2005-04-17 00:20:36 +02:00
|
|
|
/*
|
|
|
|
* linux/arch/alpha/mm/numa.c
|
|
|
|
*
|
|
|
|
* DISCONTIGMEM NUMA alpha support.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/bootmem.h>
|
|
|
|
#include <linux/swap.h>
|
|
|
|
#include <linux/initrd.h>
|
2006-03-27 11:16:04 +02:00
|
|
|
#include <linux/pfn.h>
|
2006-10-11 18:40:22 +02:00
|
|
|
#include <linux/module.h>
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
#include <asm/hwrpb.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
|
|
|
|
|
|
pg_data_t node_data[MAX_NUMNODES];
|
|
|
|
bootmem_data_t node_bdata[MAX_NUMNODES];
|
2006-10-11 18:40:22 +02:00
|
|
|
EXPORT_SYMBOL(node_data);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
#undef DEBUG_DISCONTIG
|
|
|
|
#ifdef DEBUG_DISCONTIG
|
|
|
|
#define DBGDCONT(args...) printk(args)
|
|
|
|
#else
|
|
|
|
#define DBGDCONT(args...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define for_each_mem_cluster(memdesc, cluster, i) \
|
|
|
|
for ((cluster) = (memdesc)->cluster, (i) = 0; \
|
|
|
|
(i) < (memdesc)->numclusters; (i)++, (cluster)++)
|
|
|
|
|
|
|
|
static void __init show_mem_layout(void)
|
|
|
|
{
|
|
|
|
struct memclust_struct * cluster;
|
|
|
|
struct memdesc_struct * memdesc;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Find free clusters, and init and free the bootmem accordingly. */
|
|
|
|
memdesc = (struct memdesc_struct *)
|
|
|
|
(hwrpb->mddt_offset + (unsigned long) hwrpb);
|
|
|
|
|
|
|
|
printk("Raw memory layout:\n");
|
|
|
|
for_each_mem_cluster(memdesc, cluster, i) {
|
|
|
|
printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
|
|
|
|
i, cluster->usage, cluster->start_pfn,
|
|
|
|
cluster->start_pfn + cluster->numpages);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init
|
|
|
|
setup_memory_node(int nid, void *kernel_end)
|
|
|
|
{
|
|
|
|
extern unsigned long mem_size_limit;
|
|
|
|
struct memclust_struct * cluster;
|
|
|
|
struct memdesc_struct * memdesc;
|
|
|
|
unsigned long start_kernel_pfn, end_kernel_pfn;
|
|
|
|
unsigned long bootmap_size, bootmap_pages, bootmap_start;
|
|
|
|
unsigned long start, end;
|
|
|
|
unsigned long node_pfn_start, node_pfn_end;
|
|
|
|
unsigned long node_min_pfn, node_max_pfn;
|
|
|
|
int i;
|
|
|
|
unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
|
|
|
|
int show_init = 0;
|
|
|
|
|
|
|
|
/* Find the bounds of current node */
|
|
|
|
node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
|
|
|
|
node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
|
|
|
|
|
|
|
|
/* Find free clusters, and init and free the bootmem accordingly. */
|
|
|
|
memdesc = (struct memdesc_struct *)
|
|
|
|
(hwrpb->mddt_offset + (unsigned long) hwrpb);
|
|
|
|
|
|
|
|
/* find the bounds of this node (node_min_pfn/node_max_pfn) */
|
|
|
|
node_min_pfn = ~0UL;
|
|
|
|
node_max_pfn = 0UL;
|
|
|
|
for_each_mem_cluster(memdesc, cluster, i) {
|
|
|
|
/* Bit 0 is console/PALcode reserved. Bit 1 is
|
|
|
|
non-volatile memory -- we might want to mark
|
|
|
|
this for later. */
|
|
|
|
if (cluster->usage & 3)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
start = cluster->start_pfn;
|
|
|
|
end = start + cluster->numpages;
|
|
|
|
|
|
|
|
if (start >= node_pfn_end || end <= node_pfn_start)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!show_init) {
|
|
|
|
show_init = 1;
|
|
|
|
printk("Initializing bootmem allocator on Node ID %d\n", nid);
|
|
|
|
}
|
|
|
|
printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
|
|
|
|
i, cluster->usage, cluster->start_pfn,
|
|
|
|
cluster->start_pfn + cluster->numpages);
|
|
|
|
|
|
|
|
if (start < node_pfn_start)
|
|
|
|
start = node_pfn_start;
|
|
|
|
if (end > node_pfn_end)
|
|
|
|
end = node_pfn_end;
|
|
|
|
|
|
|
|
if (start < node_min_pfn)
|
|
|
|
node_min_pfn = start;
|
|
|
|
if (end > node_max_pfn)
|
|
|
|
node_max_pfn = end;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mem_size_limit && node_max_pfn > mem_size_limit) {
|
|
|
|
static int msg_shown = 0;
|
|
|
|
if (!msg_shown) {
|
|
|
|
msg_shown = 1;
|
|
|
|
printk("setup: forcing memory size to %ldK (from %ldK).\n",
|
|
|
|
mem_size_limit << (PAGE_SHIFT - 10),
|
|
|
|
node_max_pfn << (PAGE_SHIFT - 10));
|
|
|
|
}
|
|
|
|
node_max_pfn = mem_size_limit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (node_min_pfn >= node_max_pfn)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Update global {min,max}_low_pfn from node information. */
|
|
|
|
if (node_min_pfn < min_low_pfn)
|
|
|
|
min_low_pfn = node_min_pfn;
|
|
|
|
if (node_max_pfn > max_low_pfn)
|
|
|
|
max_pfn = max_low_pfn = node_max_pfn;
|
|
|
|
|
|
|
|
num_physpages += node_max_pfn - node_min_pfn;
|
|
|
|
|
|
|
|
#if 0 /* we'll try this one again in a little while */
|
|
|
|
/* Cute trick to make sure our local node data is on local memory */
|
|
|
|
node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
|
|
|
|
#endif
|
|
|
|
/* Quasi-mark the pg_data_t as in-use */
|
|
|
|
node_min_pfn += node_datasz;
|
|
|
|
if (node_min_pfn >= node_max_pfn) {
|
|
|
|
printk(" not enough mem to reserve NODE_DATA");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
NODE_DATA(nid)->bdata = &node_bdata[nid];
|
|
|
|
|
|
|
|
printk(" Detected node memory: start %8lu, end %8lu\n",
|
|
|
|
node_min_pfn, node_max_pfn);
|
|
|
|
|
|
|
|
DBGDCONT(" DISCONTIG: node_data[%d] is at 0x%p\n", nid, NODE_DATA(nid));
|
|
|
|
DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
|
|
|
|
|
|
|
|
/* Find the bounds of kernel memory. */
|
|
|
|
start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
|
|
|
|
end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
|
|
|
|
bootmap_start = -1;
|
|
|
|
|
|
|
|
if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
|
|
|
|
panic("kernel loaded out of ram");
|
|
|
|
|
|
|
|
/* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
|
|
|
|
Note that we round this down, not up - node memory
|
|
|
|
has much larger alignment than 8Mb, so it's safe. */
|
|
|
|
node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
|
|
|
|
|
|
|
|
/* We need to know how many physically contiguous pages
|
|
|
|
we'll need for the bootmap. */
|
|
|
|
bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
|
|
|
|
|
|
|
|
/* Now find a good region where to allocate the bootmap. */
|
|
|
|
for_each_mem_cluster(memdesc, cluster, i) {
|
|
|
|
if (cluster->usage & 3)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
start = cluster->start_pfn;
|
|
|
|
end = start + cluster->numpages;
|
|
|
|
|
|
|
|
if (start >= node_max_pfn || end <= node_min_pfn)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (end > node_max_pfn)
|
|
|
|
end = node_max_pfn;
|
|
|
|
if (start < node_min_pfn)
|
|
|
|
start = node_min_pfn;
|
|
|
|
|
|
|
|
if (start < start_kernel_pfn) {
|
|
|
|
if (end > end_kernel_pfn
|
|
|
|
&& end - end_kernel_pfn >= bootmap_pages) {
|
|
|
|
bootmap_start = end_kernel_pfn;
|
|
|
|
break;
|
|
|
|
} else if (end > start_kernel_pfn)
|
|
|
|
end = start_kernel_pfn;
|
|
|
|
} else if (start < end_kernel_pfn)
|
|
|
|
start = end_kernel_pfn;
|
|
|
|
if (end - start >= bootmap_pages) {
|
|
|
|
bootmap_start = start;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bootmap_start == -1)
|
|
|
|
panic("couldn't find a contigous place for the bootmap");
|
|
|
|
|
|
|
|
/* Allocate the bootmap and mark the whole MM as reserved. */
|
|
|
|
bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
|
|
|
|
node_min_pfn, node_max_pfn);
|
|
|
|
DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
|
|
|
|
bootmap_start, bootmap_size, bootmap_pages);
|
|
|
|
|
|
|
|
/* Mark the free regions. */
|
|
|
|
for_each_mem_cluster(memdesc, cluster, i) {
|
|
|
|
if (cluster->usage & 3)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
start = cluster->start_pfn;
|
|
|
|
end = cluster->start_pfn + cluster->numpages;
|
|
|
|
|
|
|
|
if (start >= node_max_pfn || end <= node_min_pfn)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (end > node_max_pfn)
|
|
|
|
end = node_max_pfn;
|
|
|
|
if (start < node_min_pfn)
|
|
|
|
start = node_min_pfn;
|
|
|
|
|
|
|
|
if (start < start_kernel_pfn) {
|
|
|
|
if (end > end_kernel_pfn) {
|
|
|
|
free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
|
|
|
|
(PFN_PHYS(start_kernel_pfn)
|
|
|
|
- PFN_PHYS(start)));
|
|
|
|
printk(" freeing pages %ld:%ld\n",
|
|
|
|
start, start_kernel_pfn);
|
|
|
|
start = end_kernel_pfn;
|
|
|
|
} else if (end > start_kernel_pfn)
|
|
|
|
end = start_kernel_pfn;
|
|
|
|
} else if (start < end_kernel_pfn)
|
|
|
|
start = end_kernel_pfn;
|
|
|
|
if (start >= end)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
|
|
|
|
printk(" freeing pages %ld:%ld\n", start, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reserve the bootmap memory. */
|
|
|
|
reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start), bootmap_size);
|
|
|
|
printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
|
|
|
|
|
|
|
|
node_set_online(nid);
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init
|
|
|
|
setup_memory(void *kernel_end)
|
|
|
|
{
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
show_mem_layout();
|
|
|
|
|
|
|
|
nodes_clear(node_online_map);
|
|
|
|
|
|
|
|
min_low_pfn = ~0UL;
|
|
|
|
max_low_pfn = 0UL;
|
|
|
|
for (nid = 0; nid < MAX_NUMNODES; nid++)
|
|
|
|
setup_memory_node(nid, kernel_end);
|
|
|
|
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
initrd_start = INITRD_START;
|
|
|
|
if (initrd_start) {
|
|
|
|
extern void *move_initrd(unsigned long);
|
|
|
|
|
|
|
|
initrd_end = initrd_start+INITRD_SIZE;
|
|
|
|
printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
|
|
|
|
(void *) initrd_start, INITRD_SIZE);
|
|
|
|
|
|
|
|
if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
|
|
|
|
if (!move_initrd(PFN_PHYS(max_low_pfn)))
|
|
|
|
printk("initrd extends beyond end of memory "
|
|
|
|
"(0x%08lx > 0x%p)\ndisabling initrd\n",
|
|
|
|
initrd_end,
|
|
|
|
phys_to_virt(PFN_PHYS(max_low_pfn)));
|
|
|
|
} else {
|
|
|
|
nid = kvaddr_to_nid(initrd_start);
|
|
|
|
reserve_bootmem_node(NODE_DATA(nid),
|
|
|
|
virt_to_phys((void *)initrd_start),
|
|
|
|
INITRD_SIZE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init paging_init(void)
|
|
|
|
{
|
|
|
|
unsigned int nid;
|
|
|
|
unsigned long zones_size[MAX_NR_ZONES] = {0, };
|
|
|
|
unsigned long dma_local_pfn;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The old global MAX_DMA_ADDRESS per-arch API doesn't fit
|
|
|
|
* in the NUMA model, for now we convert it to a pfn and
|
|
|
|
* we interpret this pfn as a local per-node information.
|
|
|
|
* This issue isn't very important since none of these machines
|
|
|
|
* have legacy ISA slots anyways.
|
|
|
|
*/
|
|
|
|
dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
|
|
|
|
|
|
|
|
for_each_online_node(nid) {
|
|
|
|
unsigned long start_pfn = node_bdata[nid].node_boot_start >> PAGE_SHIFT;
|
|
|
|
unsigned long end_pfn = node_bdata[nid].node_low_pfn;
|
|
|
|
|
|
|
|
if (dma_local_pfn >= end_pfn - start_pfn)
|
|
|
|
zones_size[ZONE_DMA] = end_pfn - start_pfn;
|
|
|
|
else {
|
|
|
|
zones_size[ZONE_DMA] = dma_local_pfn;
|
|
|
|
zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
|
|
|
|
}
|
|
|
|
free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Initialize the kernel's ZERO_PGE. */
|
|
|
|
memset((void *)ZERO_PGE, 0, PAGE_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init mem_init(void)
|
|
|
|
{
|
|
|
|
unsigned long codesize, reservedpages, datasize, initsize, pfn;
|
|
|
|
extern int page_is_ram(unsigned long) __init;
|
|
|
|
extern char _text, _etext, _data, _edata;
|
|
|
|
extern char __init_begin, __init_end;
|
|
|
|
unsigned long nid, i;
|
|
|
|
high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
|
|
|
|
|
|
|
|
reservedpages = 0;
|
|
|
|
for_each_online_node(nid) {
|
|
|
|
/*
|
|
|
|
* This will free up the bootmem, ie, slot 0 memory
|
|
|
|
*/
|
|
|
|
totalram_pages += free_all_bootmem_node(NODE_DATA(nid));
|
|
|
|
|
|
|
|
pfn = NODE_DATA(nid)->node_start_pfn;
|
|
|
|
for (i = 0; i < node_spanned_pages(nid); i++, pfn++)
|
[PATCH] remove non-DISCONTIG use of pgdat->node_mem_map
This patch effectively eliminates direct use of pgdat->node_mem_map outside
of the DISCONTIG code. On a flat memory system, these fields aren't
currently used, neither are they on a sparsemem system.
There was also a node_mem_map(nid) macro on many architectures. Its use
along with the use of ->node_mem_map itself was not consistent. It has
been removed in favor of two new, more explicit, arch-independent macros:
pgdat_page_nr(pgdat, pagenr)
nid_page_nr(nid, pagenr)
I called them "pgdat" and "nid" because we overload the term "node" to mean
"NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways. I
believe the newer names are much clearer.
These macros can be overridden in the sparsemem case with a theoretically
slower operation using node_start_pfn and pfn_to_page(), instead. We could
make this the only behavior if people want, but I don't want to change too
much at once. One thing at a time.
This patch removes more code than it adds.
Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386
generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64. Full list
here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/
Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin J. Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:07:37 +02:00
|
|
|
if (page_is_ram(pfn) &&
|
|
|
|
PageReserved(nid_page_nr(nid, i)))
|
2005-04-17 00:20:36 +02:00
|
|
|
reservedpages++;
|
|
|
|
}
|
|
|
|
|
|
|
|
codesize = (unsigned long) &_etext - (unsigned long) &_text;
|
|
|
|
datasize = (unsigned long) &_edata - (unsigned long) &_data;
|
|
|
|
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
|
|
|
|
|
|
|
|
printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "
|
|
|
|
"%luk data, %luk init)\n",
|
|
|
|
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
|
|
|
|
num_physpages << (PAGE_SHIFT-10),
|
|
|
|
codesize >> 10,
|
|
|
|
reservedpages << (PAGE_SHIFT-10),
|
|
|
|
datasize >> 10,
|
|
|
|
initsize >> 10);
|
|
|
|
#if 0
|
|
|
|
mem_stress();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
show_mem(void)
|
|
|
|
{
|
|
|
|
long i,free = 0,total = 0,reserved = 0;
|
|
|
|
long shared = 0, cached = 0;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
printk("\nMem-info:\n");
|
|
|
|
show_free_areas();
|
|
|
|
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
|
|
|
|
for_each_online_node(nid) {
|
2005-10-30 02:16:52 +01:00
|
|
|
unsigned long flags;
|
|
|
|
pgdat_resize_lock(NODE_DATA(nid), &flags);
|
2005-04-17 00:20:36 +02:00
|
|
|
i = node_spanned_pages(nid);
|
|
|
|
while (i-- > 0) {
|
[PATCH] remove non-DISCONTIG use of pgdat->node_mem_map
This patch effectively eliminates direct use of pgdat->node_mem_map outside
of the DISCONTIG code. On a flat memory system, these fields aren't
currently used, neither are they on a sparsemem system.
There was also a node_mem_map(nid) macro on many architectures. Its use
along with the use of ->node_mem_map itself was not consistent. It has
been removed in favor of two new, more explicit, arch-independent macros:
pgdat_page_nr(pgdat, pagenr)
nid_page_nr(nid, pagenr)
I called them "pgdat" and "nid" because we overload the term "node" to mean
"NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways. I
believe the newer names are much clearer.
These macros can be overridden in the sparsemem case with a theoretically
slower operation using node_start_pfn and pfn_to_page(), instead. We could
make this the only behavior if people want, but I don't want to change too
much at once. One thing at a time.
This patch removes more code than it adds.
Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386
generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64. Full list
here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/
Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin J. Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:07:37 +02:00
|
|
|
struct page *page = nid_page_nr(nid, i);
|
2005-04-17 00:20:36 +02:00
|
|
|
total++;
|
[PATCH] remove non-DISCONTIG use of pgdat->node_mem_map
This patch effectively eliminates direct use of pgdat->node_mem_map outside
of the DISCONTIG code. On a flat memory system, these fields aren't
currently used, neither are they on a sparsemem system.
There was also a node_mem_map(nid) macro on many architectures. Its use
along with the use of ->node_mem_map itself was not consistent. It has
been removed in favor of two new, more explicit, arch-independent macros:
pgdat_page_nr(pgdat, pagenr)
nid_page_nr(nid, pagenr)
I called them "pgdat" and "nid" because we overload the term "node" to mean
"NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways. I
believe the newer names are much clearer.
These macros can be overridden in the sparsemem case with a theoretically
slower operation using node_start_pfn and pfn_to_page(), instead. We could
make this the only behavior if people want, but I don't want to change too
much at once. One thing at a time.
This patch removes more code than it adds.
Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386
generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64. Full list
here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/
Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin J. Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:07:37 +02:00
|
|
|
if (PageReserved(page))
|
2005-04-17 00:20:36 +02:00
|
|
|
reserved++;
|
[PATCH] remove non-DISCONTIG use of pgdat->node_mem_map
This patch effectively eliminates direct use of pgdat->node_mem_map outside
of the DISCONTIG code. On a flat memory system, these fields aren't
currently used, neither are they on a sparsemem system.
There was also a node_mem_map(nid) macro on many architectures. Its use
along with the use of ->node_mem_map itself was not consistent. It has
been removed in favor of two new, more explicit, arch-independent macros:
pgdat_page_nr(pgdat, pagenr)
nid_page_nr(nid, pagenr)
I called them "pgdat" and "nid" because we overload the term "node" to mean
"NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways. I
believe the newer names are much clearer.
These macros can be overridden in the sparsemem case with a theoretically
slower operation using node_start_pfn and pfn_to_page(), instead. We could
make this the only behavior if people want, but I don't want to change too
much at once. One thing at a time.
This patch removes more code than it adds.
Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386
generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64. Full list
here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/
Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin J. Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:07:37 +02:00
|
|
|
else if (PageSwapCache(page))
|
2005-04-17 00:20:36 +02:00
|
|
|
cached++;
|
[PATCH] remove non-DISCONTIG use of pgdat->node_mem_map
This patch effectively eliminates direct use of pgdat->node_mem_map outside
of the DISCONTIG code. On a flat memory system, these fields aren't
currently used, neither are they on a sparsemem system.
There was also a node_mem_map(nid) macro on many architectures. Its use
along with the use of ->node_mem_map itself was not consistent. It has
been removed in favor of two new, more explicit, arch-independent macros:
pgdat_page_nr(pgdat, pagenr)
nid_page_nr(nid, pagenr)
I called them "pgdat" and "nid" because we overload the term "node" to mean
"NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways. I
believe the newer names are much clearer.
These macros can be overridden in the sparsemem case with a theoretically
slower operation using node_start_pfn and pfn_to_page(), instead. We could
make this the only behavior if people want, but I don't want to change too
much at once. One thing at a time.
This patch removes more code than it adds.
Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386
generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64. Full list
here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/
Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin J. Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:07:37 +02:00
|
|
|
else if (!page_count(page))
|
2005-04-17 00:20:36 +02:00
|
|
|
free++;
|
|
|
|
else
|
[PATCH] remove non-DISCONTIG use of pgdat->node_mem_map
This patch effectively eliminates direct use of pgdat->node_mem_map outside
of the DISCONTIG code. On a flat memory system, these fields aren't
currently used, neither are they on a sparsemem system.
There was also a node_mem_map(nid) macro on many architectures. Its use
along with the use of ->node_mem_map itself was not consistent. It has
been removed in favor of two new, more explicit, arch-independent macros:
pgdat_page_nr(pgdat, pagenr)
nid_page_nr(nid, pagenr)
I called them "pgdat" and "nid" because we overload the term "node" to mean
"NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways. I
believe the newer names are much clearer.
These macros can be overridden in the sparsemem case with a theoretically
slower operation using node_start_pfn and pfn_to_page(), instead. We could
make this the only behavior if people want, but I don't want to change too
much at once. One thing at a time.
This patch removes more code than it adds.
Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386
generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64. Full list
here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/
Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin J. Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:07:37 +02:00
|
|
|
shared += page_count(page) - 1;
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
2005-10-30 02:16:52 +01:00
|
|
|
pgdat_resize_unlock(NODE_DATA(nid), &flags);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
printk("%ld pages of RAM\n",total);
|
|
|
|
printk("%ld free pages\n",free);
|
|
|
|
printk("%ld reserved pages\n",reserved);
|
|
|
|
printk("%ld pages shared\n",shared);
|
|
|
|
printk("%ld pages swap cached\n",cached);
|
|
|
|
}
|