static unsigned int __init prom_claim(unsigned long virt, unsigned long size,
unsigned long align)
{
return (unsigned int)call_prom("claim", 3, 1,
(prom_arg_t)virt, (prom_arg_t)size,
(prom_arg_t)align);
}
static void __init prom_print(const char *msg)
{
const char *p, *q;
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
if (_prom->stdout == 0)
return;
for (p = msg; *p != 0; p = q) {
for (q = p; *q != 0 && *q != '\n'; ++q)
;
if (q > p)
call_prom("write", 3, 1, _prom->stdout, p, q - p);
if (*q == 0)
break;
++q;
call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2);
}
}
static void __init prom_print_hex(unsigned long val)
{
unsigned long offset = reloc_offset();
int i, nibbles = sizeof(val)*2;
char buf[sizeof(val)*2+1];
struct prom_t *_prom = PTRRELOC(&prom);
for (i = nibbles-1; i >= 0; i--) {
buf[i] = (val & 0xf) + '0';
if (buf[i] > '9')
buf[i] += ('a'-'0'-10);
val >>= 4;
}
buf[nibbles] = '\0';
call_prom("write", 3, 1, _prom->stdout, buf, nibbles);
}
static void __init prom_printf(const char *format, ...)
{
unsigned long offset = reloc_offset();
const char *p, *q, *s;
va_list args;
unsigned long v;
struct prom_t *_prom = PTRRELOC(&prom);
va_start(args, format);
for (p = PTRRELOC(format); *p != 0; p = q) {
for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q)
;
if (q > p)
call_prom("write", 3, 1, _prom->stdout, p, q - p);
if (*q == 0)
break;
if (*q == '\n') {
++q;
call_prom("write", 3, 1, _prom->stdout,
ADDR("\r\n"), 2);
continue;
}
++q;
if (*q == 0)
break;
switch (*q) {
case 's':
++q;
s = va_arg(args, const char *);
prom_print(s);
break;
case 'x':
++q;
v = va_arg(args, unsigned long);
prom_print_hex(v);
break;
}
}
}
static void __init __attribute__((noreturn)) prom_panic(const char *reason)
{
unsigned long offset = reloc_offset();
prom_print(PTRRELOC(reason));
/* ToDo: should put up an SRC here */
call_prom("exit", 0, 0);
for (;;) /* should never get here */
;
}
static int __init prom_next_node(phandle *nodep)
{
phandle node;
if ((node = *nodep) != 0
&& (*nodep = call_prom("child", 1, 1, node)) != 0)
return 1;
if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
return 1;
for (;;) {
if ((node = call_prom("parent", 1, 1, node)) == 0)
return 0;
if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
return 1;
}
}
static int __init prom_getprop(phandle node, const char *pname,
void *value, size_t valuelen)
{
unsigned long offset = reloc_offset();
return call_prom("getprop", 4, 1, node, ADDR(pname),
(u32)(unsigned long) value, (u32) valuelen);
}
static int __init prom_getproplen(phandle node, const char *pname)
{
unsigned long offset = reloc_offset();
return call_prom("getproplen", 2, 1, node, ADDR(pname));
}
static int __init prom_setprop(phandle node, const char *pname,
void *value, size_t valuelen)
{
unsigned long offset = reloc_offset();
return call_prom("setprop", 4, 1, node, ADDR(pname),
(u32)(unsigned long) value, (u32) valuelen);
}
/* We can't use the standard versions because of RELOC headaches. */
#define isxdigit(c) (('0' <= (c) && (c) <= '9') \
|| ('a' <= (c) && (c) <= 'f') \
|| ('A' <= (c) && (c) <= 'F'))
#define isdigit(c) ('0' <= (c) && (c) <= '9')
#define islower(c) ('a' <= (c) && (c) <= 'z')
#define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
unsigned long prom_strtoul(const char *cp, const char **endp)
{
unsigned long result = 0, base = 10, value;
if (*cp == '0') {
base = 8;
cp++;
if (toupper(*cp) == 'X') {
cp++;
base = 16;
}
}
while (isxdigit(*cp) &&
(value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) {
result = result * base + value;
cp++;
}
if (endp)
*endp = cp;
return result;
}
unsigned long prom_memparse(const char *ptr, const char **retptr)
{
unsigned long ret = prom_strtoul(ptr, retptr);
int shift = 0;
/*
* We can't use a switch here because GCC *may* generate a
* jump table which won't work, because we're not running at
* the address we're linked at.
*/
if ('G' == **retptr || 'g' == **retptr)
shift = 30;
if ('M' == **retptr || 'm' == **retptr)
shift = 20;
if ('K' == **retptr || 'k' == **retptr)
shift = 10;
if (shift) {
ret <<= shift;
(*retptr)++;
}
return ret;
}
/*
* Early parsing of the command line passed to the kernel, used for
* "mem=x" and the options that affect the iommu
*/
static void __init early_cmdline_parse(void)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
char *opt, *p;
int l = 0;
RELOC(prom_cmd_line[0]) = 0;
p = RELOC(prom_cmd_line);
if ((long)_prom->chosen > 0)
l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1);
#ifdef CONFIG_CMDLINE
if (l == 0) /* dbl check */
strlcpy(RELOC(prom_cmd_line),
RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line));
#endif /* CONFIG_CMDLINE */
prom_printf("command line: %s\n", RELOC(prom_cmd_line));
opt = strstr(RELOC(prom_cmd_line), RELOC("iommu="));
if (opt) {
prom_printf("iommu opt is: %s\n", opt);
opt += 6;
while (*opt && *opt == ' ')
opt++;
if (!strncmp(opt, RELOC("off"), 3))
RELOC(ppc64_iommu_off) = 1;
else if (!strncmp(opt, RELOC("force"), 5))
RELOC(iommu_force_on) = 1;
}
opt = strstr(RELOC(prom_cmd_line), RELOC("mem="));
if (opt) {
opt += 4;
RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt);
/* Align to 16 MB == size of large page */
RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000);
}
}
/*
* To tell the firmware what our capabilities are, we have to pass
* it a fake 32-bit ELF header containing a couple of PT_NOTE sections
* that contain structures that contain the actual values.
*/
static struct fake_elf {
Elf32_Ehdr elfhdr;
Elf32_Phdr phdr[2];
struct chrpnote {
u32 namesz;
u32 descsz;
u32 type;
char name[8]; /* "PowerPC" */
struct chrpdesc {
u32 real_mode;
u32 real_base;
u32 real_size;
u32 virt_base;
u32 virt_size;
u32 load_base;
} chrpdesc;
} chrpnote;
struct rpanote {
u32 namesz;
u32 descsz;
u32 type;
char name[24]; /* "IBM,RPA-Client-Config" */
struct rpadesc {
u32 lpar_affinity;
u32 min_rmo_size;
u32 min_rmo_percent;
u32 max_pft_size;
u32 splpar;
u32 min_load;
u32 new_mem_def;
u32 ignore_me;
} rpadesc;
} rpanote;
} fake_elf = {
.elfhdr = {
.e_ident = { 0x7f, 'E', 'L', 'F',
ELFCLASS32, ELFDATA2MSB, EV_CURRENT },
.e_type = ET_EXEC, /* yeah right */
.e_machine = EM_PPC,
.e_version = EV_CURRENT,
.e_phoff = offsetof(struct fake_elf, phdr),
.e_phentsize = sizeof(Elf32_Phdr),
.e_phnum = 2
},
.phdr = {
[0] = {
.p_type = PT_NOTE,
.p_offset = offsetof(struct fake_elf, chrpnote),
.p_filesz = sizeof(struct chrpnote)
}, [1] = {
.p_type = PT_NOTE,
.p_offset = offsetof(struct fake_elf, rpanote),
.p_filesz = sizeof(struct rpanote)
}
},
.chrpnote = {
.namesz = sizeof("PowerPC"),
.descsz = sizeof(struct chrpdesc),
.type = 0x1275,
.name = "PowerPC",
.chrpdesc = {
.real_mode = ~0U, /* ~0 means "don't care" */
.real_base = ~0U,
.real_size = ~0U,
.virt_base = ~0U,
.virt_size = ~0U,
.load_base = ~0U
},
},
.rpanote = {
.namesz = sizeof("IBM,RPA-Client-Config"),
.descsz = sizeof(struct rpadesc),
.type = 0x12759999,
.name = "IBM,RPA-Client-Config",
.rpadesc = {
.lpar_affinity = 0,
.min_rmo_size = 64, /* in megabytes */
.min_rmo_percent = 0,
.max_pft_size = 48, /* 2^48 bytes max PFT size */
.splpar = 1,
.min_load = ~0U,
.new_mem_def = 0
}
}
};
static void __init prom_send_capabilities(void)
{
unsigned long offset = reloc_offset();
ihandle elfloader;
elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader"));
if (elfloader == 0) {
prom_printf("couldn't open /packages/elf-loader\n");
return;
}
call_prom("call-method", 3, 1, ADDR("process-elf-header"),
elfloader, ADDR(&fake_elf));
call_prom("close", 1, 0, elfloader);
}
/*
* Memory allocation strategy... our layout is normally:
*
* at 14Mb or more we vmlinux, then a gap and initrd. In some rare cases, initrd
* might end up beeing before the kernel though. We assume this won't override
* the final kernel at 0, we have no provision to handle that in this version,
* but it should hopefully never happen.
*
* alloc_top is set to the top of RMO, eventually shrink down if the TCEs overlap
* alloc_bottom is set to the top of kernel/initrd
*
* from there, allocations are done that way : rtas is allocated topmost, and
* the device-tree is allocated from the bottom. We try to grow the device-tree
* allocation as we progress. If we can't, then we fail, we don't currently have
* a facility to restart elsewhere, but that shouldn't be necessary neither
*
* Note that calls to reserve_mem have to be done explicitely, memory allocated
* with either alloc_up or alloc_down isn't automatically reserved.
*/
/*
* Allocates memory in the RMO upward from the kernel/initrd
*
* When align is 0, this is a special case, it means to allocate in place
* at the current location of alloc_bottom or fail (that is basically
* extending the previous allocation). Used for the device-tree flattening
*/
static unsigned long __init alloc_up(unsigned long size, unsigned long align)
{
unsigned long offset = reloc_offset();
unsigned long base = _ALIGN_UP(RELOC(alloc_bottom), align);
unsigned long addr = 0;
prom_debug("alloc_up(%x, %x)\n", size, align);
if (RELOC(ram_top) == 0)
prom_panic("alloc_up() called with mem not initialized\n");
if (align)
base = _ALIGN_UP(RELOC(alloc_bottom), align);
else
base = RELOC(alloc_bottom);
for(; (base + size) <= RELOC(alloc_top);
base = _ALIGN_UP(base + 0x100000, align)) {
prom_debug(" trying: 0x%x\n\r", base);
addr = (unsigned long)prom_claim(base, size, 0);
if (addr != PROM_ERROR)
break;
addr = 0;
if (align == 0)
break;
}
if (addr == 0)
return 0;
RELOC(alloc_bottom) = addr;
prom_debug(" -> %x\n", addr);
prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
prom_debug(" ram_top : %x\n", RELOC(ram_top));
return addr;
}
/*
* Allocates memory downard, either from top of RMO, or if highmem
* is set, from the top of RAM. Note that this one doesn't handle
* failures. In does claim memory if highmem is not set.
*/
static unsigned long __init alloc_down(unsigned long size, unsigned long align,
int highmem)
{
unsigned long offset = reloc_offset();
unsigned long base, addr = 0;
prom_debug("alloc_down(%x, %x, %s)\n", size, align,
highmem ? RELOC("(high)") : RELOC("(low)"));
if (RELOC(ram_top) == 0)
prom_panic("alloc_down() called with mem not initialized\n");
if (highmem) {
/* Carve out storage for the TCE table. */
addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align);
if (addr <= RELOC(alloc_bottom))
return 0;
else {
/* Will we bump into the RMO ? If yes, check out that we
* didn't overlap existing allocations there, if we did,
* we are dead, we must be the first in town !
*/
if (addr < RELOC(rmo_top)) {
/* Good, we are first */
if (RELOC(alloc_top) == RELOC(rmo_top))
RELOC(alloc_top) = RELOC(rmo_top) = addr;
else
return 0;
}
RELOC(alloc_top_high) = addr;
}
goto bail;
}
base = _ALIGN_DOWN(RELOC(alloc_top) - size, align);
for(; base > RELOC(alloc_bottom); base = _ALIGN_DOWN(base - 0x100000, align)) {
prom_debug(" trying: 0x%x\n\r", base);
addr = (unsigned long)prom_claim(base, size, 0);
if (addr != PROM_ERROR)
break;
addr = 0;
}
if (addr == 0)
return 0;
RELOC(alloc_top) = addr;
bail:
prom_debug(" -> %x\n", addr);
prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
prom_debug(" ram_top : %x\n", RELOC(ram_top));
return addr;
}
/*
* Parse a "reg" cell
*/
static unsigned long __init prom_next_cell(int s, cell_t **cellp)
{
cell_t *p = *cellp;
unsigned long r = 0;
/* Ignore more than 2 cells */
while (s > 2) {
p++;
s--;
}
while (s) {
r <<= 32;
r |= *(p++);
s--;
}
*cellp = p;
return r;
}
/*
* Very dumb function for adding to the memory reserve list, but
* we don't need anything smarter at this point
*
* XXX Eventually check for collisions. They should NEVER happen
* if problems seem to show up, it would be a good start to track
* them down.
*/
static void reserve_mem(unsigned long base, unsigned long size)
{
unsigned long offset = reloc_offset();
unsigned long top = base + size;
unsigned long cnt = RELOC(mem_reserve_cnt);
if (size == 0)
return;
/* We need to always keep one empty entry so that we
* have our terminator with "size" set to 0 since we are
* dumb and just copy this entire array to the boot params
*/
base = _ALIGN_DOWN(base, PAGE_SIZE);
top = _ALIGN_UP(top, PAGE_SIZE);
size = top - base;
if (cnt >= (MEM_RESERVE_MAP_SIZE - 1))
prom_panic("Memory reserve map exhausted !\n");
RELOC(mem_reserve_map)[cnt].base = base;
RELOC(mem_reserve_map)[cnt].size = size;
RELOC(mem_reserve_cnt) = cnt + 1;
}
/*
* Initialize memory allocation mecanism, parse "memory" nodes and
* obtain that way the top of memory and RMO to setup out local allocator
*/
static void __init prom_init_mem(void)
{
phandle node;
char *path, type[64];
unsigned int plen;
cell_t *p, *endp;
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
/*
* We iterate the memory nodes to find
* 1) top of RMO (first node)
* 2) top of memory
*/
prom_debug("root_addr_cells: %x\n", (long)_prom->root_addr_cells);
prom_debug("root_size_cells: %x\n", (long)_prom->root_size_cells);
prom_debug("scanning memory:\n");
path = RELOC(prom_scratch);
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, RELOC("memory")))
continue;
plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf));
if (plen > sizeof(regbuf)) {
prom_printf("memory node too large for buffer !\n");
plen = sizeof(regbuf);
}
p = RELOC(regbuf);
endp = p + (plen / sizeof(cell_t));
#ifdef DEBUG_PROM
memset(path, 0, PROM_SCRATCH_SIZE);
call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
prom_debug(" node %s :\n", path);
#endif /* DEBUG_PROM */
while ((endp - p) >= (_prom->root_addr_cells + _prom->root_size_cells)) {
unsigned long base, size;
base = prom_next_cell(_prom->root_addr_cells, &p);
size = prom_next_cell(_prom->root_size_cells, &p);
if (size == 0)
continue;
prom_debug(" %x %x\n", base, size);
if (base == 0)
RELOC(rmo_top) = size;
if ((base + size) > RELOC(ram_top))
RELOC(ram_top) = base + size;
}
}
RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(klimit) - offset + 0x4000);
/* Check if we have an initrd after the kernel, if we do move our bottom
* point to after it
*/
if (RELOC(prom_initrd_start)) {
if (RELOC(prom_initrd_end) > RELOC(alloc_bottom))
RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end));
}
/*
* If prom_memory_limit is set we reduce the upper limits *except* for
* alloc_top_high. This must be the real top of RAM so we can put
* TCE's up there.
*/
RELOC(alloc_top_high) = RELOC(ram_top);
if (RELOC(prom_memory_limit)) {
if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) {
prom_printf("Ignoring mem=%x <= alloc_bottom.\n",
RELOC(prom_memory_limit));
RELOC(prom_memory_limit) = 0;
} else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) {
prom_printf("Ignoring mem=%x >= ram_top.\n",
RELOC(prom_memory_limit));
RELOC(prom_memory_limit) = 0;
} else {
RELOC(ram_top) = RELOC(prom_memory_limit);
RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit));
}
}
/*
* Setup our top alloc point, that is top of RMO or top of
* segment 0 when running non-LPAR.
*/
if ( RELOC(of_platform) == PLATFORM_PSERIES_LPAR )
RELOC(alloc_top) = RELOC(rmo_top);
else
/* Some RS64 machines have buggy firmware where claims up at 1GB
* fails. Cap at 768MB as a workaround. Still plenty of room.
*/
RELOC(alloc_top) = RELOC(rmo_top) = min(0x30000000ul, RELOC(ram_top));
prom_printf("memory layout at init:\n");
prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit));
prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom));
prom_printf(" alloc_top : %x\n", RELOC(alloc_top));
prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
prom_printf(" rmo_top : %x\n", RELOC(rmo_top));
prom_printf(" ram_top : %x\n", RELOC(ram_top));
}
/*
* Allocate room for and instanciate RTAS
*/
static void __init prom_instantiate_rtas(void)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
phandle rtas_node;
ihandle rtas_inst;
u32 base, entry = 0;
u32 size = 0;
prom_debug("prom_instantiate_rtas: start...\n");
rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas"));
prom_debug("rtas_node: %x\n", rtas_node);
if (!PHANDLE_VALID(rtas_node))
return;
prom_getprop(rtas_node, "rtas-size", &size, sizeof(size));
if (size == 0)
return;
base = alloc_down(size, PAGE_SIZE, 0);
if (base == 0) {
prom_printf("RTAS allocation failed !\n");
return;
}
rtas_inst = call_prom("open", 1, 1, ADDR("/rtas"));
if (!IHANDLE_VALID(rtas_inst)) {
prom_printf("opening rtas package failed");
return;
}
prom_printf("instantiating rtas at 0x%x ...", base);
if (call_prom("call-method", 3, 2,
ADDR("instantiate-rtas"),
rtas_inst, base) != PROM_ERROR) {
entry = (long)_prom->args.rets[1];
}
if (entry == 0) {
prom_printf(" failed\n");
return;
}
prom_printf(" done\n");
reserve_mem(base, size);
prom_setprop(rtas_node, "linux,rtas-base", &base, sizeof(base));
prom_setprop(rtas_node, "linux,rtas-entry", &entry, sizeof(entry));
prom_debug("rtas base = 0x%x\n", base);
prom_debug("rtas entry = 0x%x\n", entry);
prom_debug("rtas size = 0x%x\n", (long)size);
prom_debug("prom_instantiate_rtas: end...\n");
}
/*
* Allocate room for and initialize TCE tables
*/
static void __init prom_initialize_tce_table(void)
{
phandle node;
ihandle phb_node;
unsigned long offset = reloc_offset();
char compatible[64], type[64], model[64];
char *path = RELOC(prom_scratch);
u64 base, align;
u32 minalign, minsize;
u64 tce_entry, *tce_entryp;
u64 local_alloc_top, local_alloc_bottom;
u64 i;
if (RELOC(ppc64_iommu_off))
return;
prom_debug("starting prom_initialize_tce_table\n");
/* Cache current top of allocs so we reserve a single block */
local_alloc_top = RELOC(alloc_top_high);
local_alloc_bottom = local_alloc_top;
/* Search all nodes looking for PHBs. */
for (node = 0; prom_next_node(&node); ) {
compatible[0] = 0;
type[0] = 0;
model[0] = 0;
prom_getprop(node, "compatible",
compatible, sizeof(compatible));
prom_getprop(node, "device_type", type, sizeof(type));
prom_getprop(node, "model", model, sizeof(model));
if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL))
continue;
/* Keep the old logic in tack to avoid regression. */
if (compatible[0] != 0) {
if ((strstr(compatible, RELOC("python")) == NULL) &&
(strstr(compatible, RELOC("Speedwagon")) == NULL) &&
(strstr(compatible, RELOC("Winnipeg")) == NULL))
continue;
} else if (model[0] != 0) {
if ((strstr(model, RELOC("ython")) == NULL) &&
(strstr(model, RELOC("peedwagon")) == NULL) &&
(strstr(model, RELOC("innipeg")) == NULL))
continue;
}
if (prom_getprop(node, "tce-table-minalign", &minalign,
sizeof(minalign)) == PROM_ERROR)
minalign = 0;
if (prom_getprop(node, "tce-table-minsize", &minsize,
sizeof(minsize)) == PROM_ERROR)
minsize = 4UL << 20;
/*
* Even though we read what OF wants, we just set the table
* size to 4 MB. This is enough to map 2GB of PCI DMA space.
* By doing this, we avoid the pitfalls of trying to DMA to
* MMIO space and the DMA alias hole.
*
* On POWER4, firmware sets the TCE region by assuming
* each TCE table is 8MB. Using this memory for anything
* else will impact performance, so we always allocate 8MB.
* Anton
*/
if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p))
minsize = 8UL << 20;
else
minsize = 4UL << 20;
/* Align to the greater of the align or size */
align = max(minalign, minsize);
base = alloc_down(minsize, align, 1);
if (base == 0)
prom_panic("ERROR, cannot find space for TCE table.\n");
if (base < local_alloc_bottom)
local_alloc_bottom = base;
/* Save away the TCE table attributes for later use. */
prom_setprop(node, "linux,tce-base", &base, sizeof(base));
prom_setprop(node, "linux,tce-size", &minsize, sizeof(minsize));
/* It seems OF doesn't null-terminate the path :-( */
memset(path, 0, sizeof(path));
/* Call OF to setup the TCE hardware */
if (call_prom("package-to-path", 3, 1, node,
path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) {
prom_printf("package-to-path failed\n");
}
prom_debug("TCE table: %s\n", path);
prom_debug("\tnode = 0x%x\n", node);
prom_debug("\tbase = 0x%x\n", base);
prom_debug("\tsize = 0x%x\n", minsize);
/* Initialize the table to have a one-to-one mapping
* over the allocated size.
*/
tce_entryp = (unsigned long *)base;
for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
tce_entry = (i << PAGE_SHIFT);
tce_entry |= 0x3;
*tce_entryp = tce_entry;
}
prom_printf("opening PHB %s", path);
phb_node = call_prom("open", 1, 1, path);
if (phb_node == 0)
prom_printf("... failed\n");
else
prom_printf("... done\n");
call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
phb_node, -1, minsize,
(u32) base, (u32) (base >> 32));
call_prom("close", 1, 0, phb_node);
}
reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom);
if (RELOC(prom_memory_limit)) {
/*
* We align the start to a 16MB boundary so we can map the TCE area
* using large pages if possible. The end should be the top of RAM
* so no need to align it.
*/
RELOC(prom_tce_alloc_start) = _ALIGN_DOWN(local_alloc_bottom, 0x1000000);
RELOC(prom_tce_alloc_end) = local_alloc_top;
}
/* Flag the first invalid entry */
prom_debug("ending prom_initialize_tce_table\n");
}
/*
* With CHRP SMP we need to use the OF to start the other
* processors so we can't wait until smp_boot_cpus (the OF is
* trashed by then) so we have to put the processors into
* a holding pattern controlled by the kernel (not OF) before
* we destroy the OF.
*
* This uses a chunk of low memory, puts some holding pattern
* code there and sends the other processors off to there until
* smp_boot_cpus tells them to do something. The holding pattern
* checks that address until its cpu # is there, when it is that
* cpu jumps to __secondary_start(). smp_boot_cpus() takes care
* of setting those values.
*
* We also use physical address 0x4 here to tell when a cpu
* is in its holding pattern code.
*
* Fixup comment... DRENG / PPPBBB - Peter
*
* -- Cort
*/
static void __init prom_hold_cpus(void)
{
unsigned long i;
unsigned int reg;
phandle node;
unsigned long offset = reloc_offset();
char type[64];
int cpuid = 0;
unsigned int interrupt_server[MAX_CPU_THREADS];
unsigned int cpu_threads, hw_cpu_num;
int propsize;
extern void __secondary_hold(void);
extern unsigned long __secondary_hold_spinloop;
extern unsigned long __secondary_hold_acknowledge;
unsigned long *spinloop
= (void *)virt_to_abs(&__secondary_hold_spinloop);
unsigned long *acknowledge
= (void *)virt_to_abs(&__secondary_hold_acknowledge);
unsigned long secondary_hold
= virt_to_abs(*PTRRELOC((unsigned long *)__secondary_hold));
struct prom_t *_prom = PTRRELOC(&prom);
prom_debug("prom_hold_cpus: start...\n");
prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop);
prom_debug(" 1) *spinloop = 0x%x\n", *spinloop);
prom_debug(" 1) acknowledge = 0x%x\n",
(unsigned long)acknowledge);
prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge);
prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold);
/* Set the common spinloop variable, so all of the secondary cpus
* will block when they are awakened from their OF spinloop.
* This must occur for both SMP and non SMP kernels, since OF will
* be trashed when we move the kernel.
*/
*spinloop = 0;
#ifdef CONFIG_HMT
for (i=0; i < NR_CPUS; i++) {
RELOC(hmt_thread_data)[i].pir = 0xdeadbeef;
}
#endif
/* look for cpus */
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, RELOC("cpu")) != 0)
continue;
/* Skip non-configured cpus. */
if (prom_getprop(node, "status", type, sizeof(type)) > 0)
if (strcmp(type, RELOC("okay")) != 0)
continue;
reg = -1;
prom_getprop(node, "reg", &reg, sizeof(reg));
prom_debug("\ncpuid = 0x%x\n", cpuid);
prom_debug("cpu hw idx = 0x%x\n", reg);
/* Init the acknowledge var which will be reset by
* the secondary cpu when it awakens from its OF
* spinloop.
*/
*acknowledge = (unsigned long)-1;
propsize = prom_getprop(node, "ibm,ppc-interrupt-server#s",
&interrupt_server,
sizeof(interrupt_server));
if (propsize < 0) {
/* no property. old hardware has no SMT */
cpu_threads = 1;
interrupt_server[0] = reg; /* fake it with phys id */
} else {
/* We have a threaded processor */
cpu_threads = propsize / sizeof(u32);
if (cpu_threads > MAX_CPU_THREADS) {
prom_printf("SMT: too many threads!\n"
"SMT: found %x, max is %x\n",
cpu_threads, MAX_CPU_THREADS);
cpu_threads = 1; /* ToDo: panic? */
}
}
hw_cpu_num = interrupt_server[0];
if (hw_cpu_num != _prom->cpu) {
/* Primary Thread of non-boot cpu */
prom_printf("%x : starting cpu hw idx %x... ", cpuid, reg);
call_prom("start-cpu", 3, 0, node,
secondary_hold, reg);
for ( i = 0 ; (i < 100000000) &&
(*acknowledge == ((unsigned long)-1)); i++ )
mb();
if (*acknowledge == reg) {
prom_printf("done\n");
/* We have to get every CPU out of OF,
* even if we never start it. */
if (cpuid >= NR_CPUS)
goto next;
} else {
prom_printf("failed: %x\n", *acknowledge);
}
}
#ifdef CONFIG_SMP
else
prom_printf("%x : boot cpu %x\n", cpuid, reg);
#endif
next:
#ifdef CONFIG_SMP
/* Init paca for secondary threads. They start later. */
for (i=1; i < cpu_threads; i++) {
cpuid++;
if (cpuid >= NR_CPUS)
continue;
}
#endif /* CONFIG_SMP */
cpuid++;
}
#ifdef CONFIG_HMT
/* Only enable HMT on processors that provide support. */
if (__is_processor(PV_PULSAR) ||
__is_processor(PV_ICESTAR) ||
__is_processor(PV_SSTAR)) {
prom_printf(" starting secondary threads\n");
for (i = 0; i < NR_CPUS; i += 2) {
if (!cpu_online(i))
continue;
if (i == 0) {
unsigned long pir = mfspr(SPRN_PIR);
if (__is_processor(PV_PULSAR)) {
RELOC(hmt_thread_data)[i].pir =
pir & 0x1f;
} else {
RELOC(hmt_thread_data)[i].pir =
pir & 0x3ff;
}
}
}
} else {
prom_printf("Processor is not HMT capable\n");
}
#endif
if (cpuid > NR_CPUS)
prom_printf("WARNING: maximum CPUs (" __stringify(NR_CPUS)
") exceeded: ignoring extras\n");
prom_debug("prom_hold_cpus: end...\n");
}
static void __init prom_init_client_services(unsigned long pp)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
/* Get a handle to the prom entry point before anything else */
_prom->entry = pp;
/* Init default value for phys size */
_prom->root_size_cells = 1;
_prom->root_addr_cells = 2;
/* get a handle for the stdout device */
_prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen"));
if (!PHANDLE_VALID(_prom->chosen))
prom_panic("cannot find chosen"); /* msg won't be printed :( */
/* get device tree root */
_prom->root = call_prom("finddevice", 1, 1, ADDR("/"));
if (!PHANDLE_VALID(_prom->root))
prom_panic("cannot find device tree root"); /* msg won't be printed :( */
}
static void __init prom_init_stdout(void)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
char *path = RELOC(of_stdout_device);
char type[16];
u32 val;
if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0)
prom_panic("cannot find stdout");
_prom->stdout = val;
/* Get the full OF pathname of the stdout device */
memset(path, 0, 256);
call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255);
val = call_prom("instance-to-package", 1, 1, _prom->stdout);
prom_setprop(_prom->chosen, "linux,stdout-package", &val, sizeof(val));
prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device));
prom_setprop(_prom->chosen, "linux,stdout-path",
RELOC(of_stdout_device), strlen(RELOC(of_stdout_device))+1);
/* If it's a display, note it */
memset(type, 0, sizeof(type));
prom_getprop(val, "device_type", type, sizeof(type));
if (strcmp(type, RELOC("display")) == 0) {
_prom->disp_node = val;
prom_setprop(val, "linux,boot-display", NULL, 0);
}
}
static void __init prom_close_stdin(void)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
ihandle val;
if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0)
call_prom("close", 1, 0, val);
}
static int __init prom_find_machine_type(void)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
char compat[256];
int len, i = 0;
phandle rtas;
len = prom_getprop(_prom->root, "compatible",
compat, sizeof(compat)-1);
if (len > 0) {
compat[len] = 0;
while (i < len) {
char *p = &compat[i];
int sl = strlen(p);
if (sl == 0)
break;
if (strstr(p, RELOC("Power Macintosh")) ||
strstr(p, RELOC("MacRISC4")))
return PLATFORM_POWERMAC;
if (strstr(p, RELOC("Momentum,Maple")))
return PLATFORM_MAPLE;
i += sl + 1;
}
}
/* Default to pSeries. We need to know if we are running LPAR */
rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
if (PHANDLE_VALID(rtas)) {
int x = prom_getproplen(rtas, "ibm,hypertas-functions");
if (x != PROM_ERROR) {
prom_printf("Hypertas detected, assuming LPAR !\n");
return PLATFORM_PSERIES_LPAR;
}
}
return PLATFORM_PSERIES;
}
static int __init prom_set_color(ihandle ih, int i, int r, int g, int b)
{
unsigned long offset = reloc_offset();
return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r);
}
/*
* If we have a display that we don't know how to drive,
* we will want to try to execute OF's open method for it
* later. However, OF will probably fall over if we do that
* we've taken over the MMU.
* So we check whether we will need to open the display,
* and if so, open it now.
*/
static void __init prom_check_displays(void)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
char type[16], *path;
phandle node;
ihandle ih;
int i;
static unsigned char default_colors[] = {
0x00, 0x00, 0x00,
0x00, 0x00, 0xaa,
0x00, 0xaa, 0x00,
0x00, 0xaa, 0xaa,
0xaa, 0x00, 0x00,
0xaa, 0x00, 0xaa,
0xaa, 0xaa, 0x00,
0xaa, 0xaa, 0xaa,
0x55, 0x55, 0x55,
0x55, 0x55, 0xff,
0x55, 0xff, 0x55,
0x55, 0xff, 0xff,
0xff, 0x55, 0x55,
0xff, 0x55, 0xff,
0xff, 0xff, 0x55,
0xff, 0xff, 0xff
};
const unsigned char *clut;
prom_printf("Looking for displays\n");
for (node = 0; prom_next_node(&node); ) {
memset(type, 0, sizeof(type));
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, RELOC("display")) != 0)
continue;
/* It seems OF doesn't null-terminate the path :-( */
path = RELOC(prom_scratch);
memset(path, 0, PROM_SCRATCH_SIZE);
/*
* leave some room at the end of the path for appending extra
* arguments
*/
if (call_prom("package-to-path", 3, 1, node, path,
PROM_SCRATCH_SIZE-10) == PROM_ERROR)
continue;
prom_printf("found display : %s, opening ... ", path);
ih = call_prom("open", 1, 1, path);
if (ih == 0) {
prom_printf("failed\n");
continue;
}
/* Success */
prom_printf("done\n");
prom_setprop(node, "linux,opened", NULL, 0);
/*
* stdout wasn't a display node, pick the first we can find
* for btext
*/
if (_prom->disp_node == 0)
_prom->disp_node = node;
/* Setup a useable color table when the appropriate
* method is available. Should update this to set-colors */
clut = RELOC(default_colors);
for (i = 0; i < 32; i++, clut += 3)
if (prom_set_color(ih, i, clut[0], clut[1],
clut[2]) != 0)
break;
#ifdef CONFIG_LOGO_LINUX_CLUT224
clut = PTRRELOC(RELOC(logo_linux_clut224.clut));
for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3)
if (prom_set_color(ih, i + 32, clut[0], clut[1],
clut[2]) != 0)
break;
#endif /* CONFIG_LOGO_LINUX_CLUT224 */
}
}
/* Return (relocated) pointer to this much memory: moves initrd if reqd. */
static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end,
unsigned long needed, unsigned long align)
{
unsigned long offset = reloc_offset();
void *ret;
*mem_start = _ALIGN(*mem_start, align);
while ((*mem_start + needed) > *mem_end) {
unsigned long room, chunk;
prom_debug("Chunk exhausted, claiming more at %x...\n",
RELOC(alloc_bottom));
room = RELOC(alloc_top) - RELOC(alloc_bottom);
if (room > DEVTREE_CHUNK_SIZE)
room = DEVTREE_CHUNK_SIZE;
if (room < PAGE_SIZE)
prom_panic("No memory for flatten_device_tree (no room)");
chunk = alloc_up(room, 0);
if (chunk == 0)
prom_panic("No memory for flatten_device_tree (claim failed)");
*mem_end = RELOC(alloc_top);
}
ret = (void *)*mem_start;
*mem_start += needed;
return ret;
}
#define dt_push_token(token, mem_start, mem_end) \
do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0)
static unsigned long __init dt_find_string(char *str)
{
unsigned long offset = reloc_offset();
char *s, *os;
s = os = (char *)RELOC(dt_string_start);
s += 4;
while (s < (char *)RELOC(dt_string_end)) {
if (strcmp(s, str) == 0)
return s - os;
s += strlen(s) + 1;
}
return 0;
}
/*
* The Open Firmware 1275 specification states properties must be 31 bytes or
* less, however not all firmwares obey this. Make it 64 bytes to be safe.
*/
#define MAX_PROPERTY_NAME 64
static void __init scan_dt_build_strings(phandle node,
unsigned long *mem_start,
unsigned long *mem_end)
{
unsigned long offset = reloc_offset();
char *prev_name, *namep, *sstart;
unsigned long soff;
phandle child;
sstart = (char *)RELOC(dt_string_start);
/* get and store all property names */
prev_name = RELOC("");
for (;;) {
/* 64 is max len of name including nul. */
namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1);
if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) {
/* No more nodes: unwind alloc */
*mem_start = (unsigned long)namep;
break;
}
/* skip "name" */
if (strcmp(namep, RELOC("name")) == 0) {
*mem_start = (unsigned long)namep;
prev_name = RELOC("name");
continue;
}
/* get/create string entry */
soff = dt_find_string(namep);
if (soff != 0) {
*mem_start = (unsigned long)namep;
namep = sstart + soff;
} else {
/* Trim off some if we can */
*mem_start = (unsigned long)namep + strlen(namep) + 1;
RELOC(dt_string_end) = *mem_start;
}
prev_name = namep;
}
/* do all our children */
child = call_prom("child", 1, 1, node);
while (child != 0) {
scan_dt_build_strings(child, mem_start, mem_end);
child = call_prom("peer", 1, 1, child);
}
}
static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start,
unsigned long *mem_end)
{
phandle child;
char *namep, *prev_name, *sstart, *p, *ep, *lp, *path;
unsigned long soff;
unsigned char *valp;
unsigned long offset = reloc_offset();
static char pname[MAX_PROPERTY_NAME];
int l;
dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end);
/* get the node's full name */
namep = (char *)*mem_start;
l = call_prom("package-to-path", 3, 1, node,
namep, *mem_end - *mem_start);
if (l >= 0) {
/* Didn't fit? Get more room. */
if ((l+1) > (*mem_end - *mem_start)) {
namep = make_room(mem_start, mem_end, l+1, 1);
call_prom("package-to-path", 3, 1, node, namep, l);
}
namep[l] = '\0';
/* Fixup an Apple bug where they have bogus \0 chars in the
* middle of the path in some properties
*/
for (p = namep, ep = namep + l; p < ep; p++)
if (*p == '\0') {
memmove(p, p+1, ep - p);
ep--; l--; p--;
}
/* now try to extract the unit name in that mess */
for (p = namep, lp = NULL; *p; p++)
if (*p == '/')
lp = p + 1;
if (lp != NULL)
memmove(namep, lp, strlen(lp) + 1);
*mem_start = _ALIGN(((unsigned long) namep) +
strlen(namep) + 1, 4);
}
/* get it again for debugging */
path = RELOC(prom_scratch);
memset(path, 0, PROM_SCRATCH_SIZE);
call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
/* get and store all properties */
prev_name = RELOC("");
sstart = (char *)RELOC(dt_string_start);
for (;;) {
if (call_prom("nextprop", 3, 1, node, prev_name,
RELOC(pname)) != 1)
break;
/* skip "name" */
if (strcmp(RELOC(pname), RELOC("name")) == 0) {
prev_name = RELOC("name");
continue;
}
/* find string offset */
soff = dt_find_string(RELOC(pname));
if (soff == 0) {
prom_printf("WARNING: Can't find string index for"
" <%s>, node %s\n", RELOC(pname), path);
break;
}
prev_name = sstart + soff;
/* get length */
l = call_prom("getproplen", 2, 1, node, RELOC(pname));
/* sanity checks */
if (l == PROM_ERROR)
continue;
if (l > MAX_PROPERTY_LENGTH) {
prom_printf("WARNING: ignoring large property ");
/* It seems OF doesn't null-terminate the path :-( */
prom_printf("[%s] ", path);
prom_printf("%s length 0x%x\n", RELOC(pname), l);
continue;
}
/* push property head */
dt_push_token(OF_DT_PROP, mem_start, mem_end);
dt_push_token(l, mem_start, mem_end);
dt_push_token(soff, mem_start, mem_end);
/* push property content */
valp = make_room(mem_start, mem_end, l, 4);
call_prom("getprop", 4, 1, node, RELOC(pname), valp, l);
*mem_start = _ALIGN(*mem_start, 4);
}
/* Add a "linux,phandle" property. */
soff = dt_find_string(RELOC("linux,phandle"));
if (soff == 0)
prom_printf("WARNING: Can't find string index for"
" <linux-phandle> node %s\n", path);
else {
dt_push_token(OF_DT_PROP, mem_start, mem_end);
dt_push_token(4, mem_start, mem_end);
dt_push_token(soff, mem_start, mem_end);
valp = make_room(mem_start, mem_end, 4, 4);
*(u32 *)valp = node;
}
/* do all our children */
child = call_prom("child", 1, 1, node);
while (child != 0) {
scan_dt_build_struct(child, mem_start, mem_end);
child = call_prom("peer", 1, 1, child);
}
dt_push_token(OF_DT_END_NODE, mem_start, mem_end);
}
static void __init flatten_device_tree(void)
{
phandle root;
unsigned long offset = reloc_offset();
unsigned long mem_start, mem_end, room;
struct boot_param_header *hdr;
char *namep;
u64 *rsvmap;
/*
* Check how much room we have between alloc top & bottom (+/- a
* few pages), crop to 4Mb, as this is our "chuck" size
*/
room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000;
if (room > DEVTREE_CHUNK_SIZE)
room = DEVTREE_CHUNK_SIZE;
prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom));
/* Now try to claim that */
mem_start = (unsigned long)alloc_up(room, PAGE_SIZE);
if (mem_start == 0)
prom_panic("Can't allocate initial device-tree chunk\n");
mem_end = RELOC(alloc_top);
/* Get root of tree */
root = call_prom("peer", 1, 1, (phandle)0);
if (root == (phandle)0)
prom_panic ("couldn't get device tree root\n");
/* Build header and make room for mem rsv map */
mem_start = _ALIGN(mem_start, 4);
hdr = make_room(&mem_start, &mem_end,
sizeof(struct boot_param_header), 4);
RELOC(dt_header_start) = (unsigned long)hdr;
rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8);
/* Start of strings */
mem_start = PAGE_ALIGN(mem_start);
RELOC(dt_string_start) = mem_start;
mem_start += 4; /* hole */
/* Add "linux,phandle" in there, we'll need it */
namep = make_room(&mem_start, &mem_end, 16, 1);
strcpy(namep, RELOC("linux,phandle"));
mem_start = (unsigned long)namep + strlen(namep) + 1;
/* Build string array */
prom_printf("Building dt strings...\n");
scan_dt_build_strings(root, &mem_start, &mem_end);
RELOC(dt_string_end) = mem_start;
/* Build structure */
mem_start = PAGE_ALIGN(mem_start);
RELOC(dt_struct_start) = mem_start;
prom_printf("Building dt structure...\n");
scan_dt_build_struct(root, &mem_start, &mem_end);
dt_push_token(OF_DT_END, &mem_start, &mem_end);
RELOC(dt_struct_end) = PAGE_ALIGN(mem_start);
/* Finish header */
hdr->magic = OF_DT_HEADER;
hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start);
hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start);
hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start);
hdr->dt_strings_size = RELOC(dt_string_end) - RELOC(dt_string_start);
hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start);
hdr->version = OF_DT_VERSION;
/* Version 16 is not backward compatible */
hdr->last_comp_version = 0x10;
/* Reserve the whole thing and copy the reserve map in, we
* also bump mem_reserve_cnt to cause further reservations to
* fail since it's too late.
*/
reserve_mem(RELOC(dt_header_start), hdr->totalsize);
memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map));
#ifdef DEBUG_PROM
{
int i;
prom_printf("reserved memory map:\n");
for (i = 0; i < RELOC(mem_reserve_cnt); i++)
prom_printf(" %x - %x\n", RELOC(mem_reserve_map)[i].base,
RELOC(mem_reserve_map)[i].size);
}
#endif
RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE;
prom_printf("Device tree strings 0x%x -> 0x%x\n",
RELOC(dt_string_start), RELOC(dt_string_end));
prom_printf("Device tree struct 0x%x -> 0x%x\n",
RELOC(dt_struct_start), RELOC(dt_struct_end));
}
static void __init fixup_device_tree(void)
{
unsigned long offset = reloc_offset();
phandle u3, i2c, mpic;
u32 u3_rev;
u32 interrupts[2];
u32 parent;
/* Some G5s have a missing interrupt definition, fix it up here */
u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000"));
if (!PHANDLE_VALID(u3))
return;
i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000"));
if (!PHANDLE_VALID(i2c))
return;
mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000"));
if (!PHANDLE_VALID(mpic))
return;
/* check if proper rev of u3 */
if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev))
== PROM_ERROR)
return;
if (u3_rev != 0x35 && u3_rev != 0x37)
return;
/* does it need fixup ? */
if (prom_getproplen(i2c, "interrupts") > 0)
return;
prom_printf("fixing up bogus interrupts for u3 i2c...\n");
/* interrupt on this revision of u3 is number 0 and level */
interrupts[0] = 0;
interrupts[1] = 1;
prom_setprop(i2c, "interrupts", &interrupts, sizeof(interrupts));
parent = (u32)mpic;
prom_setprop(i2c, "interrupt-parent", &parent, sizeof(parent));
}
static void __init prom_find_boot_cpu(void)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
u32 getprop_rval;
ihandle prom_cpu;
phandle cpu_pkg;
if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0)
prom_panic("cannot find boot cpu");
cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu);
prom_setprop(cpu_pkg, "linux,boot-cpu", NULL, 0);
prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval));
_prom->cpu = getprop_rval;
prom_debug("Booting CPU hw index = 0x%x\n", _prom->cpu);
}
static void __init prom_check_initrd(unsigned long r3, unsigned long r4)
{
#ifdef CONFIG_BLK_DEV_INITRD
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
if ( r3 && r4 && r4 != 0xdeadbeef) {
u64 val;
RELOC(prom_initrd_start) = (r3 >= KERNELBASE) ? __pa(r3) : r3;
RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4;
val = (u64)RELOC(prom_initrd_start);
prom_setprop(_prom->chosen, "linux,initrd-start", &val, sizeof(val));
val = (u64)RELOC(prom_initrd_end);
prom_setprop(_prom->chosen, "linux,initrd-end", &val, sizeof(val));
reserve_mem(RELOC(prom_initrd_start),
RELOC(prom_initrd_end) - RELOC(prom_initrd_start));
prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start));
prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end));
}
#endif /* CONFIG_BLK_DEV_INITRD */
}
/*
* We enter here early on, when the Open Firmware prom is still
* handling exceptions and the MMU hash table for us.
*/
unsigned long __init prom_init(unsigned long r3, unsigned long r4, unsigned long pp,
unsigned long r6, unsigned long r7)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
unsigned long phys = KERNELBASE - offset;
u32 getprop_rval;
/*
* First zero the BSS
*/
memset(PTRRELOC(&__bss_start), 0, __bss_stop - __bss_start);
/*
* Init interface to Open Firmware, get some node references,
* like /chosen
*/
prom_init_client_services(pp);
/*
* Init prom stdout device
*/
prom_init_stdout();
prom_debug("klimit=0x%x\n", RELOC(klimit));
prom_debug("offset=0x%x\n", offset);
/*
* Check for an initrd
*/
prom_check_initrd(r3, r4);
/*
* Get default machine type. At this point, we do not differenciate
* between pSeries SMP and pSeries LPAR
*/
RELOC(of_platform) = prom_find_machine_type();
getprop_rval = RELOC(of_platform);
prom_setprop(_prom->chosen, "linux,platform",
&getprop_rval, sizeof(getprop_rval));
/*
* On pSeries, inform the firmware about our capabilities
*/
if (RELOC(of_platform) & PLATFORM_PSERIES)
prom_send_capabilities();
/*
* On pSeries and BPA, copy the CPU hold code
*/
if (RELOC(of_platform) & (PLATFORM_PSERIES | PLATFORM_BPA))
copy_and_flush(0, KERNELBASE - offset, 0x100, 0);
/*
* Get memory cells format
*/
getprop_rval = 1;
prom_getprop(_prom->root, "#size-cells",
&getprop_rval, sizeof(getprop_rval));
_prom->root_size_cells = getprop_rval;
getprop_rval = 2;
prom_getprop(_prom->root, "#address-cells",
&getprop_rval, sizeof(getprop_rval));
_prom->root_addr_cells = getprop_rval;
/*
* Do early parsing of command line
*/
early_cmdline_parse();
/*
* Initialize memory management within prom_init
*/
prom_init_mem();
/*
* Determine which cpu is actually running right _now_
*/
prom_find_boot_cpu();
/*
* Initialize display devices
*/
prom_check_displays();
/*
* Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
* that uses the allocator, we need to make sure we get the top of memory
* available for us here...
*/
if (RELOC(of_platform) == PLATFORM_PSERIES)
prom_initialize_tce_table();
/*
* On non-powermacs, try to instantiate RTAS and puts all CPUs
* in spin-loops. PowerMacs don't have a working RTAS and use
* a different way to spin CPUs
*/
if (RELOC(of_platform) != PLATFORM_POWERMAC) {
prom_instantiate_rtas();
prom_hold_cpus();
}
/*
* Fill in some infos for use by the kernel later on
*/
if (RELOC(ppc64_iommu_off))
prom_setprop(_prom->chosen, "linux,iommu-off", NULL, 0);
if (RELOC(iommu_force_on))
prom_setprop(_prom->chosen, "linux,iommu-force-on", NULL, 0);
if (RELOC(prom_memory_limit))
prom_setprop(_prom->chosen, "linux,memory-limit",
PTRRELOC(&prom_memory_limit), sizeof(RELOC(prom_memory_limit)));
if (RELOC(prom_tce_alloc_start)) {
prom_setprop(_prom->chosen, "linux,tce-alloc-start",
PTRRELOC(&prom_tce_alloc_start), sizeof(RELOC(prom_tce_alloc_start)));
prom_setprop(_prom->chosen, "linux,tce-alloc-end",
PTRRELOC(&prom_tce_alloc_end), sizeof(RELOC(prom_tce_alloc_end)));
}
/*
* Fixup any known bugs in the device-tree
*/
fixup_device_tree();
/*
* Now finally create the flattened device-tree
*/
prom_printf("copying OF device tree ...\n");
flatten_device_tree();
/* in case stdin is USB and still active on IBM machines... */
prom_close_stdin();
/*
* Call OF "quiesce" method to shut down pending DMA's from
* devices etc...
*/
prom_printf("Calling quiesce ...\n");
call_prom("quiesce", 0, 0);
/*
* And finally, call the kernel passing it the flattened device
* tree and NULL as r5, thus triggering the new entry point which
* is common to us and kexec
*/
prom_printf("returning from prom_init\n");
prom_debug("->dt_header_start=0x%x\n", RELOC(dt_header_start));
prom_debug("->phys=0x%x\n", phys);
__start(RELOC(dt_header_start), phys, 0);
return 0;
}