378 lines
11 KiB
C
378 lines
11 KiB
C
|
/* cyberstorm.c: Driver for CyberStorm SCSI Controller.
|
||
|
*
|
||
|
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
|
||
|
*
|
||
|
* The CyberStorm SCSI driver is based on David S. Miller's ESP driver
|
||
|
* for the Sparc computers.
|
||
|
*
|
||
|
* This work was made possible by Phase5 who willingly (and most generously)
|
||
|
* supported me with hardware and all the information I needed.
|
||
|
*/
|
||
|
|
||
|
/* TODO:
|
||
|
*
|
||
|
* 1) Figure out how to make a cleaner merge with the sparc driver with regard
|
||
|
* to the caches and the Sparc MMU mapping.
|
||
|
* 2) Make as few routines required outside the generic driver. A lot of the
|
||
|
* routines in this file used to be inline!
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/blkdev.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <linux/stat.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
|
||
|
#include "scsi.h"
|
||
|
#include <scsi/scsi_host.h>
|
||
|
#include "NCR53C9x.h"
|
||
|
|
||
|
#include <linux/zorro.h>
|
||
|
#include <asm/irq.h>
|
||
|
#include <asm/amigaints.h>
|
||
|
#include <asm/amigahw.h>
|
||
|
|
||
|
#include <asm/pgtable.h>
|
||
|
|
||
|
/* The controller registers can be found in the Z2 config area at these
|
||
|
* offsets:
|
||
|
*/
|
||
|
#define CYBER_ESP_ADDR 0xf400
|
||
|
#define CYBER_DMA_ADDR 0xf800
|
||
|
|
||
|
|
||
|
/* The CyberStorm DMA interface */
|
||
|
struct cyber_dma_registers {
|
||
|
volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */
|
||
|
unsigned char dmapad1[1];
|
||
|
volatile unsigned char dma_addr1; /* DMA address [0x002] */
|
||
|
unsigned char dmapad2[1];
|
||
|
volatile unsigned char dma_addr2; /* DMA address [0x004] */
|
||
|
unsigned char dmapad3[1];
|
||
|
volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */
|
||
|
unsigned char dmapad4[0x3fb];
|
||
|
volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */
|
||
|
#define ctrl_reg cond_reg /* DMA control (wo) [0x402] */
|
||
|
};
|
||
|
|
||
|
/* DMA control bits */
|
||
|
#define CYBER_DMA_LED 0x80 /* HD led control 1 = on */
|
||
|
#define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */
|
||
|
#define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */
|
||
|
|
||
|
/* DMA status bits */
|
||
|
#define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */
|
||
|
|
||
|
/* The bits below appears to be Phase5 Debug bits only; they were not
|
||
|
* described by Phase5 so using them may seem a bit stupid...
|
||
|
*/
|
||
|
#define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise
|
||
|
* it should be 6.
|
||
|
*/
|
||
|
#define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */
|
||
|
|
||
|
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
|
||
|
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
|
||
|
static void dma_dump_state(struct NCR_ESP *esp);
|
||
|
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
|
||
|
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
|
||
|
static void dma_ints_off(struct NCR_ESP *esp);
|
||
|
static void dma_ints_on(struct NCR_ESP *esp);
|
||
|
static int dma_irq_p(struct NCR_ESP *esp);
|
||
|
static void dma_led_off(struct NCR_ESP *esp);
|
||
|
static void dma_led_on(struct NCR_ESP *esp);
|
||
|
static int dma_ports_p(struct NCR_ESP *esp);
|
||
|
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
|
||
|
|
||
|
static unsigned char ctrl_data = 0; /* Keep backup of the stuff written
|
||
|
* to ctrl_reg. Always write a copy
|
||
|
* to this register when writing to
|
||
|
* the hardware register!
|
||
|
*/
|
||
|
|
||
|
static volatile unsigned char cmd_buffer[16];
|
||
|
/* This is where all commands are put
|
||
|
* before they are transferred to the ESP chip
|
||
|
* via PIO.
|
||
|
*/
|
||
|
|
||
|
/***************************************************************** Detection */
|
||
|
int __init cyber_esp_detect(Scsi_Host_Template *tpnt)
|
||
|
{
|
||
|
struct NCR_ESP *esp;
|
||
|
struct zorro_dev *z = NULL;
|
||
|
unsigned long address;
|
||
|
|
||
|
while ((z = zorro_find_device(ZORRO_WILDCARD, z))) {
|
||
|
unsigned long board = z->resource.start;
|
||
|
if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM ||
|
||
|
z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) &&
|
||
|
request_mem_region(board+CYBER_ESP_ADDR,
|
||
|
sizeof(struct ESP_regs), "NCR53C9x")) {
|
||
|
/* Figure out if this is a CyberStorm or really a
|
||
|
* Fastlane/Blizzard Mk II by looking at the board size.
|
||
|
* CyberStorm maps 64kB
|
||
|
* (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway)
|
||
|
*/
|
||
|
if(z->resource.end-board != 0xffff) {
|
||
|
release_mem_region(board+CYBER_ESP_ADDR,
|
||
|
sizeof(struct ESP_regs));
|
||
|
return 0;
|
||
|
}
|
||
|
esp = esp_allocate(tpnt, (void *)board+CYBER_ESP_ADDR);
|
||
|
|
||
|
/* Do command transfer with programmed I/O */
|
||
|
esp->do_pio_cmds = 1;
|
||
|
|
||
|
/* Required functions */
|
||
|
esp->dma_bytes_sent = &dma_bytes_sent;
|
||
|
esp->dma_can_transfer = &dma_can_transfer;
|
||
|
esp->dma_dump_state = &dma_dump_state;
|
||
|
esp->dma_init_read = &dma_init_read;
|
||
|
esp->dma_init_write = &dma_init_write;
|
||
|
esp->dma_ints_off = &dma_ints_off;
|
||
|
esp->dma_ints_on = &dma_ints_on;
|
||
|
esp->dma_irq_p = &dma_irq_p;
|
||
|
esp->dma_ports_p = &dma_ports_p;
|
||
|
esp->dma_setup = &dma_setup;
|
||
|
|
||
|
/* Optional functions */
|
||
|
esp->dma_barrier = 0;
|
||
|
esp->dma_drain = 0;
|
||
|
esp->dma_invalidate = 0;
|
||
|
esp->dma_irq_entry = 0;
|
||
|
esp->dma_irq_exit = 0;
|
||
|
esp->dma_led_on = &dma_led_on;
|
||
|
esp->dma_led_off = &dma_led_off;
|
||
|
esp->dma_poll = 0;
|
||
|
esp->dma_reset = 0;
|
||
|
|
||
|
/* SCSI chip speed */
|
||
|
esp->cfreq = 40000000;
|
||
|
|
||
|
/* The DMA registers on the CyberStorm are mapped
|
||
|
* relative to the device (i.e. in the same Zorro
|
||
|
* I/O block).
|
||
|
*/
|
||
|
address = (unsigned long)ZTWO_VADDR(board);
|
||
|
esp->dregs = (void *)(address + CYBER_DMA_ADDR);
|
||
|
|
||
|
/* ESP register base */
|
||
|
esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR);
|
||
|
|
||
|
/* Set the command buffer */
|
||
|
esp->esp_command = cmd_buffer;
|
||
|
esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
|
||
|
|
||
|
esp->irq = IRQ_AMIGA_PORTS;
|
||
|
request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ,
|
||
|
"CyberStorm SCSI", esp->ehost);
|
||
|
/* Figure out our scsi ID on the bus */
|
||
|
/* The DMA cond flag contains a hardcoded jumper bit
|
||
|
* which can be used to select host number 6 or 7.
|
||
|
* However, even though it may change, we use a hardcoded
|
||
|
* value of 7.
|
||
|
*/
|
||
|
esp->scsi_id = 7;
|
||
|
|
||
|
/* We don't have a differential SCSI-bus. */
|
||
|
esp->diff = 0;
|
||
|
|
||
|
esp_initialize(esp);
|
||
|
|
||
|
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
|
||
|
esps_running = esps_in_use;
|
||
|
return esps_in_use;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/************************************************************* DMA Functions */
|
||
|
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
|
||
|
{
|
||
|
/* Since the CyberStorm DMA is fully dedicated to the ESP chip,
|
||
|
* the number of bytes sent (to the ESP chip) equals the number
|
||
|
* of bytes in the FIFO - there is no buffering in the DMA controller.
|
||
|
* XXXX Do I read this right? It is from host to ESP, right?
|
||
|
*/
|
||
|
return fifo_count;
|
||
|
}
|
||
|
|
||
|
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
|
||
|
{
|
||
|
/* I don't think there's any limit on the CyberDMA. So we use what
|
||
|
* the ESP chip can handle (24 bit).
|
||
|
*/
|
||
|
unsigned long sz = sp->SCp.this_residual;
|
||
|
if(sz > 0x1000000)
|
||
|
sz = 0x1000000;
|
||
|
return sz;
|
||
|
}
|
||
|
|
||
|
static void dma_dump_state(struct NCR_ESP *esp)
|
||
|
{
|
||
|
ESPLOG(("esp%d: dma -- cond_reg<%02x>\n",
|
||
|
esp->esp_id, ((struct cyber_dma_registers *)
|
||
|
(esp->dregs))->cond_reg));
|
||
|
ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
|
||
|
custom.intreqr, custom.intenar));
|
||
|
}
|
||
|
|
||
|
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
|
||
|
{
|
||
|
struct cyber_dma_registers *dregs =
|
||
|
(struct cyber_dma_registers *) esp->dregs;
|
||
|
|
||
|
cache_clear(addr, length);
|
||
|
|
||
|
addr &= ~(1);
|
||
|
dregs->dma_addr0 = (addr >> 24) & 0xff;
|
||
|
dregs->dma_addr1 = (addr >> 16) & 0xff;
|
||
|
dregs->dma_addr2 = (addr >> 8) & 0xff;
|
||
|
dregs->dma_addr3 = (addr ) & 0xff;
|
||
|
ctrl_data &= ~(CYBER_DMA_WRITE);
|
||
|
|
||
|
/* Check if physical address is outside Z2 space and of
|
||
|
* block length/block aligned in memory. If this is the
|
||
|
* case, enable 32 bit transfer. In all other cases, fall back
|
||
|
* to 16 bit transfer.
|
||
|
* Obviously 32 bit transfer should be enabled if the DMA address
|
||
|
* and length are 32 bit aligned. However, this leads to some
|
||
|
* strange behavior. Even 64 bit aligned addr/length fails.
|
||
|
* Until I've found a reason for this, 32 bit transfer is only
|
||
|
* used for full-block transfers (1kB).
|
||
|
* -jskov
|
||
|
*/
|
||
|
#if 0
|
||
|
if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
|
||
|
(addr < 0xff0000)))
|
||
|
ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
|
||
|
else
|
||
|
ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
|
||
|
#else
|
||
|
ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
|
||
|
#endif
|
||
|
dregs->ctrl_reg = ctrl_data;
|
||
|
}
|
||
|
|
||
|
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
|
||
|
{
|
||
|
struct cyber_dma_registers *dregs =
|
||
|
(struct cyber_dma_registers *) esp->dregs;
|
||
|
|
||
|
cache_push(addr, length);
|
||
|
|
||
|
addr |= 1;
|
||
|
dregs->dma_addr0 = (addr >> 24) & 0xff;
|
||
|
dregs->dma_addr1 = (addr >> 16) & 0xff;
|
||
|
dregs->dma_addr2 = (addr >> 8) & 0xff;
|
||
|
dregs->dma_addr3 = (addr ) & 0xff;
|
||
|
ctrl_data |= CYBER_DMA_WRITE;
|
||
|
|
||
|
/* See comment above */
|
||
|
#if 0
|
||
|
if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
|
||
|
(addr < 0xff0000)))
|
||
|
ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
|
||
|
else
|
||
|
ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
|
||
|
#else
|
||
|
ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
|
||
|
#endif
|
||
|
dregs->ctrl_reg = ctrl_data;
|
||
|
}
|
||
|
|
||
|
static void dma_ints_off(struct NCR_ESP *esp)
|
||
|
{
|
||
|
disable_irq(esp->irq);
|
||
|
}
|
||
|
|
||
|
static void dma_ints_on(struct NCR_ESP *esp)
|
||
|
{
|
||
|
enable_irq(esp->irq);
|
||
|
}
|
||
|
|
||
|
static int dma_irq_p(struct NCR_ESP *esp)
|
||
|
{
|
||
|
/* It's important to check the DMA IRQ bit in the correct way! */
|
||
|
return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) &&
|
||
|
((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) &
|
||
|
CYBER_DMA_HNDL_INTR));
|
||
|
}
|
||
|
|
||
|
static void dma_led_off(struct NCR_ESP *esp)
|
||
|
{
|
||
|
ctrl_data &= ~CYBER_DMA_LED;
|
||
|
((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
|
||
|
}
|
||
|
|
||
|
static void dma_led_on(struct NCR_ESP *esp)
|
||
|
{
|
||
|
ctrl_data |= CYBER_DMA_LED;
|
||
|
((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
|
||
|
}
|
||
|
|
||
|
static int dma_ports_p(struct NCR_ESP *esp)
|
||
|
{
|
||
|
return ((custom.intenar) & IF_PORTS);
|
||
|
}
|
||
|
|
||
|
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
|
||
|
{
|
||
|
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
|
||
|
* so when (write) is true, it actually means READ!
|
||
|
*/
|
||
|
if(write){
|
||
|
dma_init_read(esp, addr, count);
|
||
|
} else {
|
||
|
dma_init_write(esp, addr, count);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define HOSTS_C
|
||
|
|
||
|
int cyber_esp_release(struct Scsi_Host *instance)
|
||
|
{
|
||
|
#ifdef MODULE
|
||
|
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
|
||
|
|
||
|
esp_deallocate((struct NCR_ESP *)instance->hostdata);
|
||
|
esp_release();
|
||
|
release_mem_region(address, sizeof(struct ESP_regs));
|
||
|
free_irq(IRQ_AMIGA_PORTS, esp_intr);
|
||
|
#endif
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
static Scsi_Host_Template driver_template = {
|
||
|
.proc_name = "esp-cyberstorm",
|
||
|
.proc_info = esp_proc_info,
|
||
|
.name = "CyberStorm SCSI",
|
||
|
.detect = cyber_esp_detect,
|
||
|
.slave_alloc = esp_slave_alloc,
|
||
|
.slave_destroy = esp_slave_destroy,
|
||
|
.release = cyber_esp_release,
|
||
|
.queuecommand = esp_queue,
|
||
|
.eh_abort_handler = esp_abort,
|
||
|
.eh_bus_reset_handler = esp_reset,
|
||
|
.can_queue = 7,
|
||
|
.this_id = 7,
|
||
|
.sg_tablesize = SG_ALL,
|
||
|
.cmd_per_lun = 1,
|
||
|
.use_clustering = ENABLE_CLUSTERING
|
||
|
};
|
||
|
|
||
|
|
||
|
#include "scsi_module.c"
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|