2008-02-05 07:29:42 +01:00
|
|
|
/* Common capabilities, needed by capability.o and root_plug.o
|
2005-04-17 00:20:36 +02:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2006-01-11 21:17:46 +01:00
|
|
|
#include <linux/capability.h>
|
2005-04-17 00:20:36 +02:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/security.h>
|
|
|
|
#include <linux/file.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/mman.h>
|
|
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <linux/swap.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/netlink.h>
|
|
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <linux/xattr.h>
|
|
|
|
#include <linux/hugetlb.h>
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
#include <linux/mount.h>
|
2007-10-19 08:39:52 +02:00
|
|
|
#include <linux/sched.h>
|
2005-04-17 00:20:36 +02:00
|
|
|
|
V3 file capabilities: alter behavior of cap_setpcap
The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1,
can change the capabilities of another process, p2. This is not the
meaning that was intended for this capability at all, and this
implementation came about purely because, without filesystem capabilities,
there was no way to use capabilities without one process bestowing them on
another.
Since we now have a filesystem support for capabilities we can fix the
implementation of CAP_SETPCAP.
The most significant thing about this change is that, with it in effect, no
process can set the capabilities of another process.
The capabilities of a program are set via the capability convolution
rules:
pI(post-exec) = pI(pre-exec)
pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI)
pE(post-exec) = fE ? pP(post-exec) : 0
at exec() time. As such, the only influence the pre-exec() program can
have on the post-exec() program's capabilities are through the pI
capability set.
The correct implementation for CAP_SETPCAP (and that enabled by this patch)
is that it can be used to add extra pI capabilities to the current process
- to be picked up by subsequent exec()s when the above convolution rules
are applied.
Here is how it works:
Let's say we have a process, p. It has capability sets, pE, pP and pI.
Generally, p, can change the value of its own pI to pI' where
(pI' & ~pI) & ~pP = 0.
That is, the only new things in pI' that were not present in pI need to
be present in pP.
The role of CAP_SETPCAP is basically to permit changes to pI beyond
the above:
if (pE & CAP_SETPCAP) {
pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */
}
This capability is useful for things like login, which (say, via
pam_cap) might want to raise certain inheritable capabilities for use
by the children of the logged-in user's shell, but those capabilities
are not useful to or needed by the login program itself.
One such use might be to limit who can run ping. You set the
capabilities of the 'ping' program to be "= cap_net_raw+i", and then
only shells that have (pI & CAP_NET_RAW) will be able to run
it. Without CAP_SETPCAP implemented as described above, login(pam_cap)
would have to also have (pP & CAP_NET_RAW) in order to raise this
capability and pass it on through the inheritable set.
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 12:05:59 +02:00
|
|
|
/* Global security state */
|
|
|
|
|
|
|
|
unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
|
|
|
|
EXPORT_SYMBOL(securebits);
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
NETLINK_CB(skb).eff_cap = current->cap_effective;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-06-27 22:26:11 +02:00
|
|
|
int cap_netlink_recv(struct sk_buff *skb, int cap)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
2006-06-27 22:26:11 +02:00
|
|
|
if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
|
2005-04-17 00:20:36 +02:00
|
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(cap_netlink_recv);
|
|
|
|
|
2008-01-22 02:18:30 +01:00
|
|
|
/*
|
|
|
|
* NOTE WELL: cap_capable() cannot be used like the kernel's capable()
|
|
|
|
* function. That is, it has the reverse semantics: cap_capable()
|
|
|
|
* returns 0 when a task has a capability, but the kernel's capable()
|
|
|
|
* returns 1 for this case.
|
|
|
|
*/
|
2005-04-17 00:20:36 +02:00
|
|
|
int cap_capable (struct task_struct *tsk, int cap)
|
|
|
|
{
|
|
|
|
/* Derived from include/linux/sched.h:capable. */
|
|
|
|
if (cap_raised(tsk->cap_effective, cap))
|
|
|
|
return 0;
|
|
|
|
return -EPERM;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_settime(struct timespec *ts, struct timezone *tz)
|
|
|
|
{
|
|
|
|
if (!capable(CAP_SYS_TIME))
|
|
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_ptrace (struct task_struct *parent, struct task_struct *child)
|
|
|
|
{
|
|
|
|
/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
|
2006-03-25 12:07:41 +01:00
|
|
|
if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
|
|
|
|
!__capable(parent, CAP_SYS_PTRACE))
|
2005-04-17 00:20:36 +02:00
|
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_capget (struct task_struct *target, kernel_cap_t *effective,
|
|
|
|
kernel_cap_t *inheritable, kernel_cap_t *permitted)
|
|
|
|
{
|
|
|
|
/* Derived from kernel/capability.c:sys_capget. */
|
2008-02-05 07:29:42 +01:00
|
|
|
*effective = target->cap_effective;
|
|
|
|
*inheritable = target->cap_inheritable;
|
|
|
|
*permitted = target->cap_permitted;
|
2005-04-17 00:20:36 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
V3 file capabilities: alter behavior of cap_setpcap
The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1,
can change the capabilities of another process, p2. This is not the
meaning that was intended for this capability at all, and this
implementation came about purely because, without filesystem capabilities,
there was no way to use capabilities without one process bestowing them on
another.
Since we now have a filesystem support for capabilities we can fix the
implementation of CAP_SETPCAP.
The most significant thing about this change is that, with it in effect, no
process can set the capabilities of another process.
The capabilities of a program are set via the capability convolution
rules:
pI(post-exec) = pI(pre-exec)
pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI)
pE(post-exec) = fE ? pP(post-exec) : 0
at exec() time. As such, the only influence the pre-exec() program can
have on the post-exec() program's capabilities are through the pI
capability set.
The correct implementation for CAP_SETPCAP (and that enabled by this patch)
is that it can be used to add extra pI capabilities to the current process
- to be picked up by subsequent exec()s when the above convolution rules
are applied.
Here is how it works:
Let's say we have a process, p. It has capability sets, pE, pP and pI.
Generally, p, can change the value of its own pI to pI' where
(pI' & ~pI) & ~pP = 0.
That is, the only new things in pI' that were not present in pI need to
be present in pP.
The role of CAP_SETPCAP is basically to permit changes to pI beyond
the above:
if (pE & CAP_SETPCAP) {
pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */
}
This capability is useful for things like login, which (say, via
pam_cap) might want to raise certain inheritable capabilities for use
by the children of the logged-in user's shell, but those capabilities
are not useful to or needed by the login program itself.
One such use might be to limit who can run ping. You set the
capabilities of the 'ping' program to be "= cap_net_raw+i", and then
only shells that have (pI & CAP_NET_RAW) will be able to run
it. Without CAP_SETPCAP implemented as described above, login(pam_cap)
would have to also have (pP & CAP_NET_RAW) in order to raise this
capability and pass it on through the inheritable set.
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 12:05:59 +02:00
|
|
|
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
|
|
|
|
|
|
|
|
static inline int cap_block_setpcap(struct task_struct *target)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* No support for remote process capability manipulation with
|
|
|
|
* filesystem capability support.
|
|
|
|
*/
|
|
|
|
return (target != current);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int cap_inh_is_capped(void)
|
|
|
|
{
|
|
|
|
/*
|
2008-01-22 02:18:30 +01:00
|
|
|
* Return 1 if changes to the inheritable set are limited
|
|
|
|
* to the old permitted set. That is, if the current task
|
|
|
|
* does *not* possess the CAP_SETPCAP capability.
|
V3 file capabilities: alter behavior of cap_setpcap
The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1,
can change the capabilities of another process, p2. This is not the
meaning that was intended for this capability at all, and this
implementation came about purely because, without filesystem capabilities,
there was no way to use capabilities without one process bestowing them on
another.
Since we now have a filesystem support for capabilities we can fix the
implementation of CAP_SETPCAP.
The most significant thing about this change is that, with it in effect, no
process can set the capabilities of another process.
The capabilities of a program are set via the capability convolution
rules:
pI(post-exec) = pI(pre-exec)
pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI)
pE(post-exec) = fE ? pP(post-exec) : 0
at exec() time. As such, the only influence the pre-exec() program can
have on the post-exec() program's capabilities are through the pI
capability set.
The correct implementation for CAP_SETPCAP (and that enabled by this patch)
is that it can be used to add extra pI capabilities to the current process
- to be picked up by subsequent exec()s when the above convolution rules
are applied.
Here is how it works:
Let's say we have a process, p. It has capability sets, pE, pP and pI.
Generally, p, can change the value of its own pI to pI' where
(pI' & ~pI) & ~pP = 0.
That is, the only new things in pI' that were not present in pI need to
be present in pP.
The role of CAP_SETPCAP is basically to permit changes to pI beyond
the above:
if (pE & CAP_SETPCAP) {
pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */
}
This capability is useful for things like login, which (say, via
pam_cap) might want to raise certain inheritable capabilities for use
by the children of the logged-in user's shell, but those capabilities
are not useful to or needed by the login program itself.
One such use might be to limit who can run ping. You set the
capabilities of the 'ping' program to be "= cap_net_raw+i", and then
only shells that have (pI & CAP_NET_RAW) will be able to run
it. Without CAP_SETPCAP implemented as described above, login(pam_cap)
would have to also have (pP & CAP_NET_RAW) in order to raise this
capability and pass it on through the inheritable set.
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 12:05:59 +02:00
|
|
|
*/
|
2008-01-22 02:18:30 +01:00
|
|
|
return (cap_capable(current, CAP_SETPCAP) != 0);
|
V3 file capabilities: alter behavior of cap_setpcap
The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1,
can change the capabilities of another process, p2. This is not the
meaning that was intended for this capability at all, and this
implementation came about purely because, without filesystem capabilities,
there was no way to use capabilities without one process bestowing them on
another.
Since we now have a filesystem support for capabilities we can fix the
implementation of CAP_SETPCAP.
The most significant thing about this change is that, with it in effect, no
process can set the capabilities of another process.
The capabilities of a program are set via the capability convolution
rules:
pI(post-exec) = pI(pre-exec)
pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI)
pE(post-exec) = fE ? pP(post-exec) : 0
at exec() time. As such, the only influence the pre-exec() program can
have on the post-exec() program's capabilities are through the pI
capability set.
The correct implementation for CAP_SETPCAP (and that enabled by this patch)
is that it can be used to add extra pI capabilities to the current process
- to be picked up by subsequent exec()s when the above convolution rules
are applied.
Here is how it works:
Let's say we have a process, p. It has capability sets, pE, pP and pI.
Generally, p, can change the value of its own pI to pI' where
(pI' & ~pI) & ~pP = 0.
That is, the only new things in pI' that were not present in pI need to
be present in pP.
The role of CAP_SETPCAP is basically to permit changes to pI beyond
the above:
if (pE & CAP_SETPCAP) {
pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */
}
This capability is useful for things like login, which (say, via
pam_cap) might want to raise certain inheritable capabilities for use
by the children of the logged-in user's shell, but those capabilities
are not useful to or needed by the login program itself.
One such use might be to limit who can run ping. You set the
capabilities of the 'ping' program to be "= cap_net_raw+i", and then
only shells that have (pI & CAP_NET_RAW) will be able to run
it. Without CAP_SETPCAP implemented as described above, login(pam_cap)
would have to also have (pP & CAP_NET_RAW) in order to raise this
capability and pass it on through the inheritable set.
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 12:05:59 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
#else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
|
|
|
|
|
|
|
|
static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
|
|
|
|
static inline int cap_inh_is_capped(void) { return 1; }
|
|
|
|
|
|
|
|
#endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
|
|
|
|
kernel_cap_t *inheritable, kernel_cap_t *permitted)
|
|
|
|
{
|
V3 file capabilities: alter behavior of cap_setpcap
The non-filesystem capability meaning of CAP_SETPCAP is that a process, p1,
can change the capabilities of another process, p2. This is not the
meaning that was intended for this capability at all, and this
implementation came about purely because, without filesystem capabilities,
there was no way to use capabilities without one process bestowing them on
another.
Since we now have a filesystem support for capabilities we can fix the
implementation of CAP_SETPCAP.
The most significant thing about this change is that, with it in effect, no
process can set the capabilities of another process.
The capabilities of a program are set via the capability convolution
rules:
pI(post-exec) = pI(pre-exec)
pP(post-exec) = (X(aka cap_bset) & fP) | (pI(post-exec) & fI)
pE(post-exec) = fE ? pP(post-exec) : 0
at exec() time. As such, the only influence the pre-exec() program can
have on the post-exec() program's capabilities are through the pI
capability set.
The correct implementation for CAP_SETPCAP (and that enabled by this patch)
is that it can be used to add extra pI capabilities to the current process
- to be picked up by subsequent exec()s when the above convolution rules
are applied.
Here is how it works:
Let's say we have a process, p. It has capability sets, pE, pP and pI.
Generally, p, can change the value of its own pI to pI' where
(pI' & ~pI) & ~pP = 0.
That is, the only new things in pI' that were not present in pI need to
be present in pP.
The role of CAP_SETPCAP is basically to permit changes to pI beyond
the above:
if (pE & CAP_SETPCAP) {
pI' = anything; /* ie., even (pI' & ~pI) & ~pP != 0 */
}
This capability is useful for things like login, which (say, via
pam_cap) might want to raise certain inheritable capabilities for use
by the children of the logged-in user's shell, but those capabilities
are not useful to or needed by the login program itself.
One such use might be to limit who can run ping. You set the
capabilities of the 'ping' program to be "= cap_net_raw+i", and then
only shells that have (pI & CAP_NET_RAW) will be able to run
it. Without CAP_SETPCAP implemented as described above, login(pam_cap)
would have to also have (pP & CAP_NET_RAW) in order to raise this
capability and pass it on through the inheritable set.
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 12:05:59 +02:00
|
|
|
if (cap_block_setpcap(target)) {
|
|
|
|
return -EPERM;
|
|
|
|
}
|
|
|
|
if (cap_inh_is_capped()
|
|
|
|
&& !cap_issubset(*inheritable,
|
|
|
|
cap_combine(target->cap_inheritable,
|
|
|
|
current->cap_permitted))) {
|
|
|
|
/* incapable of using this inheritable set */
|
2005-04-17 00:20:36 +02:00
|
|
|
return -EPERM;
|
|
|
|
}
|
capabilities: introduce per-process capability bounding set
The capability bounding set is a set beyond which capabilities cannot grow.
Currently cap_bset is per-system. It can be manipulated through sysctl,
but only init can add capabilities. Root can remove capabilities. By
default it includes all caps except CAP_SETPCAP.
This patch makes the bounding set per-process when file capabilities are
enabled. It is inherited at fork from parent. Noone can add elements,
CAP_SETPCAP is required to remove them.
One example use of this is to start a safer container. For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.
The bounding set will not affect pP and pE immediately. It will only
affect pP' and pE' after subsequent exec()s. It also does not affect pI,
and exec() does not constrain pI'. So to really start a shell with no way
of regain CAP_MKNOD, you would do
prctl(PR_CAPBSET_DROP, CAP_MKNOD);
cap_t cap = cap_get_proc();
cap_value_t caparray[1];
caparray[0] = CAP_MKNOD;
cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
cap_set_proc(cap);
cap_free(cap);
The following test program will get and set the bounding
set (but not pI). For instance
./bset get
(lists capabilities in bset)
./bset drop cap_net_raw
(starts shell with new bset)
(use capset, setuid binary, or binary with
file capabilities to try to increase caps)
************************************************************
cap_bound.c
************************************************************
#include <sys/prctl.h>
#include <linux/capability.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef PR_CAPBSET_READ
#define PR_CAPBSET_READ 23
#endif
#ifndef PR_CAPBSET_DROP
#define PR_CAPBSET_DROP 24
#endif
int usage(char *me)
{
printf("Usage: %s get\n", me);
printf(" %s drop <capability>\n", me);
return 1;
}
#define numcaps 32
char *captable[numcaps] = {
"cap_chown",
"cap_dac_override",
"cap_dac_read_search",
"cap_fowner",
"cap_fsetid",
"cap_kill",
"cap_setgid",
"cap_setuid",
"cap_setpcap",
"cap_linux_immutable",
"cap_net_bind_service",
"cap_net_broadcast",
"cap_net_admin",
"cap_net_raw",
"cap_ipc_lock",
"cap_ipc_owner",
"cap_sys_module",
"cap_sys_rawio",
"cap_sys_chroot",
"cap_sys_ptrace",
"cap_sys_pacct",
"cap_sys_admin",
"cap_sys_boot",
"cap_sys_nice",
"cap_sys_resource",
"cap_sys_time",
"cap_sys_tty_config",
"cap_mknod",
"cap_lease",
"cap_audit_write",
"cap_audit_control",
"cap_setfcap"
};
int getbcap(void)
{
int comma=0;
unsigned long i;
int ret;
printf("i know of %d capabilities\n", numcaps);
printf("capability bounding set:");
for (i=0; i<numcaps; i++) {
ret = prctl(PR_CAPBSET_READ, i);
if (ret < 0)
perror("prctl");
else if (ret==1)
printf("%s%s", (comma++) ? ", " : " ", captable[i]);
}
printf("\n");
return 0;
}
int capdrop(char *str)
{
unsigned long i;
int found=0;
for (i=0; i<numcaps; i++) {
if (strcmp(captable[i], str) == 0) {
found=1;
break;
}
}
if (!found)
return 1;
if (prctl(PR_CAPBSET_DROP, i)) {
perror("prctl");
return 1;
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc<2)
return usage(argv[0]);
if (strcmp(argv[1], "get")==0)
return getbcap();
if (strcmp(argv[1], "drop")!=0 || argc<3)
return usage(argv[0]);
if (capdrop(argv[2])) {
printf("unknown capability\n");
return 1;
}
return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************
[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 07:29:45 +01:00
|
|
|
if (!cap_issubset(*inheritable,
|
|
|
|
cap_combine(target->cap_inheritable,
|
|
|
|
current->cap_bset))) {
|
|
|
|
/* no new pI capabilities outside bounding set */
|
|
|
|
return -EPERM;
|
|
|
|
}
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/* verify restrictions on target's new Permitted set */
|
|
|
|
if (!cap_issubset (*permitted,
|
|
|
|
cap_combine (target->cap_permitted,
|
|
|
|
current->cap_permitted))) {
|
|
|
|
return -EPERM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
|
|
|
|
if (!cap_issubset (*effective, *permitted)) {
|
|
|
|
return -EPERM;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
|
|
|
|
kernel_cap_t *inheritable, kernel_cap_t *permitted)
|
|
|
|
{
|
|
|
|
target->cap_effective = *effective;
|
|
|
|
target->cap_inheritable = *inheritable;
|
|
|
|
target->cap_permitted = *permitted;
|
|
|
|
}
|
|
|
|
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
static inline void bprm_clear_caps(struct linux_binprm *bprm)
|
|
|
|
{
|
|
|
|
cap_clear(bprm->cap_inheritable);
|
|
|
|
cap_clear(bprm->cap_permitted);
|
|
|
|
bprm->cap_effective = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
|
|
|
|
|
|
|
|
int cap_inode_need_killpriv(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
struct inode *inode = dentry->d_inode;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (!inode->i_op || !inode->i_op->getxattr)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
|
|
|
|
if (error <= 0)
|
|
|
|
return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_inode_killpriv(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
struct inode *inode = dentry->d_inode;
|
|
|
|
|
|
|
|
if (!inode->i_op || !inode->i_op->removexattr)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
|
|
|
|
}
|
|
|
|
|
2008-02-05 07:29:42 +01:00
|
|
|
static inline int cap_from_disk(struct vfs_cap_data *caps,
|
|
|
|
struct linux_binprm *bprm, unsigned size)
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
{
|
|
|
|
__u32 magic_etc;
|
2008-02-05 07:29:42 +01:00
|
|
|
unsigned tocopy, i;
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
|
2008-02-05 07:29:42 +01:00
|
|
|
if (size < sizeof(magic_etc))
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
return -EINVAL;
|
|
|
|
|
2008-02-05 07:29:42 +01:00
|
|
|
magic_etc = le32_to_cpu(caps->magic_etc);
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
|
|
|
|
switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
|
2008-02-05 07:29:42 +01:00
|
|
|
case VFS_CAP_REVISION_1:
|
|
|
|
if (size != XATTR_CAPS_SZ_1)
|
|
|
|
return -EINVAL;
|
|
|
|
tocopy = VFS_CAP_U32_1;
|
|
|
|
break;
|
|
|
|
case VFS_CAP_REVISION_2:
|
|
|
|
if (size != XATTR_CAPS_SZ_2)
|
|
|
|
return -EINVAL;
|
|
|
|
tocopy = VFS_CAP_U32_2;
|
|
|
|
break;
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2008-02-05 07:29:42 +01:00
|
|
|
|
|
|
|
if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) {
|
|
|
|
bprm->cap_effective = true;
|
|
|
|
} else {
|
|
|
|
bprm->cap_effective = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < tocopy; ++i) {
|
|
|
|
bprm->cap_permitted.cap[i] =
|
|
|
|
le32_to_cpu(caps->data[i].permitted);
|
|
|
|
bprm->cap_inheritable.cap[i] =
|
|
|
|
le32_to_cpu(caps->data[i].inheritable);
|
|
|
|
}
|
|
|
|
while (i < VFS_CAP_U32) {
|
|
|
|
bprm->cap_permitted.cap[i] = 0;
|
|
|
|
bprm->cap_inheritable.cap[i] = 0;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Locate any VFS capabilities: */
|
|
|
|
static int get_file_caps(struct linux_binprm *bprm)
|
|
|
|
{
|
|
|
|
struct dentry *dentry;
|
|
|
|
int rc = 0;
|
2008-02-05 07:29:42 +01:00
|
|
|
struct vfs_cap_data vcaps;
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
struct inode *inode;
|
|
|
|
|
|
|
|
if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
|
|
|
|
bprm_clear_caps(bprm);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
dentry = dget(bprm->file->f_dentry);
|
|
|
|
inode = dentry->d_inode;
|
|
|
|
if (!inode->i_op || !inode->i_op->getxattr)
|
|
|
|
goto out;
|
|
|
|
|
2008-02-05 07:29:42 +01:00
|
|
|
rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps,
|
|
|
|
XATTR_CAPS_SZ);
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
if (rc == -ENODATA || rc == -EOPNOTSUPP) {
|
|
|
|
/* no data, that's ok */
|
|
|
|
rc = 0;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if (rc < 0)
|
|
|
|
goto out;
|
|
|
|
|
2008-02-05 07:29:42 +01:00
|
|
|
rc = cap_from_disk(&vcaps, bprm, rc);
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
if (rc)
|
|
|
|
printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
|
|
|
|
__FUNCTION__, rc, bprm->filename);
|
|
|
|
|
|
|
|
out:
|
|
|
|
dput(dentry);
|
|
|
|
if (rc)
|
|
|
|
bprm_clear_caps(bprm);
|
|
|
|
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
int cap_inode_need_killpriv(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_inode_killpriv(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int get_file_caps(struct linux_binprm *bprm)
|
|
|
|
{
|
|
|
|
bprm_clear_caps(bprm);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
int cap_bprm_set_security (struct linux_binprm *bprm)
|
|
|
|
{
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
int ret;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
ret = get_file_caps(bprm);
|
|
|
|
if (ret)
|
|
|
|
printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n",
|
|
|
|
__FUNCTION__, ret, bprm->filename);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/* To support inheritance of root-permissions and suid-root
|
|
|
|
* executables under compatibility mode, we raise all three
|
|
|
|
* capability sets for the file.
|
|
|
|
*
|
|
|
|
* If only the real uid is 0, we only raise the inheritable
|
|
|
|
* and permitted sets of the executable file.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!issecure (SECURE_NOROOT)) {
|
|
|
|
if (bprm->e_uid == 0 || current->uid == 0) {
|
|
|
|
cap_set_full (bprm->cap_inheritable);
|
|
|
|
cap_set_full (bprm->cap_permitted);
|
|
|
|
}
|
|
|
|
if (bprm->e_uid == 0)
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
bprm->cap_effective = true;
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
|
|
|
|
return ret;
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
|
|
|
|
{
|
|
|
|
/* Derived from fs/exec.c:compute_creds. */
|
|
|
|
kernel_cap_t new_permitted, working;
|
|
|
|
|
capabilities: introduce per-process capability bounding set
The capability bounding set is a set beyond which capabilities cannot grow.
Currently cap_bset is per-system. It can be manipulated through sysctl,
but only init can add capabilities. Root can remove capabilities. By
default it includes all caps except CAP_SETPCAP.
This patch makes the bounding set per-process when file capabilities are
enabled. It is inherited at fork from parent. Noone can add elements,
CAP_SETPCAP is required to remove them.
One example use of this is to start a safer container. For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.
The bounding set will not affect pP and pE immediately. It will only
affect pP' and pE' after subsequent exec()s. It also does not affect pI,
and exec() does not constrain pI'. So to really start a shell with no way
of regain CAP_MKNOD, you would do
prctl(PR_CAPBSET_DROP, CAP_MKNOD);
cap_t cap = cap_get_proc();
cap_value_t caparray[1];
caparray[0] = CAP_MKNOD;
cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
cap_set_proc(cap);
cap_free(cap);
The following test program will get and set the bounding
set (but not pI). For instance
./bset get
(lists capabilities in bset)
./bset drop cap_net_raw
(starts shell with new bset)
(use capset, setuid binary, or binary with
file capabilities to try to increase caps)
************************************************************
cap_bound.c
************************************************************
#include <sys/prctl.h>
#include <linux/capability.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef PR_CAPBSET_READ
#define PR_CAPBSET_READ 23
#endif
#ifndef PR_CAPBSET_DROP
#define PR_CAPBSET_DROP 24
#endif
int usage(char *me)
{
printf("Usage: %s get\n", me);
printf(" %s drop <capability>\n", me);
return 1;
}
#define numcaps 32
char *captable[numcaps] = {
"cap_chown",
"cap_dac_override",
"cap_dac_read_search",
"cap_fowner",
"cap_fsetid",
"cap_kill",
"cap_setgid",
"cap_setuid",
"cap_setpcap",
"cap_linux_immutable",
"cap_net_bind_service",
"cap_net_broadcast",
"cap_net_admin",
"cap_net_raw",
"cap_ipc_lock",
"cap_ipc_owner",
"cap_sys_module",
"cap_sys_rawio",
"cap_sys_chroot",
"cap_sys_ptrace",
"cap_sys_pacct",
"cap_sys_admin",
"cap_sys_boot",
"cap_sys_nice",
"cap_sys_resource",
"cap_sys_time",
"cap_sys_tty_config",
"cap_mknod",
"cap_lease",
"cap_audit_write",
"cap_audit_control",
"cap_setfcap"
};
int getbcap(void)
{
int comma=0;
unsigned long i;
int ret;
printf("i know of %d capabilities\n", numcaps);
printf("capability bounding set:");
for (i=0; i<numcaps; i++) {
ret = prctl(PR_CAPBSET_READ, i);
if (ret < 0)
perror("prctl");
else if (ret==1)
printf("%s%s", (comma++) ? ", " : " ", captable[i]);
}
printf("\n");
return 0;
}
int capdrop(char *str)
{
unsigned long i;
int found=0;
for (i=0; i<numcaps; i++) {
if (strcmp(captable[i], str) == 0) {
found=1;
break;
}
}
if (!found)
return 1;
if (prctl(PR_CAPBSET_DROP, i)) {
perror("prctl");
return 1;
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc<2)
return usage(argv[0]);
if (strcmp(argv[1], "get")==0)
return getbcap();
if (strcmp(argv[1], "drop")!=0 || argc<3)
return usage(argv[0]);
if (capdrop(argv[2])) {
printf("unknown capability\n");
return 1;
}
return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************
[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 07:29:45 +01:00
|
|
|
new_permitted = cap_intersect(bprm->cap_permitted,
|
|
|
|
current->cap_bset);
|
|
|
|
working = cap_intersect(bprm->cap_inheritable,
|
2005-04-17 00:20:36 +02:00
|
|
|
current->cap_inheritable);
|
capabilities: introduce per-process capability bounding set
The capability bounding set is a set beyond which capabilities cannot grow.
Currently cap_bset is per-system. It can be manipulated through sysctl,
but only init can add capabilities. Root can remove capabilities. By
default it includes all caps except CAP_SETPCAP.
This patch makes the bounding set per-process when file capabilities are
enabled. It is inherited at fork from parent. Noone can add elements,
CAP_SETPCAP is required to remove them.
One example use of this is to start a safer container. For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.
The bounding set will not affect pP and pE immediately. It will only
affect pP' and pE' after subsequent exec()s. It also does not affect pI,
and exec() does not constrain pI'. So to really start a shell with no way
of regain CAP_MKNOD, you would do
prctl(PR_CAPBSET_DROP, CAP_MKNOD);
cap_t cap = cap_get_proc();
cap_value_t caparray[1];
caparray[0] = CAP_MKNOD;
cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
cap_set_proc(cap);
cap_free(cap);
The following test program will get and set the bounding
set (but not pI). For instance
./bset get
(lists capabilities in bset)
./bset drop cap_net_raw
(starts shell with new bset)
(use capset, setuid binary, or binary with
file capabilities to try to increase caps)
************************************************************
cap_bound.c
************************************************************
#include <sys/prctl.h>
#include <linux/capability.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef PR_CAPBSET_READ
#define PR_CAPBSET_READ 23
#endif
#ifndef PR_CAPBSET_DROP
#define PR_CAPBSET_DROP 24
#endif
int usage(char *me)
{
printf("Usage: %s get\n", me);
printf(" %s drop <capability>\n", me);
return 1;
}
#define numcaps 32
char *captable[numcaps] = {
"cap_chown",
"cap_dac_override",
"cap_dac_read_search",
"cap_fowner",
"cap_fsetid",
"cap_kill",
"cap_setgid",
"cap_setuid",
"cap_setpcap",
"cap_linux_immutable",
"cap_net_bind_service",
"cap_net_broadcast",
"cap_net_admin",
"cap_net_raw",
"cap_ipc_lock",
"cap_ipc_owner",
"cap_sys_module",
"cap_sys_rawio",
"cap_sys_chroot",
"cap_sys_ptrace",
"cap_sys_pacct",
"cap_sys_admin",
"cap_sys_boot",
"cap_sys_nice",
"cap_sys_resource",
"cap_sys_time",
"cap_sys_tty_config",
"cap_mknod",
"cap_lease",
"cap_audit_write",
"cap_audit_control",
"cap_setfcap"
};
int getbcap(void)
{
int comma=0;
unsigned long i;
int ret;
printf("i know of %d capabilities\n", numcaps);
printf("capability bounding set:");
for (i=0; i<numcaps; i++) {
ret = prctl(PR_CAPBSET_READ, i);
if (ret < 0)
perror("prctl");
else if (ret==1)
printf("%s%s", (comma++) ? ", " : " ", captable[i]);
}
printf("\n");
return 0;
}
int capdrop(char *str)
{
unsigned long i;
int found=0;
for (i=0; i<numcaps; i++) {
if (strcmp(captable[i], str) == 0) {
found=1;
break;
}
}
if (!found)
return 1;
if (prctl(PR_CAPBSET_DROP, i)) {
perror("prctl");
return 1;
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc<2)
return usage(argv[0]);
if (strcmp(argv[1], "get")==0)
return getbcap();
if (strcmp(argv[1], "drop")!=0 || argc<3)
return usage(argv[0]);
if (capdrop(argv[2])) {
printf("unknown capability\n");
return 1;
}
return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************
[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 07:29:45 +01:00
|
|
|
new_permitted = cap_combine(new_permitted, working);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
|
|
|
|
!cap_issubset (new_permitted, current->cap_permitted)) {
|
2007-07-19 10:48:27 +02:00
|
|
|
set_dumpable(current->mm, suid_dumpable);
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
current->pdeath_signal = 0;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
|
|
|
|
if (!capable(CAP_SETUID)) {
|
|
|
|
bprm->e_uid = current->uid;
|
|
|
|
bprm->e_gid = current->gid;
|
|
|
|
}
|
|
|
|
if (!capable (CAP_SETPCAP)) {
|
|
|
|
new_permitted = cap_intersect (new_permitted,
|
|
|
|
current->cap_permitted);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
current->suid = current->euid = current->fsuid = bprm->e_uid;
|
|
|
|
current->sgid = current->egid = current->fsgid = bprm->e_gid;
|
|
|
|
|
|
|
|
/* For init, we want to retain the capabilities set
|
|
|
|
* in the init_task struct. Thus we skip the usual
|
|
|
|
* capability rules */
|
2007-10-19 08:39:52 +02:00
|
|
|
if (!is_global_init(current)) {
|
2005-04-17 00:20:36 +02:00
|
|
|
current->cap_permitted = new_permitted;
|
2008-02-05 07:29:42 +01:00
|
|
|
if (bprm->cap_effective)
|
|
|
|
current->cap_effective = new_permitted;
|
|
|
|
else
|
|
|
|
cap_clear(current->cap_effective);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/* AUD: Audit candidate if current->cap_effective is set */
|
|
|
|
|
|
|
|
current->keep_capabilities = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_bprm_secureexec (struct linux_binprm *bprm)
|
|
|
|
{
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
if (current->uid != 0) {
|
|
|
|
if (bprm->cap_effective)
|
|
|
|
return 1;
|
|
|
|
if (!cap_isclear(bprm->cap_permitted))
|
|
|
|
return 1;
|
|
|
|
if (!cap_isclear(bprm->cap_inheritable))
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
return (current->euid != current->uid ||
|
|
|
|
current->egid != current->gid);
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
|
|
|
|
size_t size, int flags)
|
|
|
|
{
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
if (!strcmp(name, XATTR_NAME_CAPS)) {
|
|
|
|
if (!capable(CAP_SETFCAP))
|
|
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
|
|
} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
|
2005-04-17 00:20:36 +02:00
|
|
|
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
|
|
|
|
!capable(CAP_SYS_ADMIN))
|
|
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_inode_removexattr(struct dentry *dentry, char *name)
|
|
|
|
{
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
if (!strcmp(name, XATTR_NAME_CAPS)) {
|
|
|
|
if (!capable(CAP_SETFCAP))
|
|
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
|
|
} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
|
2005-04-17 00:20:36 +02:00
|
|
|
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
|
|
|
|
!capable(CAP_SYS_ADMIN))
|
|
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* moved from kernel/sys.c. */
|
|
|
|
/*
|
|
|
|
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
|
|
|
|
* a process after a call to setuid, setreuid, or setresuid.
|
|
|
|
*
|
|
|
|
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
|
|
|
|
* {r,e,s}uid != 0, the permitted and effective capabilities are
|
|
|
|
* cleared.
|
|
|
|
*
|
|
|
|
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
|
|
|
|
* capabilities of the process are cleared.
|
|
|
|
*
|
|
|
|
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
|
|
|
|
* capabilities are set to the permitted capabilities.
|
|
|
|
*
|
|
|
|
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
|
|
|
|
* never happen.
|
|
|
|
*
|
|
|
|
* -astor
|
|
|
|
*
|
|
|
|
* cevans - New behaviour, Oct '99
|
|
|
|
* A process may, via prctl(), elect to keep its capabilities when it
|
|
|
|
* calls setuid() and switches away from uid==0. Both permitted and
|
|
|
|
* effective sets will be retained.
|
|
|
|
* Without this change, it was impossible for a daemon to drop only some
|
|
|
|
* of its privilege. The call to setuid(!=0) would drop all privileges!
|
|
|
|
* Keeping uid 0 is not an option because uid 0 owns too many vital
|
|
|
|
* files..
|
|
|
|
* Thanks to Olaf Kirch and Peter Benie for spotting this.
|
|
|
|
*/
|
|
|
|
static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
|
|
|
|
int old_suid)
|
|
|
|
{
|
|
|
|
if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
|
|
|
|
(current->uid != 0 && current->euid != 0 && current->suid != 0) &&
|
|
|
|
!current->keep_capabilities) {
|
|
|
|
cap_clear (current->cap_permitted);
|
|
|
|
cap_clear (current->cap_effective);
|
|
|
|
}
|
|
|
|
if (old_euid == 0 && current->euid != 0) {
|
|
|
|
cap_clear (current->cap_effective);
|
|
|
|
}
|
|
|
|
if (old_euid != 0 && current->euid == 0) {
|
|
|
|
current->cap_effective = current->cap_permitted;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
|
|
|
|
int flags)
|
|
|
|
{
|
|
|
|
switch (flags) {
|
|
|
|
case LSM_SETID_RE:
|
|
|
|
case LSM_SETID_ID:
|
|
|
|
case LSM_SETID_RES:
|
|
|
|
/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
|
|
|
|
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
|
|
|
|
cap_emulate_setxuid (old_ruid, old_euid, old_suid);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case LSM_SETID_FS:
|
|
|
|
{
|
|
|
|
uid_t old_fsuid = old_ruid;
|
|
|
|
|
|
|
|
/* Copied from kernel/sys.c:setfsuid. */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
|
|
|
|
* if not, we might be a bit too harsh here.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
|
|
|
|
if (old_fsuid == 0 && current->fsuid != 0) {
|
2008-02-05 07:29:42 +01:00
|
|
|
current->cap_effective =
|
|
|
|
cap_drop_fs_set(
|
|
|
|
current->cap_effective);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
if (old_fsuid != 0 && current->fsuid == 0) {
|
2008-02-05 07:29:42 +01:00
|
|
|
current->cap_effective =
|
|
|
|
cap_raise_fs_set(
|
|
|
|
current->cap_effective,
|
|
|
|
current->cap_permitted);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
|
|
|
|
/*
|
|
|
|
* Rationale: code calling task_setscheduler, task_setioprio, and
|
|
|
|
* task_setnice, assumes that
|
|
|
|
* . if capable(cap_sys_nice), then those actions should be allowed
|
|
|
|
* . if not capable(cap_sys_nice), but acting on your own processes,
|
|
|
|
* then those actions should be allowed
|
|
|
|
* This is insufficient now since you can call code without suid, but
|
|
|
|
* yet with increased caps.
|
|
|
|
* So we check for increased caps on the target process.
|
|
|
|
*/
|
|
|
|
static inline int cap_safe_nice(struct task_struct *p)
|
|
|
|
{
|
|
|
|
if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
|
|
|
|
!__capable(current, CAP_SYS_NICE))
|
|
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_task_setscheduler (struct task_struct *p, int policy,
|
|
|
|
struct sched_param *lp)
|
|
|
|
{
|
|
|
|
return cap_safe_nice(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_task_setioprio (struct task_struct *p, int ioprio)
|
|
|
|
{
|
|
|
|
return cap_safe_nice(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_task_setnice (struct task_struct *p, int nice)
|
|
|
|
{
|
|
|
|
return cap_safe_nice(p);
|
|
|
|
}
|
|
|
|
|
capabilities: introduce per-process capability bounding set
The capability bounding set is a set beyond which capabilities cannot grow.
Currently cap_bset is per-system. It can be manipulated through sysctl,
but only init can add capabilities. Root can remove capabilities. By
default it includes all caps except CAP_SETPCAP.
This patch makes the bounding set per-process when file capabilities are
enabled. It is inherited at fork from parent. Noone can add elements,
CAP_SETPCAP is required to remove them.
One example use of this is to start a safer container. For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.
The bounding set will not affect pP and pE immediately. It will only
affect pP' and pE' after subsequent exec()s. It also does not affect pI,
and exec() does not constrain pI'. So to really start a shell with no way
of regain CAP_MKNOD, you would do
prctl(PR_CAPBSET_DROP, CAP_MKNOD);
cap_t cap = cap_get_proc();
cap_value_t caparray[1];
caparray[0] = CAP_MKNOD;
cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
cap_set_proc(cap);
cap_free(cap);
The following test program will get and set the bounding
set (but not pI). For instance
./bset get
(lists capabilities in bset)
./bset drop cap_net_raw
(starts shell with new bset)
(use capset, setuid binary, or binary with
file capabilities to try to increase caps)
************************************************************
cap_bound.c
************************************************************
#include <sys/prctl.h>
#include <linux/capability.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef PR_CAPBSET_READ
#define PR_CAPBSET_READ 23
#endif
#ifndef PR_CAPBSET_DROP
#define PR_CAPBSET_DROP 24
#endif
int usage(char *me)
{
printf("Usage: %s get\n", me);
printf(" %s drop <capability>\n", me);
return 1;
}
#define numcaps 32
char *captable[numcaps] = {
"cap_chown",
"cap_dac_override",
"cap_dac_read_search",
"cap_fowner",
"cap_fsetid",
"cap_kill",
"cap_setgid",
"cap_setuid",
"cap_setpcap",
"cap_linux_immutable",
"cap_net_bind_service",
"cap_net_broadcast",
"cap_net_admin",
"cap_net_raw",
"cap_ipc_lock",
"cap_ipc_owner",
"cap_sys_module",
"cap_sys_rawio",
"cap_sys_chroot",
"cap_sys_ptrace",
"cap_sys_pacct",
"cap_sys_admin",
"cap_sys_boot",
"cap_sys_nice",
"cap_sys_resource",
"cap_sys_time",
"cap_sys_tty_config",
"cap_mknod",
"cap_lease",
"cap_audit_write",
"cap_audit_control",
"cap_setfcap"
};
int getbcap(void)
{
int comma=0;
unsigned long i;
int ret;
printf("i know of %d capabilities\n", numcaps);
printf("capability bounding set:");
for (i=0; i<numcaps; i++) {
ret = prctl(PR_CAPBSET_READ, i);
if (ret < 0)
perror("prctl");
else if (ret==1)
printf("%s%s", (comma++) ? ", " : " ", captable[i]);
}
printf("\n");
return 0;
}
int capdrop(char *str)
{
unsigned long i;
int found=0;
for (i=0; i<numcaps; i++) {
if (strcmp(captable[i], str) == 0) {
found=1;
break;
}
}
if (!found)
return 1;
if (prctl(PR_CAPBSET_DROP, i)) {
perror("prctl");
return 1;
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc<2)
return usage(argv[0]);
if (strcmp(argv[1], "get")==0)
return getbcap();
if (strcmp(argv[1], "drop")!=0 || argc<3)
return usage(argv[0]);
if (capdrop(argv[2])) {
printf("unknown capability\n");
return 1;
}
return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************
[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 07:29:45 +01:00
|
|
|
/*
|
|
|
|
* called from kernel/sys.c for prctl(PR_CABSET_DROP)
|
|
|
|
* done without task_capability_lock() because it introduces
|
|
|
|
* no new races - i.e. only another task doing capget() on
|
|
|
|
* this task could get inconsistent info. There can be no
|
|
|
|
* racing writer bc a task can only change its own caps.
|
|
|
|
*/
|
|
|
|
long cap_prctl_drop(unsigned long cap)
|
|
|
|
{
|
|
|
|
if (!capable(CAP_SETPCAP))
|
|
|
|
return -EPERM;
|
|
|
|
if (!cap_valid(cap))
|
|
|
|
return -EINVAL;
|
|
|
|
cap_lower(current->cap_bset, cap);
|
|
|
|
return 0;
|
|
|
|
}
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:31:36 +02:00
|
|
|
#else
|
|
|
|
int cap_task_setscheduler (struct task_struct *p, int policy,
|
|
|
|
struct sched_param *lp)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
int cap_task_setioprio (struct task_struct *p, int ioprio)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
int cap_task_setnice (struct task_struct *p, int nice)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
void cap_task_reparent_to_init (struct task_struct *p)
|
|
|
|
{
|
2008-02-05 07:29:42 +01:00
|
|
|
cap_set_init_eff(p->cap_effective);
|
|
|
|
cap_clear(p->cap_inheritable);
|
|
|
|
cap_set_full(p->cap_permitted);
|
2005-04-17 00:20:36 +02:00
|
|
|
p->keep_capabilities = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cap_syslog (int type)
|
|
|
|
{
|
|
|
|
if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
|
|
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2007-08-22 23:01:28 +02:00
|
|
|
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
|
|
|
int cap_sys_admin = 0;
|
|
|
|
|
|
|
|
if (cap_capable(current, CAP_SYS_ADMIN) == 0)
|
|
|
|
cap_sys_admin = 1;
|
2007-08-22 23:01:28 +02:00
|
|
|
return __vm_enough_memory(mm, pages, cap_sys_admin);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|