android_kernel_motorola_sm6225/drivers/video/pxafb.c

1520 lines
45 KiB
C
Raw Normal View History

/*
* linux/drivers/video/pxafb.c
*
* Copyright (C) 1999 Eric A. Thomas.
* Copyright (C) 2004 Jean-Frederic Clere.
* Copyright (C) 2004 Ian Campbell.
* Copyright (C) 2004 Jeff Lackey.
* Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
* which in turn is
* Based on acornfb.c Copyright (C) Russell King.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*
* Intel PXA250/210 LCD Controller Frame Buffer Driver
*
* Please direct your questions and comments on this driver to the following
* email address:
*
* linux-arm-kernel@lists.arm.linux.org.uk
*
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/cpufreq.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <asm/arch/pxa-regs.h>
#include <asm/arch/bitfield.h>
#include <asm/arch/pxafb.h>
/*
* Complain if VAR is out of range.
*/
#define DEBUG_VAR 1
#include "pxafb.h"
/* Bits which should not be set in machine configuration structures */
#define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB)
#define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP)
static void (*pxafb_backlight_power)(int);
static void (*pxafb_lcd_power)(int, struct fb_var_screeninfo *);
static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *);
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
#ifdef CONFIG_FB_PXA_PARAMETERS
#define PXAFB_OPTIONS_SIZE 256
static char g_options[PXAFB_OPTIONS_SIZE] __devinitdata = "";
#endif
static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
{
unsigned long flags;
local_irq_save(flags);
/*
* We need to handle two requests being made at the same time.
* There are two important cases:
* 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
* We must perform the unblanking, which will do our REENABLE for us.
* 2. When we are blanking, but immediately unblank before we have
* blanked. We do the "REENABLE" thing here as well, just to be sure.
*/
if (fbi->task_state == C_ENABLE && state == C_REENABLE)
state = (u_int) -1;
if (fbi->task_state == C_DISABLE && state == C_ENABLE)
state = C_REENABLE;
if (state != (u_int)-1) {
fbi->task_state = state;
schedule_work(&fbi->task);
}
local_irq_restore(flags);
}
static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
static int
pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
u_int val;
if (regno >= fbi->palette_size)
return 1;
if (fbi->fb.var.grayscale) {
fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
return 0;
}
switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
case LCCR4_PAL_FOR_0:
val = ((red >> 0) & 0xf800);
val |= ((green >> 5) & 0x07e0);
val |= ((blue >> 11) & 0x001f);
fbi->palette_cpu[regno] = val;
break;
case LCCR4_PAL_FOR_1:
val = ((red << 8) & 0x00f80000);
val |= ((green >> 0) & 0x0000fc00);
val |= ((blue >> 8) & 0x000000f8);
((u32*)(fbi->palette_cpu))[regno] = val;
break;
case LCCR4_PAL_FOR_2:
val = ((red << 8) & 0x00fc0000);
val |= ((green >> 0) & 0x0000fc00);
val |= ((blue >> 8) & 0x000000fc);
((u32*)(fbi->palette_cpu))[regno] = val;
break;
}
return 0;
}
static int
pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
unsigned int val;
int ret = 1;
/*
* If inverse mode was selected, invert all the colours
* rather than the register number. The register number
* is what you poke into the framebuffer to produce the
* colour you requested.
*/
if (fbi->cmap_inverse) {
red = 0xffff - red;
green = 0xffff - green;
blue = 0xffff - blue;
}
/*
* If greyscale is true, then we convert the RGB value
* to greyscale no matter what visual we are using.
*/
if (fbi->fb.var.grayscale)
red = green = blue = (19595 * red + 38470 * green +
7471 * blue) >> 16;
switch (fbi->fb.fix.visual) {
case FB_VISUAL_TRUECOLOR:
/*
* 16-bit True Colour. We encode the RGB value
* according to the RGB bitfield information.
*/
if (regno < 16) {
u32 *pal = fbi->fb.pseudo_palette;
val = chan_to_field(red, &fbi->fb.var.red);
val |= chan_to_field(green, &fbi->fb.var.green);
val |= chan_to_field(blue, &fbi->fb.var.blue);
pal[regno] = val;
ret = 0;
}
break;
case FB_VISUAL_STATIC_PSEUDOCOLOR:
case FB_VISUAL_PSEUDOCOLOR:
ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
break;
}
return ret;
}
/*
* pxafb_bpp_to_lccr3():
* Convert a bits per pixel value to the correct bit pattern for LCCR3
*/
static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
{
int ret = 0;
switch (var->bits_per_pixel) {
case 1: ret = LCCR3_1BPP; break;
case 2: ret = LCCR3_2BPP; break;
case 4: ret = LCCR3_4BPP; break;
case 8: ret = LCCR3_8BPP; break;
case 16: ret = LCCR3_16BPP; break;
}
return ret;
}
#ifdef CONFIG_CPU_FREQ
/*
* pxafb_display_dma_period()
* Calculate the minimum period (in picoseconds) between two DMA
* requests for the LCD controller. If we hit this, it means we're
* doing nothing but LCD DMA.
*/
static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
{
/*
* Period = pixclock * bits_per_byte * bytes_per_transfer
* / memory_bits_per_pixel;
*/
return var->pixclock * 8 * 16 / var->bits_per_pixel;
}
extern unsigned int get_clk_frequency_khz(int info);
#endif
/*
* Select the smallest mode that allows the desired resolution to be
* displayed. If desired parameters can be rounded up.
*/
static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, struct fb_var_screeninfo *var)
{
struct pxafb_mode_info *mode = NULL;
struct pxafb_mode_info *modelist = mach->modes;
unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
unsigned int i;
for (i = 0 ; i < mach->num_modes ; i++) {
if (modelist[i].xres >= var->xres && modelist[i].yres >= var->yres &&
modelist[i].xres < best_x && modelist[i].yres < best_y &&
modelist[i].bpp >= var->bits_per_pixel ) {
best_x = modelist[i].xres;
best_y = modelist[i].yres;
mode = &modelist[i];
}
}
return mode;
}
static void pxafb_setmode(struct fb_var_screeninfo *var, struct pxafb_mode_info *mode)
{
var->xres = mode->xres;
var->yres = mode->yres;
var->bits_per_pixel = mode->bpp;
var->pixclock = mode->pixclock;
var->hsync_len = mode->hsync_len;
var->left_margin = mode->left_margin;
var->right_margin = mode->right_margin;
var->vsync_len = mode->vsync_len;
var->upper_margin = mode->upper_margin;
var->lower_margin = mode->lower_margin;
var->sync = mode->sync;
var->grayscale = mode->cmap_greyscale;
var->xres_virtual = var->xres;
var->yres_virtual = var->yres;
}
/*
* pxafb_check_var():
* Get the video params out of 'var'. If a value doesn't fit, round it up,
* if it's too big, return -EINVAL.
*
* Round up in the following order: bits_per_pixel, xres,
* yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
* bitfields, horizontal timing, vertical timing.
*/
static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
struct pxafb_mach_info *inf = fbi->dev->platform_data;
if (var->xres < MIN_XRES)
var->xres = MIN_XRES;
if (var->yres < MIN_YRES)
var->yres = MIN_YRES;
if (inf->fixed_modes) {
struct pxafb_mode_info *mode;
mode = pxafb_getmode(inf, var);
if (!mode)
return -EINVAL;
pxafb_setmode(var, mode);
} else {
if (var->xres > inf->modes->xres)
return -EINVAL;
if (var->yres > inf->modes->yres)
return -EINVAL;
if (var->bits_per_pixel > inf->modes->bpp)
return -EINVAL;
}
var->xres_virtual =
max(var->xres_virtual, var->xres);
var->yres_virtual =
max(var->yres_virtual, var->yres);
/*
* Setup the RGB parameters for this display.
*
* The pixel packing format is described on page 7-11 of the
* PXA2XX Developer's Manual.
*/
if (var->bits_per_pixel == 16) {
var->red.offset = 11; var->red.length = 5;
var->green.offset = 5; var->green.length = 6;
var->blue.offset = 0; var->blue.length = 5;
var->transp.offset = var->transp.length = 0;
} else {
var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0;
var->red.length = 8;
var->green.length = 8;
var->blue.length = 8;
var->transp.length = 0;
}
#ifdef CONFIG_CPU_FREQ
pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n",
pxafb_display_dma_period(var),
get_clk_frequency_khz(0));
#endif
return 0;
}
static inline void pxafb_set_truecolor(u_int is_true_color)
{
pr_debug("pxafb: true_color = %d\n", is_true_color);
// do your machine-specific setup if needed
}
/*
* pxafb_set_par():
* Set the user defined part of the display for the specified console
*/
static int pxafb_set_par(struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
struct fb_var_screeninfo *var = &info->var;
unsigned long palette_mem_size;
pr_debug("pxafb: set_par\n");
if (var->bits_per_pixel == 16)
fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
else if (!fbi->cmap_static)
fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
else {
/*
* Some people have weird ideas about wanting static
* pseudocolor maps. I suspect their user space
* applications are broken.
*/
fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
}
fbi->fb.fix.line_length = var->xres_virtual *
var->bits_per_pixel / 8;
if (var->bits_per_pixel == 16)
fbi->palette_size = 0;
else
fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel;
if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
palette_mem_size = fbi->palette_size * sizeof(u16);
else
palette_mem_size = fbi->palette_size * sizeof(u32);
pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
/*
* Set (any) board control register to handle new color depth
*/
pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
if (fbi->fb.var.bits_per_pixel == 16)
fb_dealloc_cmap(&fbi->fb.cmap);
else
fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
pxafb_activate_var(var, fbi);
return 0;
}
/*
* Formal definition of the VESA spec:
* On
* This refers to the state of the display when it is in full operation
* Stand-By
* This defines an optional operating state of minimal power reduction with
* the shortest recovery time
* Suspend
* This refers to a level of power management in which substantial power
* reduction is achieved by the display. The display can have a longer
* recovery time from this state than from the Stand-by state
* Off
* This indicates that the display is consuming the lowest level of power
* and is non-operational. Recovery from this state may optionally require
* the user to manually power on the monitor
*
* Now, the fbdev driver adds an additional state, (blank), where they
* turn off the video (maybe by colormap tricks), but don't mess with the
* video itself: think of it semantically between on and Stand-By.
*
* So here's what we should do in our fbdev blank routine:
*
* VESA_NO_BLANKING (mode 0) Video on, front/back light on
* VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
* VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
* VESA_POWERDOWN (mode 3) Video off, front/back light off
*
* This will match the matrox implementation.
*/
/*
* pxafb_blank():
* Blank the display by setting all palette values to zero. Note, the
* 16 bpp mode does not really use the palette, so this will not
* blank the display in all modes.
*/
static int pxafb_blank(int blank, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
int i;
pr_debug("pxafb: blank=%d\n", blank);
switch (blank) {
case FB_BLANK_POWERDOWN:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_NORMAL:
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
for (i = 0; i < fbi->palette_size; i++)
pxafb_setpalettereg(i, 0, 0, 0, 0, info);
pxafb_schedule_work(fbi, C_DISABLE);
//TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
break;
case FB_BLANK_UNBLANK:
//TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
fb_set_cmap(&fbi->fb.cmap, info);
pxafb_schedule_work(fbi, C_ENABLE);
}
return 0;
}
static int pxafb_mmap(struct fb_info *info,
struct vm_area_struct *vma)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
if (off < info->fix.smem_len) {
vma->vm_pgoff += 1;
return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
fbi->map_dma, fbi->map_size);
}
return -EINVAL;
}
static struct fb_ops pxafb_ops = {
.owner = THIS_MODULE,
.fb_check_var = pxafb_check_var,
.fb_set_par = pxafb_set_par,
.fb_setcolreg = pxafb_setcolreg,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = pxafb_blank,
.fb_mmap = pxafb_mmap,
};
/*
* Calculate the PCD value from the clock rate (in picoseconds).
* We take account of the PPCR clock setting.
* From PXA Developer's Manual:
*
* PixelClock = LCLK
* -------------
* 2 ( PCD + 1 )
*
* PCD = LCLK
* ------------- - 1
* 2(PixelClock)
*
* Where:
* LCLK = LCD/Memory Clock
* PCD = LCCR3[7:0]
*
* PixelClock here is in Hz while the pixclock argument given is the
* period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
*
* The function get_lclk_frequency_10khz returns LCLK in units of
* 10khz. Calling the result of this function lclk gives us the
* following
*
* PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
* -------------------------------------- - 1
* 2
*
* Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
*/
static inline unsigned int get_pcd(struct pxafb_info *fbi, unsigned int pixclock)
{
unsigned long long pcd;
/* FIXME: Need to take into account Double Pixel Clock mode
* (DPC) bit? or perhaps set it based on the various clock
* speeds */
pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
pcd *= pixclock;
do_div(pcd, 100000000 * 2);
/* no need for this, since we should subtract 1 anyway. they cancel */
/* pcd += 1; */ /* make up for integer math truncations */
return (unsigned int)pcd;
}
/*
* Some touchscreens need hsync information from the video driver to
* function correctly. We export it here. Note that 'hsync_time' and
* the value returned from pxafb_get_hsync_time() is the *reciprocal*
* of the hsync period in seconds.
*/
static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
{
unsigned long htime;
if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
fbi->hsync_time=0;
return;
}
htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
fbi->hsync_time = htime;
}
unsigned long pxafb_get_hsync_time(struct device *dev)
{
struct pxafb_info *fbi = dev_get_drvdata(dev);
/* If display is blanked/suspended, hsync isn't active */
if (!fbi || (fbi->state != C_ENABLE))
return 0;
return fbi->hsync_time;
}
EXPORT_SYMBOL(pxafb_get_hsync_time);
/*
* pxafb_activate_var():
* Configures LCD Controller based on entries in var parameter. Settings are
* only written to the controller if changes were made.
*/
static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi)
{
struct pxafb_lcd_reg new_regs;
u_long flags;
u_int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
pr_debug("pxafb: Configuring PXA LCD\n");
pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n",
var->xres, var->hsync_len,
var->left_margin, var->right_margin);
pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n",
var->yres, var->vsync_len,
var->upper_margin, var->lower_margin);
pr_debug("var: pixclock=%d pcd=%d\n", var->pixclock, pcd);
#if DEBUG_VAR
if (var->xres < 16 || var->xres > 1024)
printk(KERN_ERR "%s: invalid xres %d\n",
fbi->fb.fix.id, var->xres);
switch(var->bits_per_pixel) {
case 1:
case 2:
case 4:
case 8:
case 16:
break;
default:
printk(KERN_ERR "%s: invalid bit depth %d\n",
fbi->fb.fix.id, var->bits_per_pixel);
break;
}
if (var->hsync_len < 1 || var->hsync_len > 64)
printk(KERN_ERR "%s: invalid hsync_len %d\n",
fbi->fb.fix.id, var->hsync_len);
if (var->left_margin < 1 || var->left_margin > 255)
printk(KERN_ERR "%s: invalid left_margin %d\n",
fbi->fb.fix.id, var->left_margin);
if (var->right_margin < 1 || var->right_margin > 255)
printk(KERN_ERR "%s: invalid right_margin %d\n",
fbi->fb.fix.id, var->right_margin);
if (var->yres < 1 || var->yres > 1024)
printk(KERN_ERR "%s: invalid yres %d\n",
fbi->fb.fix.id, var->yres);
if (var->vsync_len < 1 || var->vsync_len > 64)
printk(KERN_ERR "%s: invalid vsync_len %d\n",
fbi->fb.fix.id, var->vsync_len);
if (var->upper_margin < 0 || var->upper_margin > 255)
printk(KERN_ERR "%s: invalid upper_margin %d\n",
fbi->fb.fix.id, var->upper_margin);
if (var->lower_margin < 0 || var->lower_margin > 255)
printk(KERN_ERR "%s: invalid lower_margin %d\n",
fbi->fb.fix.id, var->lower_margin);
#endif
new_regs.lccr0 = fbi->lccr0 |
(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
new_regs.lccr1 =
LCCR1_DisWdth(var->xres) +
LCCR1_HorSnchWdth(var->hsync_len) +
LCCR1_BegLnDel(var->left_margin) +
LCCR1_EndLnDel(var->right_margin);
/*
* If we have a dual scan LCD, we need to halve
* the YRES parameter.
*/
lines_per_panel = var->yres;
if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
lines_per_panel /= 2;
new_regs.lccr2 =
LCCR2_DisHght(lines_per_panel) +
LCCR2_VrtSnchWdth(var->vsync_len) +
LCCR2_BegFrmDel(var->upper_margin) +
LCCR2_EndFrmDel(var->lower_margin);
new_regs.lccr3 = fbi->lccr3 |
pxafb_bpp_to_lccr3(var) |
(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
if (pcd)
new_regs.lccr3 |= LCCR3_PixClkDiv(pcd);
pr_debug("nlccr0 = 0x%08x\n", new_regs.lccr0);
pr_debug("nlccr1 = 0x%08x\n", new_regs.lccr1);
pr_debug("nlccr2 = 0x%08x\n", new_regs.lccr2);
pr_debug("nlccr3 = 0x%08x\n", new_regs.lccr3);
/* Update shadow copy atomically */
local_irq_save(flags);
/* setup dma descriptors */
fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16);
fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16);
fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16);
fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16;
fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16;
fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16;
#define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length)
/* populate descriptors */
fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma;
fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL;
fbi->dmadesc_fblow_cpu->fidr = 0;
fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL;
fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */
fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma;
fbi->dmadesc_fbhigh_cpu->fidr = 0;
fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL;
fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma;
fbi->dmadesc_palette_cpu->fidr = 0;
if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
fbi->dmadesc_palette_cpu->ldcmd = fbi->palette_size *
sizeof(u16);
else
fbi->dmadesc_palette_cpu->ldcmd = fbi->palette_size *
sizeof(u32);
fbi->dmadesc_palette_cpu->ldcmd |= LDCMD_PAL;
if (var->bits_per_pixel == 16) {
/* palette shouldn't be loaded in true-color mode */
fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */
/* init it to something, even though we won't be using it */
fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma;
} else {
fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma;
fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */
}
#if 0
pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu);
pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu);
pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu);
pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma);
pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma);
pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma);
pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr);
pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr);
pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr);
pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr);
pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr);
pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr);
pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd);
pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd);
pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd);
#endif
fbi->reg_lccr0 = new_regs.lccr0;
fbi->reg_lccr1 = new_regs.lccr1;
fbi->reg_lccr2 = new_regs.lccr2;
fbi->reg_lccr3 = new_regs.lccr3;
fbi->reg_lccr4 = LCCR4 & (~LCCR4_PAL_FOR_MASK);
fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
set_hsync_time(fbi, pcd);
local_irq_restore(flags);
/*
* Only update the registers if the controller is enabled
* and something has changed.
*/
if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
(LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
(FDADR0 != fbi->fdadr0) || (FDADR1 != fbi->fdadr1))
pxafb_schedule_work(fbi, C_REENABLE);
return 0;
}
/*
* NOTE! The following functions are purely helpers for set_ctrlr_state.
* Do not call them directly; set_ctrlr_state does the correct serialisation
* to ensure that things happen in the right way 100% of time time.
* -- rmk
*/
static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
{
pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
if (pxafb_backlight_power)
pxafb_backlight_power(on);
}
static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
{
pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
if (pxafb_lcd_power)
pxafb_lcd_power(on, &fbi->fb.var);
}
static void pxafb_setup_gpio(struct pxafb_info *fbi)
{
int gpio, ldd_bits;
unsigned int lccr0 = fbi->lccr0;
/*
* setup is based on type of panel supported
*/
/* 4 bit interface */
if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
(lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
(lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
ldd_bits = 4;
/* 8 bit interface */
else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
((lccr0 & LCCR0_CMS) == LCCR0_Color &&
(lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
ldd_bits = 8;
/* 16 bit interface */
else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act))
ldd_bits = 16;
else {
printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n");
return;
}
for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
}
static void pxafb_enable_controller(struct pxafb_info *fbi)
{
pr_debug("pxafb: Enabling LCD controller\n");
pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0);
pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1);
pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
/* enable LCD controller clock */
clk_enable(fbi->clk);
/* Sequence from 11.7.10 */
LCCR3 = fbi->reg_lccr3;
LCCR2 = fbi->reg_lccr2;
LCCR1 = fbi->reg_lccr1;
LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB;
FDADR0 = fbi->fdadr0;
FDADR1 = fbi->fdadr1;
LCCR0 |= LCCR0_ENB;
pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0);
pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1);
pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0);
pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1);
pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2);
pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3);
pr_debug("LCCR4 0x%08x\n", (unsigned int) LCCR4);
}
static void pxafb_disable_controller(struct pxafb_info *fbi)
{
DECLARE_WAITQUEUE(wait, current);
pr_debug("pxafb: disabling LCD controller\n");
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&fbi->ctrlr_wait, &wait);
LCSR = 0xffffffff; /* Clear LCD Status Register */
LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
LCCR0 |= LCCR0_DIS; /* Disable LCD Controller */
schedule_timeout(200 * HZ / 1000);
remove_wait_queue(&fbi->ctrlr_wait, &wait);
/* disable LCD controller clock */
clk_disable(fbi->clk);
}
/*
* pxafb_handle_irq: Handle 'LCD DONE' interrupts.
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:55:46 +02:00
static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
{
struct pxafb_info *fbi = dev_id;
unsigned int lcsr = LCSR;
if (lcsr & LCSR_LDD) {
LCCR0 |= LCCR0_LDM;
wake_up(&fbi->ctrlr_wait);
}
LCSR = lcsr;
return IRQ_HANDLED;
}
/*
* This function must be called from task context only, since it will
* sleep when disabling the LCD controller, or if we get two contending
* processes trying to alter state.
*/
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
{
u_int old_state;
down(&fbi->ctrlr_sem);
old_state = fbi->state;
/*
* Hack around fbcon initialisation.
*/
if (old_state == C_STARTUP && state == C_REENABLE)
state = C_ENABLE;
switch (state) {
case C_DISABLE_CLKCHANGE:
/*
* Disable controller for clock change. If the
* controller is already disabled, then do nothing.
*/
if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
fbi->state = state;
//TODO __pxafb_lcd_power(fbi, 0);
pxafb_disable_controller(fbi);
}
break;
case C_DISABLE_PM:
case C_DISABLE:
/*
* Disable controller
*/
if (old_state != C_DISABLE) {
fbi->state = state;
__pxafb_backlight_power(fbi, 0);
__pxafb_lcd_power(fbi, 0);
if (old_state != C_DISABLE_CLKCHANGE)
pxafb_disable_controller(fbi);
}
break;
case C_ENABLE_CLKCHANGE:
/*
* Enable the controller after clock change. Only
* do this if we were disabled for the clock change.
*/
if (old_state == C_DISABLE_CLKCHANGE) {
fbi->state = C_ENABLE;
pxafb_enable_controller(fbi);
//TODO __pxafb_lcd_power(fbi, 1);
}
break;
case C_REENABLE:
/*
* Re-enable the controller only if it was already
* enabled. This is so we reprogram the control
* registers.
*/
if (old_state == C_ENABLE) {
__pxafb_lcd_power(fbi, 0);
pxafb_disable_controller(fbi);
pxafb_setup_gpio(fbi);
pxafb_enable_controller(fbi);
__pxafb_lcd_power(fbi, 1);
}
break;
case C_ENABLE_PM:
/*
* Re-enable the controller after PM. This is not
* perfect - think about the case where we were doing
* a clock change, and we suspended half-way through.
*/
if (old_state != C_DISABLE_PM)
break;
/* fall through */
case C_ENABLE:
/*
* Power up the LCD screen, enable controller, and
* turn on the backlight.
*/
if (old_state != C_ENABLE) {
fbi->state = C_ENABLE;
pxafb_setup_gpio(fbi);
pxafb_enable_controller(fbi);
__pxafb_lcd_power(fbi, 1);
__pxafb_backlight_power(fbi, 1);
}
break;
}
up(&fbi->ctrlr_sem);
}
/*
* Our LCD controller task (which is called when we blank or unblank)
* via keventd.
*/
static void pxafb_task(struct work_struct *work)
{
struct pxafb_info *fbi =
container_of(work, struct pxafb_info, task);
u_int state = xchg(&fbi->task_state, -1);
set_ctrlr_state(fbi, state);
}
#ifdef CONFIG_CPU_FREQ
/*
* CPU clock speed change handler. We need to adjust the LCD timing
* parameters when the CPU clock is adjusted by the power management
* subsystem.
*
* TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
*/
static int
pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
{
struct pxafb_info *fbi = TO_INF(nb, freq_transition);
//TODO struct cpufreq_freqs *f = data;
u_int pcd;
switch (val) {
case CPUFREQ_PRECHANGE:
set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
break;
case CPUFREQ_POSTCHANGE:
pcd = get_pcd(fbi, fbi->fb.var.pixclock);
set_hsync_time(fbi, pcd);
fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
break;
}
return 0;
}
static int
pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
{
struct pxafb_info *fbi = TO_INF(nb, freq_policy);
struct fb_var_screeninfo *var = &fbi->fb.var;
struct cpufreq_policy *policy = data;
switch (val) {
case CPUFREQ_ADJUST:
case CPUFREQ_INCOMPATIBLE:
printk(KERN_DEBUG "min dma period: %d ps, "
"new clock %d kHz\n", pxafb_display_dma_period(var),
policy->max);
// TODO: fill in min/max values
break;
#if 0
case CPUFREQ_NOTIFY:
printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__);
do {} while(0);
/* todo: panic if min/max values aren't fulfilled
* [can't really happen unless there's a bug in the
* CPU policy verification process *
*/
break;
#endif
}
return 0;
}
#endif
#ifdef CONFIG_PM
/*
* Power management hooks. Note that we won't be called from IRQ context,
* unlike the blank functions above, so we may sleep.
*/
static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
{
struct pxafb_info *fbi = platform_get_drvdata(dev);
set_ctrlr_state(fbi, C_DISABLE_PM);
return 0;
}
static int pxafb_resume(struct platform_device *dev)
{
struct pxafb_info *fbi = platform_get_drvdata(dev);
set_ctrlr_state(fbi, C_ENABLE_PM);
return 0;
}
#else
#define pxafb_suspend NULL
#define pxafb_resume NULL
#endif
/*
* pxafb_map_video_memory():
* Allocates the DRAM memory for the frame buffer. This buffer is
* remapped into a non-cached, non-buffered, memory region to
* allow palette and pixel writes to occur without flushing the
* cache. Once this area is remapped, all virtual memory
* access to the video memory should occur at the new region.
*/
static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
{
u_long palette_mem_size;
/*
* We reserve one page for the palette, plus the size
* of the framebuffer.
*/
fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
&fbi->map_dma, GFP_KERNEL);
if (fbi->map_cpu) {
/* prevent initial garbage on screen */
memset(fbi->map_cpu, 0, fbi->map_size);
fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
/*
* FIXME: this is actually the wrong thing to place in
* smem_start. But fbdev suffers from the problem that
* it needs an API which doesn't exist (in this case,
* dma_writecombine_mmap)
*/
fbi->fb.fix.smem_start = fbi->screen_dma;
fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
palette_mem_size = fbi->palette_size * sizeof(u16);
else
palette_mem_size = fbi->palette_size * sizeof(u32);
pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
}
return fbi->map_cpu ? 0 : -ENOMEM;
}
static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev)
{
struct pxafb_info *fbi;
void *addr;
struct pxafb_mach_info *inf = dev->platform_data;
struct pxafb_mode_info *mode = inf->modes;
int i, smemlen;
/* Alloc the pxafb_info and pseudo_palette in one step */
fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
if (!fbi)
return NULL;
memset(fbi, 0, sizeof(struct pxafb_info));
fbi->dev = dev;
fbi->clk = clk_get(dev, "LCDCLK");
if (IS_ERR(fbi->clk)) {
kfree(fbi);
return NULL;
}
strcpy(fbi->fb.fix.id, PXA_NAME);
fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
fbi->fb.fix.type_aux = 0;
fbi->fb.fix.xpanstep = 0;
fbi->fb.fix.ypanstep = 0;
fbi->fb.fix.ywrapstep = 0;
fbi->fb.fix.accel = FB_ACCEL_NONE;
fbi->fb.var.nonstd = 0;
fbi->fb.var.activate = FB_ACTIVATE_NOW;
fbi->fb.var.height = -1;
fbi->fb.var.width = -1;
fbi->fb.var.accel_flags = 0;
fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
fbi->fb.fbops = &pxafb_ops;
fbi->fb.flags = FBINFO_DEFAULT;
fbi->fb.node = -1;
addr = fbi;
addr = addr + sizeof(struct pxafb_info);
fbi->fb.pseudo_palette = addr;
pxafb_setmode(&fbi->fb.var, mode);
fbi->cmap_inverse = inf->cmap_inverse;
fbi->cmap_static = inf->cmap_static;
fbi->lccr0 = inf->lccr0;
fbi->lccr3 = inf->lccr3;
fbi->lccr4 = inf->lccr4;
fbi->state = C_STARTUP;
fbi->task_state = (u_char)-1;
for (i = 0; i < inf->num_modes; i++) {
smemlen = mode[i].xres * mode[i].yres * mode[i].bpp / 8;
if (smemlen > fbi->fb.fix.smem_len)
fbi->fb.fix.smem_len = smemlen;
}
init_waitqueue_head(&fbi->ctrlr_wait);
INIT_WORK(&fbi->task, pxafb_task);
init_MUTEX(&fbi->ctrlr_sem);
return fbi;
}
#ifdef CONFIG_FB_PXA_PARAMETERS
static int __init pxafb_parse_options(struct device *dev, char *options)
{
struct pxafb_mach_info *inf = dev->platform_data;
char *this_opt;
if (!options || !*options)
return 0;
dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
/* could be made table driven or similar?... */
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!strncmp(this_opt, "mode:", 5)) {
const char *name = this_opt+5;
unsigned int namelen = strlen(name);
int res_specified = 0, bpp_specified = 0;
unsigned int xres = 0, yres = 0, bpp = 0;
int yres_specified = 0;
int i;
for (i = namelen-1; i >= 0; i--) {
switch (name[i]) {
case '-':
namelen = i;
if (!bpp_specified && !yres_specified) {
bpp = simple_strtoul(&name[i+1], NULL, 0);
bpp_specified = 1;
} else
goto done;
break;
case 'x':
if (!yres_specified) {
yres = simple_strtoul(&name[i+1], NULL, 0);
yres_specified = 1;
} else
goto done;
break;
case '0' ... '9':
break;
default:
goto done;
}
}
if (i < 0 && yres_specified) {
xres = simple_strtoul(name, NULL, 0);
res_specified = 1;
}
done:
if (res_specified) {
dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
inf->modes[0].xres = xres; inf->modes[0].yres = yres;
}
if (bpp_specified)
switch (bpp) {
case 1:
case 2:
case 4:
case 8:
case 16:
inf->modes[0].bpp = bpp;
dev_info(dev, "overriding bit depth: %d\n", bpp);
break;
default:
dev_err(dev, "Depth %d is not valid\n", bpp);
}
} else if (!strncmp(this_opt, "pixclock:", 9)) {
inf->modes[0].pixclock = simple_strtoul(this_opt+9, NULL, 0);
dev_info(dev, "override pixclock: %ld\n", inf->modes[0].pixclock);
} else if (!strncmp(this_opt, "left:", 5)) {
inf->modes[0].left_margin = simple_strtoul(this_opt+5, NULL, 0);
dev_info(dev, "override left: %u\n", inf->modes[0].left_margin);
} else if (!strncmp(this_opt, "right:", 6)) {
inf->modes[0].right_margin = simple_strtoul(this_opt+6, NULL, 0);
dev_info(dev, "override right: %u\n", inf->modes[0].right_margin);
} else if (!strncmp(this_opt, "upper:", 6)) {
inf->modes[0].upper_margin = simple_strtoul(this_opt+6, NULL, 0);
dev_info(dev, "override upper: %u\n", inf->modes[0].upper_margin);
} else if (!strncmp(this_opt, "lower:", 6)) {
inf->modes[0].lower_margin = simple_strtoul(this_opt+6, NULL, 0);
dev_info(dev, "override lower: %u\n", inf->modes[0].lower_margin);
} else if (!strncmp(this_opt, "hsynclen:", 9)) {
inf->modes[0].hsync_len = simple_strtoul(this_opt+9, NULL, 0);
dev_info(dev, "override hsynclen: %u\n", inf->modes[0].hsync_len);
} else if (!strncmp(this_opt, "vsynclen:", 9)) {
inf->modes[0].vsync_len = simple_strtoul(this_opt+9, NULL, 0);
dev_info(dev, "override vsynclen: %u\n", inf->modes[0].vsync_len);
} else if (!strncmp(this_opt, "hsync:", 6)) {
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
dev_info(dev, "override hsync: Active Low\n");
inf->modes[0].sync &= ~FB_SYNC_HOR_HIGH_ACT;
} else {
dev_info(dev, "override hsync: Active High\n");
inf->modes[0].sync |= FB_SYNC_HOR_HIGH_ACT;
}
} else if (!strncmp(this_opt, "vsync:", 6)) {
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
dev_info(dev, "override vsync: Active Low\n");
inf->modes[0].sync &= ~FB_SYNC_VERT_HIGH_ACT;
} else {
dev_info(dev, "override vsync: Active High\n");
inf->modes[0].sync |= FB_SYNC_VERT_HIGH_ACT;
}
} else if (!strncmp(this_opt, "dpc:", 4)) {
if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
dev_info(dev, "override double pixel clock: false\n");
inf->lccr3 &= ~LCCR3_DPC;
} else {
dev_info(dev, "override double pixel clock: true\n");
inf->lccr3 |= LCCR3_DPC;
}
} else if (!strncmp(this_opt, "outputen:", 9)) {
if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
dev_info(dev, "override output enable: active low\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
} else {
dev_info(dev, "override output enable: active high\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
}
} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
dev_info(dev, "override pixel clock polarity: falling edge\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
} else {
dev_info(dev, "override pixel clock polarity: rising edge\n");
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
}
} else if (!strncmp(this_opt, "color", 5)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
} else if (!strncmp(this_opt, "mono", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
} else if (!strncmp(this_opt, "active", 6)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
} else if (!strncmp(this_opt, "passive", 7)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
} else if (!strncmp(this_opt, "single", 6)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
} else if (!strncmp(this_opt, "dual", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
} else if (!strncmp(this_opt, "4pix", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
} else if (!strncmp(this_opt, "8pix", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
} else {
dev_err(dev, "unknown option: %s\n", this_opt);
return -EINVAL;
}
}
return 0;
}
#endif
int __init pxafb_probe(struct platform_device *dev)
{
struct pxafb_info *fbi;
struct pxafb_mach_info *inf;
int ret;
dev_dbg(&dev->dev, "pxafb_probe\n");
inf = dev->dev.platform_data;
ret = -ENOMEM;
fbi = NULL;
if (!inf)
goto failed;
#ifdef CONFIG_FB_PXA_PARAMETERS
ret = pxafb_parse_options(&dev->dev, g_options);
if (ret < 0)
goto failed;
#endif
#ifdef DEBUG_VAR
/* Check for various illegal bit-combinations. Currently only
* a warning is given. */
if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
dev_warn(&dev->dev, "machine LCCR0 setting contains illegal bits: %08x\n",
inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n",
inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
if (inf->lccr0 & LCCR0_DPD &&
((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
(inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
(inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is only valid in passive mono"
" single panel mode\n");
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
(inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
dev_warn(&dev->dev, "Dual panel only valid in passive mode\n");
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
(inf->modes->upper_margin || inf->modes->lower_margin))
dev_warn(&dev->dev, "Upper and lower margins must be 0 in passive mode\n");
#endif
dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",inf->modes->xres, inf->modes->yres, inf->modes->bpp);
if (inf->modes->xres == 0 || inf->modes->yres == 0 || inf->modes->bpp == 0) {
dev_err(&dev->dev, "Invalid resolution or bit depth\n");
ret = -EINVAL;
goto failed;
}
pxafb_backlight_power = inf->pxafb_backlight_power;
pxafb_lcd_power = inf->pxafb_lcd_power;
fbi = pxafb_init_fbinfo(&dev->dev);
if (!fbi) {
dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc
goto failed;
}
/* Initialize video memory */
ret = pxafb_map_video_memory(fbi);
if (ret) {
dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
ret = -ENOMEM;
goto failed;
}
ret = request_irq(IRQ_LCD, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
if (ret) {
dev_err(&dev->dev, "request_irq failed: %d\n", ret);
ret = -EBUSY;
goto failed;
}
/*
* This makes sure that our colour bitfield
* descriptors are correctly initialised.
*/
pxafb_check_var(&fbi->fb.var, &fbi->fb);
pxafb_set_par(&fbi->fb);
platform_set_drvdata(dev, fbi);
ret = register_framebuffer(&fbi->fb);
if (ret < 0) {
dev_err(&dev->dev, "Failed to register framebuffer device: %d\n", ret);
goto failed;
}
#ifdef CONFIG_PM
// TODO
#endif
#ifdef CONFIG_CPU_FREQ
fbi->freq_transition.notifier_call = pxafb_freq_transition;
fbi->freq_policy.notifier_call = pxafb_freq_policy;
cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
#endif
/*
* Ok, now enable the LCD controller
*/
set_ctrlr_state(fbi, C_ENABLE);
return 0;
failed:
platform_set_drvdata(dev, NULL);
kfree(fbi);
return ret;
}
static struct platform_driver pxafb_driver = {
.probe = pxafb_probe,
#ifdef CONFIG_PM
.suspend = pxafb_suspend,
.resume = pxafb_resume,
#endif
.driver = {
.name = "pxa2xx-fb",
},
};
#ifndef MODULE
int __devinit pxafb_setup(char *options)
{
# ifdef CONFIG_FB_PXA_PARAMETERS
if (options)
strlcpy(g_options, options, sizeof(g_options));
# endif
return 0;
}
#else
# ifdef CONFIG_FB_PXA_PARAMETERS
module_param_string(options, g_options, sizeof(g_options), 0);
MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
# endif
#endif
int __devinit pxafb_init(void)
{
#ifndef MODULE
char *option = NULL;
if (fb_get_options("pxafb", &option))
return -ENODEV;
pxafb_setup(option);
#endif
return platform_driver_register(&pxafb_driver);
}
module_init(pxafb_init);
MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
MODULE_LICENSE("GPL");