android_kernel_motorola_sm6225/sound/usb/usbmidi.c

1841 lines
52 KiB
C
Raw Normal View History

/*
* usbmidi.c - ALSA USB MIDI driver
*
* Copyright (c) 2002-2007 Clemens Ladisch
* All rights reserved.
*
* Based on the OSS usb-midi driver by NAGANO Daisuke,
* NetBSD's umidi driver by Takuya SHIOZAKI,
* the "USB Device Class Definition for MIDI Devices" by Roland
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed and/or modified under the
* terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/usb.h>
#include <sound/core.h>
#include <sound/rawmidi.h>
#include <sound/asequencer.h>
#include "usbaudio.h"
/*
* define this to log all USB packets
*/
/* #define DUMP_PACKETS */
/*
* how long to wait after some USB errors, so that khubd can disconnect() us
* without too many spurious errors
*/
#define ERROR_DELAY_JIFFIES (HZ / 10)
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("USB Audio/MIDI helper module");
MODULE_LICENSE("Dual BSD/GPL");
struct usb_ms_header_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bcdMSC[2];
__le16 wTotalLength;
} __attribute__ ((packed));
struct usb_ms_endpoint_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bNumEmbMIDIJack;
__u8 baAssocJackID[0];
} __attribute__ ((packed));
struct snd_usb_midi_in_endpoint;
struct snd_usb_midi_out_endpoint;
struct snd_usb_midi_endpoint;
struct usb_protocol_ops {
void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
void (*output)(struct snd_usb_midi_out_endpoint*);
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
};
struct snd_usb_midi {
struct snd_usb_audio *chip;
struct usb_interface *iface;
const struct snd_usb_audio_quirk *quirk;
struct snd_rawmidi *rmidi;
struct usb_protocol_ops* usb_protocol_ops;
struct list_head list;
struct timer_list error_timer;
spinlock_t disc_lock;
struct snd_usb_midi_endpoint {
struct snd_usb_midi_out_endpoint *out;
struct snd_usb_midi_in_endpoint *in;
} endpoints[MIDI_MAX_ENDPOINTS];
unsigned long input_triggered;
unsigned char disconnected;
};
struct snd_usb_midi_out_endpoint {
struct snd_usb_midi* umidi;
struct urb* urb;
int urb_active;
int max_transfer; /* size of urb buffer */
struct tasklet_struct tasklet;
spinlock_t buffer_lock;
struct usbmidi_out_port {
struct snd_usb_midi_out_endpoint* ep;
struct snd_rawmidi_substream *substream;
int active;
uint8_t cable; /* cable number << 4 */
uint8_t state;
#define STATE_UNKNOWN 0
#define STATE_1PARAM 1
#define STATE_2PARAM_1 2
#define STATE_2PARAM_2 3
#define STATE_SYSEX_0 4
#define STATE_SYSEX_1 5
#define STATE_SYSEX_2 6
uint8_t data[2];
} ports[0x10];
int current_port;
};
struct snd_usb_midi_in_endpoint {
struct snd_usb_midi* umidi;
struct urb* urb;
struct usbmidi_in_port {
struct snd_rawmidi_substream *substream;
u8 running_status_length;
} ports[0x10];
u8 seen_f5;
u8 error_resubmit;
int current_port;
};
static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
static const uint8_t snd_usbmidi_cin_length[] = {
0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
};
/*
* Submits the URB, with error handling.
*/
static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
{
int err = usb_submit_urb(urb, flags);
if (err < 0 && err != -ENODEV)
snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
return err;
}
/*
* Error handling for URB completion functions.
*/
static int snd_usbmidi_urb_error(int status)
{
switch (status) {
/* manually unlinked, or device gone */
case -ENOENT:
case -ECONNRESET:
case -ESHUTDOWN:
case -ENODEV:
return -ENODEV;
/* errors that might occur during unplugging */
case -EPROTO:
case -ETIME:
case -EILSEQ:
return -EIO;
default:
snd_printk(KERN_ERR "urb status %d\n", status);
return 0; /* continue */
}
}
/*
* Receives a chunk of MIDI data.
*/
static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
uint8_t* data, int length)
{
struct usbmidi_in_port* port = &ep->ports[portidx];
if (!port->substream) {
snd_printd("unexpected port %d!\n", portidx);
return;
}
if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
return;
snd_rawmidi_receive(port->substream, data, length);
}
#ifdef DUMP_PACKETS
static void dump_urb(const char *type, const u8 *data, int length)
{
snd_printk(KERN_DEBUG "%s packet: [", type);
for (; length > 0; ++data, --length)
printk(" %02x", *data);
printk(" ]\n");
}
#else
#define dump_urb(type, data, length) /* nothing */
#endif
/*
* Processes the data read from the device.
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:55:46 +02:00
static void snd_usbmidi_in_urb_complete(struct urb* urb)
{
struct snd_usb_midi_in_endpoint* ep = urb->context;
if (urb->status == 0) {
dump_urb("received", urb->transfer_buffer, urb->actual_length);
ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
urb->actual_length);
} else {
int err = snd_usbmidi_urb_error(urb->status);
if (err < 0) {
if (err != -ENODEV) {
ep->error_resubmit = 1;
mod_timer(&ep->umidi->error_timer,
jiffies + ERROR_DELAY_JIFFIES);
}
return;
}
}
urb->dev = ep->umidi->chip->dev;
snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:55:46 +02:00
static void snd_usbmidi_out_urb_complete(struct urb* urb)
{
struct snd_usb_midi_out_endpoint* ep = urb->context;
spin_lock(&ep->buffer_lock);
ep->urb_active = 0;
spin_unlock(&ep->buffer_lock);
if (urb->status < 0) {
int err = snd_usbmidi_urb_error(urb->status);
if (err < 0) {
if (err != -ENODEV)
mod_timer(&ep->umidi->error_timer,
jiffies + ERROR_DELAY_JIFFIES);
return;
}
}
snd_usbmidi_do_output(ep);
}
/*
* This is called when some data should be transferred to the device
* (from one or more substreams).
*/
static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
{
struct urb* urb = ep->urb;
unsigned long flags;
spin_lock_irqsave(&ep->buffer_lock, flags);
if (ep->urb_active || ep->umidi->chip->shutdown) {
spin_unlock_irqrestore(&ep->buffer_lock, flags);
return;
}
urb->transfer_buffer_length = 0;
ep->umidi->usb_protocol_ops->output(ep);
if (urb->transfer_buffer_length > 0) {
dump_urb("sending", urb->transfer_buffer,
urb->transfer_buffer_length);
urb->dev = ep->umidi->chip->dev;
ep->urb_active = snd_usbmidi_submit_urb(urb, GFP_ATOMIC) >= 0;
}
spin_unlock_irqrestore(&ep->buffer_lock, flags);
}
static void snd_usbmidi_out_tasklet(unsigned long data)
{
struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
snd_usbmidi_do_output(ep);
}
/* called after transfers had been interrupted due to some USB error */
static void snd_usbmidi_error_timer(unsigned long data)
{
struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
int i;
spin_lock(&umidi->disc_lock);
if (umidi->disconnected) {
spin_unlock(&umidi->disc_lock);
return;
}
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
if (in && in->error_resubmit) {
in->error_resubmit = 0;
in->urb->dev = umidi->chip->dev;
snd_usbmidi_submit_urb(in->urb, GFP_ATOMIC);
}
if (umidi->endpoints[i].out)
snd_usbmidi_do_output(umidi->endpoints[i].out);
}
spin_unlock(&umidi->disc_lock);
}
/* helper function to send static data that may not DMA-able */
static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
const void *data, int len)
{
int err;
void *buf = kmemdup(data, len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
dump_urb("sending", buf, len);
err = usb_bulk_msg(ep->umidi->chip->dev, ep->urb->pipe, buf, len,
NULL, 250);
kfree(buf);
return err;
}
/*
* Standard USB MIDI protocol: see the spec.
* Midiman protocol: like the standard protocol, but the control byte is the
* fourth byte in each packet, and uses length instead of CIN.
*/
static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i] != 0) {
int cable = buffer[i] >> 4;
int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
}
}
static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i + 3] != 0) {
int port = buffer[i + 3] >> 4;
int length = buffer[i + 3] & 3;
snd_usbmidi_input_data(ep, port, &buffer[i], length);
}
}
/*
* Buggy M-Audio device: running status on input results in a packet that has
* the data bytes but not the status byte and that is marked with CIN 4.
*/
static void snd_usbmidi_maudio_broken_running_status_input(
struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i] != 0) {
int cable = buffer[i] >> 4;
u8 cin = buffer[i] & 0x0f;
struct usbmidi_in_port *port = &ep->ports[cable];
int length;
length = snd_usbmidi_cin_length[cin];
if (cin == 0xf && buffer[i + 1] >= 0xf8)
; /* realtime msg: no running status change */
else if (cin >= 0x8 && cin <= 0xe)
/* channel msg */
port->running_status_length = length - 1;
else if (cin == 0x4 &&
port->running_status_length != 0 &&
buffer[i + 1] < 0x80)
/* CIN 4 that is not a SysEx */
length = port->running_status_length;
else
/*
* All other msgs cannot begin running status.
* (A channel msg sent as two or three CIN 0xF
* packets could in theory, but this device
* doesn't use this format.)
*/
port->running_status_length = 0;
snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
}
}
/*
* CME protocol: like the standard protocol, but SysEx commands are sent as a
* single USB packet preceded by a 0x0F byte.
*/
static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
snd_usbmidi_standard_input(ep, buffer, buffer_length);
else
snd_usbmidi_input_data(ep, buffer[0] >> 4,
&buffer[1], buffer_length - 1);
}
/*
* Adds one USB MIDI packet to the output buffer.
*/
static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
uint8_t p1, uint8_t p2, uint8_t p3)
{
uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
buf[0] = p0;
buf[1] = p1;
buf[2] = p2;
buf[3] = p3;
urb->transfer_buffer_length += 4;
}
/*
* Adds one Midiman packet to the output buffer.
*/
static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
uint8_t p1, uint8_t p2, uint8_t p3)
{
uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
buf[0] = p1;
buf[1] = p2;
buf[2] = p3;
buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
urb->transfer_buffer_length += 4;
}
/*
* Converts MIDI commands to USB MIDI packets.
*/
static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
uint8_t b, struct urb* urb)
{
uint8_t p0 = port->cable;
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
port->ep->umidi->usb_protocol_ops->output_packet;
if (b >= 0xf8) {
output_packet(urb, p0 | 0x0f, b, 0, 0);
} else if (b >= 0xf0) {
switch (b) {
case 0xf0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case 0xf1:
case 0xf3:
port->data[0] = b;
port->state = STATE_1PARAM;
break;
case 0xf2:
port->data[0] = b;
port->state = STATE_2PARAM_1;
break;
case 0xf4:
case 0xf5:
port->state = STATE_UNKNOWN;
break;
case 0xf6:
output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
port->state = STATE_UNKNOWN;
break;
case 0xf7:
switch (port->state) {
case STATE_SYSEX_0:
output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
break;
case STATE_SYSEX_1:
output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
break;
}
port->state = STATE_UNKNOWN;
break;
}
} else if (b >= 0x80) {
port->data[0] = b;
if (b >= 0xc0 && b <= 0xdf)
port->state = STATE_1PARAM;
else
port->state = STATE_2PARAM_1;
} else { /* b < 0x80 */
switch (port->state) {
case STATE_1PARAM:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
} else {
p0 |= 0x02;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], b, 0);
break;
case STATE_2PARAM_1:
port->data[1] = b;
port->state = STATE_2PARAM_2;
break;
case STATE_2PARAM_2:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
port->state = STATE_2PARAM_1;
} else {
p0 |= 0x03;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], port->data[1], b);
break;
case STATE_SYSEX_0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case STATE_SYSEX_1:
port->data[1] = b;
port->state = STATE_SYSEX_2;
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
port->state = STATE_SYSEX_0;
break;
}
}
}
static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep)
{
struct urb* urb = ep->urb;
int p;
/* FIXME: lower-numbered ports can starve higher-numbered ports */
for (p = 0; p < 0x10; ++p) {
struct usbmidi_out_port* port = &ep->ports[p];
if (!port->active)
continue;
while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
uint8_t b;
if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
port->active = 0;
break;
}
snd_usbmidi_transmit_byte(port, b, urb);
}
}
}
static struct usb_protocol_ops snd_usbmidi_standard_ops = {
.input = snd_usbmidi_standard_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_standard_packet,
};
static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
.input = snd_usbmidi_midiman_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_midiman_packet,
};
static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
.input = snd_usbmidi_maudio_broken_running_status_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_standard_packet,
};
static struct usb_protocol_ops snd_usbmidi_cme_ops = {
.input = snd_usbmidi_cme_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_standard_packet,
};
/*
* Novation USB MIDI protocol: number of data bytes is in the first byte
* (when receiving) (+1!) or in the second byte (when sending); data begins
* at the third byte.
*/
static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
return;
snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
}
static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep)
{
uint8_t* transfer_buffer;
int count;
if (!ep->ports[0].active)
return;
transfer_buffer = ep->urb->transfer_buffer;
count = snd_rawmidi_transmit(ep->ports[0].substream,
&transfer_buffer[2],
ep->max_transfer - 2);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
transfer_buffer[0] = 0;
transfer_buffer[1] = count;
ep->urb->transfer_buffer_length = 2 + count;
}
static struct usb_protocol_ops snd_usbmidi_novation_ops = {
.input = snd_usbmidi_novation_input,
.output = snd_usbmidi_novation_output,
};
/*
* "raw" protocol: used by the MOTU FastLane.
*/
static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
}
static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep)
{
int count;
if (!ep->ports[0].active)
return;
count = snd_rawmidi_transmit(ep->ports[0].substream,
ep->urb->transfer_buffer,
ep->max_transfer);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
ep->urb->transfer_buffer_length = count;
}
static struct usb_protocol_ops snd_usbmidi_raw_ops = {
.input = snd_usbmidi_raw_input,
.output = snd_usbmidi_raw_output,
};
static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
if (buffer_length != 9)
return;
buffer_length = 8;
while (buffer_length && buffer[buffer_length - 1] == 0xFD)
buffer_length--;
if (buffer_length)
snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
}
static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep)
{
int count;
if (!ep->ports[0].active)
return;
count = ep->urb->dev->speed == USB_SPEED_HIGH ? 1 : 2;
count = snd_rawmidi_transmit(ep->ports[0].substream,
ep->urb->transfer_buffer,
count);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
memset(ep->urb->transfer_buffer + count, 0xFD, 9 - count);
ep->urb->transfer_buffer_length = count;
}
static struct usb_protocol_ops snd_usbmidi_122l_ops = {
.input = snd_usbmidi_us122l_input,
.output = snd_usbmidi_us122l_output,
};
/*
* Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
*/
static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
{
static const u8 init_data[] = {
/* initialization magic: "get version" */
0xf0,
0x00, 0x20, 0x31, /* Emagic */
0x64, /* Unitor8 */
0x0b, /* version number request */
0x00, /* command version */
0x00, /* EEPROM, box 0 */
0xf7
};
send_bulk_static_data(ep, init_data, sizeof(init_data));
/* while we're at it, pour on more magic */
send_bulk_static_data(ep, init_data, sizeof(init_data));
}
static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
{
static const u8 finish_data[] = {
/* switch to patch mode with last preset */
0xf0,
0x00, 0x20, 0x31, /* Emagic */
0x64, /* Unitor8 */
0x10, /* patch switch command */
0x00, /* command version */
0x7f, /* to all boxes */
0x40, /* last preset in EEPROM */
0xf7
};
send_bulk_static_data(ep, finish_data, sizeof(finish_data));
}
static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
uint8_t* buffer, int buffer_length)
{
int i;
/* FF indicates end of valid data */
for (i = 0; i < buffer_length; ++i)
if (buffer[i] == 0xff) {
buffer_length = i;
break;
}
/* handle F5 at end of last buffer */
if (ep->seen_f5)
goto switch_port;
while (buffer_length > 0) {
/* determine size of data until next F5 */
for (i = 0; i < buffer_length; ++i)
if (buffer[i] == 0xf5)
break;
snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
buffer += i;
buffer_length -= i;
if (buffer_length <= 0)
break;
/* assert(buffer[0] == 0xf5); */
ep->seen_f5 = 1;
++buffer;
--buffer_length;
switch_port:
if (buffer_length <= 0)
break;
if (buffer[0] < 0x80) {
ep->current_port = (buffer[0] - 1) & 15;
++buffer;
--buffer_length;
}
ep->seen_f5 = 0;
}
}
static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep)
{
int port0 = ep->current_port;
uint8_t* buf = ep->urb->transfer_buffer;
int buf_free = ep->max_transfer;
int length, i;
for (i = 0; i < 0x10; ++i) {
/* round-robin, starting at the last current port */
int portnum = (port0 + i) & 15;
struct usbmidi_out_port* port = &ep->ports[portnum];
if (!port->active)
continue;
if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
port->active = 0;
continue;
}
if (portnum != ep->current_port) {
if (buf_free < 2)
break;
ep->current_port = portnum;
buf[0] = 0xf5;
buf[1] = (portnum + 1) & 15;
buf += 2;
buf_free -= 2;
}
if (buf_free < 1)
break;
length = snd_rawmidi_transmit(port->substream, buf, buf_free);
if (length > 0) {
buf += length;
buf_free -= length;
if (buf_free < 1)
break;
}
}
if (buf_free < ep->max_transfer && buf_free > 0) {
*buf = 0xff;
--buf_free;
}
ep->urb->transfer_buffer_length = ep->max_transfer - buf_free;
}
static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
.input = snd_usbmidi_emagic_input,
.output = snd_usbmidi_emagic_output,
.init_out_endpoint = snd_usbmidi_emagic_init_out,
.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
};
static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
{
struct snd_usb_midi* umidi = substream->rmidi->private_data;
struct usbmidi_out_port* port = NULL;
int i, j;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
if (umidi->endpoints[i].out)
for (j = 0; j < 0x10; ++j)
if (umidi->endpoints[i].out->ports[j].substream == substream) {
port = &umidi->endpoints[i].out->ports[j];
break;
}
if (!port) {
snd_BUG();
return -ENXIO;
}
substream->runtime->private_data = port;
port->state = STATE_UNKNOWN;
return 0;
}
static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
{
return 0;
}
static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
port->active = up;
if (up) {
if (port->ep->umidi->chip->shutdown) {
/* gobble up remaining bytes to prevent wait in
* snd_rawmidi_drain_output */
while (!snd_rawmidi_transmit_empty(substream))
snd_rawmidi_transmit_ack(substream, 1);
return;
}
tasklet_hi_schedule(&port->ep->tasklet);
}
}
static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
{
return 0;
}
static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
{
return 0;
}
static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct snd_usb_midi* umidi = substream->rmidi->private_data;
if (up)
set_bit(substream->number, &umidi->input_triggered);
else
clear_bit(substream->number, &umidi->input_triggered);
}
static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
.open = snd_usbmidi_output_open,
.close = snd_usbmidi_output_close,
.trigger = snd_usbmidi_output_trigger,
};
static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
.open = snd_usbmidi_input_open,
.close = snd_usbmidi_input_close,
.trigger = snd_usbmidi_input_trigger
};
/*
* Frees an input endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
{
if (ep->urb) {
usb_buffer_free(ep->umidi->chip->dev,
ep->urb->transfer_buffer_length,
ep->urb->transfer_buffer,
ep->urb->transfer_dma);
usb_free_urb(ep->urb);
}
kfree(ep);
}
/*
* Creates an input endpoint.
*/
static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* ep_info,
struct snd_usb_midi_endpoint* rep)
{
struct snd_usb_midi_in_endpoint* ep;
void* buffer;
unsigned int pipe;
int length;
rep->in = NULL;
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
ep->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urb) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->in_interval)
pipe = usb_rcvintpipe(umidi->chip->dev, ep_info->in_ep);
else
pipe = usb_rcvbulkpipe(umidi->chip->dev, ep_info->in_ep);
length = usb_maxpacket(umidi->chip->dev, pipe, 0);
buffer = usb_buffer_alloc(umidi->chip->dev, length, GFP_KERNEL,
&ep->urb->transfer_dma);
if (!buffer) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->in_interval)
usb_fill_int_urb(ep->urb, umidi->chip->dev, pipe, buffer,
length, snd_usbmidi_in_urb_complete, ep,
ep_info->in_interval);
else
usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer,
length, snd_usbmidi_in_urb_complete, ep);
ep->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
rep->in = ep;
return 0;
}
static unsigned int snd_usbmidi_count_bits(unsigned int x)
{
unsigned int bits;
for (bits = 0; x; ++bits)
x &= x - 1;
return bits;
}
/*
* Frees an output endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint* ep)
{
if (ep->urb) {
usb_buffer_free(ep->umidi->chip->dev, ep->max_transfer,
ep->urb->transfer_buffer,
ep->urb->transfer_dma);
usb_free_urb(ep->urb);
}
kfree(ep);
}
/*
* Creates an output endpoint, and initializes output ports.
*/
static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* ep_info,
struct snd_usb_midi_endpoint* rep)
{
struct snd_usb_midi_out_endpoint* ep;
int i;
unsigned int pipe;
void* buffer;
rep->out = NULL;
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
ep->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urb) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->out_interval)
pipe = usb_sndintpipe(umidi->chip->dev, ep_info->out_ep);
else
pipe = usb_sndbulkpipe(umidi->chip->dev, ep_info->out_ep);
if (umidi->chip->usb_id == USB_ID(0x0a92, 0x1020)) /* ESI M4U */
/* FIXME: we need more URBs to get reasonable bandwidth here: */
ep->max_transfer = 4;
else
ep->max_transfer = usb_maxpacket(umidi->chip->dev, pipe, 1);
buffer = usb_buffer_alloc(umidi->chip->dev, ep->max_transfer,
GFP_KERNEL, &ep->urb->transfer_dma);
if (!buffer) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->out_interval)
usb_fill_int_urb(ep->urb, umidi->chip->dev, pipe, buffer,
ep->max_transfer, snd_usbmidi_out_urb_complete,
ep, ep_info->out_interval);
else
usb_fill_bulk_urb(ep->urb, umidi->chip->dev,
pipe, buffer, ep->max_transfer,
snd_usbmidi_out_urb_complete, ep);
ep->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
spin_lock_init(&ep->buffer_lock);
tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
for (i = 0; i < 0x10; ++i)
if (ep_info->out_cables & (1 << i)) {
ep->ports[i].ep = ep;
ep->ports[i].cable = i << 4;
}
if (umidi->usb_protocol_ops->init_out_endpoint)
umidi->usb_protocol_ops->init_out_endpoint(ep);
rep->out = ep;
return 0;
}
/*
* Frees everything.
*/
static void snd_usbmidi_free(struct snd_usb_midi* umidi)
{
int i;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
if (ep->out)
snd_usbmidi_out_endpoint_delete(ep->out);
if (ep->in)
snd_usbmidi_in_endpoint_delete(ep->in);
}
kfree(umidi);
}
/*
* Unlinks all URBs (must be done before the usb_device is deleted).
*/
void snd_usbmidi_disconnect(struct list_head* p)
{
struct snd_usb_midi* umidi;
int i;
umidi = list_entry(p, struct snd_usb_midi, list);
/*
* an URB's completion handler may start the timer and
* a timer may submit an URB. To reliably break the cycle
* a flag under lock must be used
*/
spin_lock_irq(&umidi->disc_lock);
umidi->disconnected = 1;
spin_unlock_irq(&umidi->disc_lock);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
if (ep->out)
tasklet_kill(&ep->out->tasklet);
if (ep->out && ep->out->urb) {
usb_kill_urb(ep->out->urb);
if (umidi->usb_protocol_ops->finish_out_endpoint)
umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
}
if (ep->in)
usb_kill_urb(ep->in->urb);
/* free endpoints here; later call can result in Oops */
if (ep->out) {
snd_usbmidi_out_endpoint_delete(ep->out);
ep->out = NULL;
}
if (ep->in) {
snd_usbmidi_in_endpoint_delete(ep->in);
ep->in = NULL;
}
}
del_timer_sync(&umidi->error_timer);
}
static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
{
struct snd_usb_midi* umidi = rmidi->private_data;
snd_usbmidi_free(umidi);
}
static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
int stream, int number)
{
struct list_head* list;
list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
if (substream->number == number)
return substream;
}
return NULL;
}
/*
* This list specifies names for ports that do not fit into the standard
* "(product) MIDI (n)" schema because they aren't external MIDI ports,
* such as internal control or synthesizer ports.
*/
static struct port_info {
u32 id;
short int port;
short int voices;
const char *name;
unsigned int seq_flags;
} snd_usbmidi_port_info[] = {
#define PORT_INFO(vendor, product, num, name_, voices_, flags) \
{ .id = USB_ID(vendor, product), \
.port = num, .voices = voices_, \
.name = name_, .seq_flags = flags }
#define EXTERNAL_PORT(vendor, product, num, name) \
PORT_INFO(vendor, product, num, name, 0, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_PORT)
#define CONTROL_PORT(vendor, product, num, name) \
PORT_INFO(vendor, product, num, name, 0, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_HARDWARE)
#define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
PORT_INFO(vendor, product, num, name, voices, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
#define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
PORT_INFO(vendor, product, num, name, voices, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
/* Roland UA-100 */
CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
/* Roland SC-8850 */
SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
/* Roland U-8 */
EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
/* Roland SC-8820 */
SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
/* Roland SK-500 */
SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
/* Roland SC-D70 */
SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
/* Edirol UM-880 */
CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
/* Edirol SD-90 */
ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
/* Edirol UM-550 */
CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
/* Edirol SD-20 */
ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
/* Edirol SD-80 */
ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
/* Edirol UA-700 */
EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
/* Roland VariOS */
EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
/* Edirol PCR */
EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
/* BOSS GS-10 */
EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
/* Edirol UA-1000 */
EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
/* Edirol UR-80 */
EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
/* Edirol PCR-A */
EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
/* Edirol UM-3EX */
CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
/* M-Audio MidiSport 8x8 */
CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
/* MOTU Fastlane */
EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
/* Emagic Unitor8/AMT8/MT4 */
EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
};
static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
{
int i;
for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
if (snd_usbmidi_port_info[i].id == umidi->chip->usb_id &&
snd_usbmidi_port_info[i].port == number)
return &snd_usbmidi_port_info[i];
}
return NULL;
}
static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
struct snd_seq_port_info *seq_port_info)
{
struct snd_usb_midi *umidi = rmidi->private_data;
struct port_info *port_info;
/* TODO: read port flags from descriptors */
port_info = find_port_info(umidi, number);
if (port_info) {
seq_port_info->type = port_info->seq_flags;
seq_port_info->midi_voices = port_info->voices;
}
}
static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
int stream, int number,
struct snd_rawmidi_substream ** rsubstream)
{
struct port_info *port_info;
const char *name_format;
struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
if (!substream) {
snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
return;
}
/* TODO: read port name from jack descriptor */
port_info = find_port_info(umidi, number);
name_format = port_info ? port_info->name : "%s MIDI %d";
snprintf(substream->name, sizeof(substream->name),
name_format, umidi->chip->card->shortname, number + 1);
*rsubstream = substream;
}
/*
* Creates the endpoints and their ports.
*/
static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoints)
{
int i, j, err;
int out_ports = 0, in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
if (endpoints[i].out_cables) {
err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
if (endpoints[i].in_cables) {
err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
for (j = 0; j < 0x10; ++j) {
if (endpoints[i].out_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
&umidi->endpoints[i].out->ports[j].substream);
++out_ports;
}
if (endpoints[i].in_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
&umidi->endpoints[i].in->ports[j].substream);
++in_ports;
}
}
}
snd_printdd(KERN_INFO "created %d output and %d input ports\n",
out_ports, in_ports);
return 0;
}
/*
* Returns MIDIStreaming device capabilities.
*/
static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoints)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
struct usb_ms_header_descriptor* ms_header;
struct usb_host_endpoint *hostep;
struct usb_endpoint_descriptor* ep;
struct usb_ms_endpoint_descriptor* ms_ep;
int i, epidx;
intf = umidi->iface;
if (!intf)
return -ENXIO;
hostif = &intf->altsetting[0];
intfd = get_iface_desc(hostif);
ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
if (hostif->extralen >= 7 &&
ms_header->bLength >= 7 &&
ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
ms_header->bDescriptorSubtype == HEADER)
snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
else
snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
epidx = 0;
for (i = 0; i < intfd->bNumEndpoints; ++i) {
hostep = &hostif->endpoint[i];
ep = get_ep_desc(hostep);
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK &&
(ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
continue;
ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
if (hostep->extralen < 4 ||
ms_ep->bLength < 4 ||
ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
ms_ep->bDescriptorSubtype != MS_GENERAL)
continue;
if ((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
if (endpoints[epidx].out_ep) {
if (++epidx >= MIDI_MAX_ENDPOINTS) {
snd_printk(KERN_WARNING "too many endpoints\n");
break;
}
}
endpoints[epidx].out_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoints[epidx].out_interval = ep->bInterval;
else if (snd_usb_get_speed(umidi->chip->dev) == USB_SPEED_LOW)
/*
* Low speed bulk transfers don't exist, so
* force interrupt transfers for devices like
* ESI MIDI Mate that try to use them anyway.
*/
endpoints[epidx].out_interval = 1;
endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
} else {
if (endpoints[epidx].in_ep) {
if (++epidx >= MIDI_MAX_ENDPOINTS) {
snd_printk(KERN_WARNING "too many endpoints\n");
break;
}
}
endpoints[epidx].in_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoints[epidx].in_interval = ep->bInterval;
else if (snd_usb_get_speed(umidi->chip->dev) == USB_SPEED_LOW)
endpoints[epidx].in_interval = 1;
endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
}
}
return 0;
}
/*
* On Roland devices, use the second alternate setting to be able to use
* the interrupt input endpoint.
*/
static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
intf = umidi->iface;
if (!intf || intf->num_altsetting != 2)
return;
hostif = &intf->altsetting[1];
intfd = get_iface_desc(hostif);
if (intfd->bNumEndpoints != 2 ||
(get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
(get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
return;
snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
intfd->bAlternateSetting);
usb_set_interface(umidi->chip->dev, intfd->bInterfaceNumber,
intfd->bAlternateSetting);
}
/*
* Try to find any usable endpoints in the interface.
*/
static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoint,
int max_endpoints)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
struct usb_endpoint_descriptor* epd;
int i, out_eps = 0, in_eps = 0;
if (USB_ID_VENDOR(umidi->chip->usb_id) == 0x0582)
snd_usbmidi_switch_roland_altsetting(umidi);
if (endpoint[0].out_ep || endpoint[0].in_ep)
return 0;
intf = umidi->iface;
if (!intf || intf->num_altsetting < 1)
return -ENOENT;
hostif = intf->cur_altsetting;
intfd = get_iface_desc(hostif);
for (i = 0; i < intfd->bNumEndpoints; ++i) {
epd = get_endpoint(hostif, i);
if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK &&
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
continue;
if (out_eps < max_endpoints &&
(epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
endpoint[out_eps].out_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoint[out_eps].out_interval = epd->bInterval;
++out_eps;
}
if (in_eps < max_endpoints &&
(epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
endpoint[in_eps].in_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoint[in_eps].in_interval = epd->bInterval;
++in_eps;
}
}
return (out_eps || in_eps) ? 0 : -ENOENT;
}
/*
* Detects the endpoints for one-port-per-endpoint protocols.
*/
static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoints)
{
int err, i;
err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
if (endpoints[i].out_ep)
endpoints[i].out_cables = 0x0001;
if (endpoints[i].in_ep)
endpoints[i].in_cables = 0x0001;
}
return err;
}
/*
* Detects the endpoints and ports of Yamaha devices.
*/
static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoint)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
uint8_t* cs_desc;
intf = umidi->iface;
if (!intf)
return -ENOENT;
hostif = intf->altsetting;
intfd = get_iface_desc(hostif);
if (intfd->bNumEndpoints < 1)
return -ENOENT;
/*
* For each port there is one MIDI_IN/OUT_JACK descriptor, not
* necessarily with any useful contents. So simply count 'em.
*/
for (cs_desc = hostif->extra;
cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
cs_desc += cs_desc[0]) {
if (cs_desc[1] == USB_DT_CS_INTERFACE) {
if (cs_desc[2] == MIDI_IN_JACK)
endpoint->in_cables = (endpoint->in_cables << 1) | 1;
else if (cs_desc[2] == MIDI_OUT_JACK)
endpoint->out_cables = (endpoint->out_cables << 1) | 1;
}
}
if (!endpoint->in_cables && !endpoint->out_cables)
return -ENOENT;
return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
}
/*
* Creates the endpoints and their ports for Midiman devices.
*/
static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
struct snd_usb_midi_endpoint_info* endpoint)
{
struct snd_usb_midi_endpoint_info ep_info;
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
struct usb_endpoint_descriptor* epd;
int cable, err;
intf = umidi->iface;
if (!intf)
return -ENOENT;
hostif = intf->altsetting;
intfd = get_iface_desc(hostif);
/*
* The various MidiSport devices have more or less random endpoint
* numbers, so we have to identify the endpoints by their index in
* the descriptor array, like the driver for that other OS does.
*
* There is one interrupt input endpoint for all input ports, one
* bulk output endpoint for even-numbered ports, and one for odd-
* numbered ports. Both bulk output endpoints have corresponding
* input bulk endpoints (at indices 1 and 3) which aren't used.
*/
if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
snd_printdd(KERN_ERR "not enough endpoints\n");
return -ENOENT;
}
epd = get_endpoint(hostif, 0);
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_IN ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) {
snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
return -ENXIO;
}
epd = get_endpoint(hostif, 2);
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
return -ENXIO;
}
if (endpoint->out_cables > 0x0001) {
epd = get_endpoint(hostif, 4);
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
return -ENXIO;
}
}
ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.out_cables = endpoint->out_cables & 0x5555;
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
if (err < 0)
return err;
ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
ep_info.in_cables = endpoint->in_cables;
err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
if (err < 0)
return err;
if (endpoint->out_cables > 0x0001) {
ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.out_cables = endpoint->out_cables & 0xaaaa;
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
if (err < 0)
return err;
}
for (cable = 0; cable < 0x10; ++cable) {
if (endpoint->out_cables & (1 << cable))
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
&umidi->endpoints[cable & 1].out->ports[cable].substream);
if (endpoint->in_cables & (1 << cable))
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
&umidi->endpoints[0].in->ports[cable].substream);
}
return 0;
}
static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
.get_port_info = snd_usbmidi_get_port_info,
};
static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
int out_ports, int in_ports)
{
struct snd_rawmidi *rmidi;
int err;
err = snd_rawmidi_new(umidi->chip->card, "USB MIDI",
umidi->chip->next_midi_device++,
out_ports, in_ports, &rmidi);
if (err < 0)
return err;
strcpy(rmidi->name, umidi->chip->card->shortname);
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->ops = &snd_usbmidi_ops;
rmidi->private_data = umidi;
rmidi->private_free = snd_usbmidi_rawmidi_free;
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
umidi->rmidi = rmidi;
return 0;
}
/*
* Temporarily stop input.
*/
void snd_usbmidi_input_stop(struct list_head* p)
{
struct snd_usb_midi* umidi;
int i;
umidi = list_entry(p, struct snd_usb_midi, list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
if (ep->in)
usb_kill_urb(ep->in->urb);
}
}
static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
{
if (ep) {
struct urb* urb = ep->urb;
urb->dev = ep->umidi->chip->dev;
snd_usbmidi_submit_urb(urb, GFP_KERNEL);
}
}
/*
* Resume input after a call to snd_usbmidi_input_stop().
*/
void snd_usbmidi_input_start(struct list_head* p)
{
struct snd_usb_midi* umidi;
int i;
umidi = list_entry(p, struct snd_usb_midi, list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
}
/*
* Creates and registers everything needed for a MIDI streaming interface.
*/
int snd_usb_create_midi_interface(struct snd_usb_audio* chip,
struct usb_interface* iface,
const struct snd_usb_audio_quirk* quirk)
{
struct snd_usb_midi* umidi;
struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
int out_ports, in_ports;
int i, err;
umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
if (!umidi)
return -ENOMEM;
umidi->chip = chip;
umidi->iface = iface;
umidi->quirk = quirk;
umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
init_timer(&umidi->error_timer);
spin_lock_init(&umidi->disc_lock);
umidi->error_timer.function = snd_usbmidi_error_timer;
umidi->error_timer.data = (unsigned long)umidi;
/* detect the endpoint(s) to use */
memset(endpoints, 0, sizeof(endpoints));
switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
case QUIRK_MIDI_STANDARD_INTERFACE:
err = snd_usbmidi_get_ms_info(umidi, endpoints);
if (chip->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
umidi->usb_protocol_ops =
&snd_usbmidi_maudio_broken_running_status_ops;
break;
case QUIRK_MIDI_US122L:
umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
/* fall through */
case QUIRK_MIDI_FIXED_ENDPOINT:
memcpy(&endpoints[0], quirk->data,
sizeof(struct snd_usb_midi_endpoint_info));
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
break;
case QUIRK_MIDI_YAMAHA:
err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
break;
case QUIRK_MIDI_MIDIMAN:
umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
memcpy(&endpoints[0], quirk->data,
sizeof(struct snd_usb_midi_endpoint_info));
err = 0;
break;
case QUIRK_MIDI_NOVATION:
umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
case QUIRK_MIDI_RAW:
umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
case QUIRK_MIDI_EMAGIC:
umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
memcpy(&endpoints[0], quirk->data,
sizeof(struct snd_usb_midi_endpoint_info));
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
break;
case QUIRK_MIDI_CME:
umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
default:
snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
err = -ENXIO;
break;
}
if (err < 0) {
kfree(umidi);
return err;
}
/* create rawmidi device */
out_ports = 0;
in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
out_ports += snd_usbmidi_count_bits(endpoints[i].out_cables);
in_ports += snd_usbmidi_count_bits(endpoints[i].in_cables);
}
err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
if (err < 0) {
kfree(umidi);
return err;
}
/* create endpoint/port structures */
if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
else
err = snd_usbmidi_create_endpoints(umidi, endpoints);
if (err < 0) {
snd_usbmidi_free(umidi);
return err;
}
list_add(&umidi->list, &umidi->chip->midi_list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
return 0;
}
EXPORT_SYMBOL(snd_usb_create_midi_interface);
EXPORT_SYMBOL(snd_usbmidi_input_stop);
EXPORT_SYMBOL(snd_usbmidi_input_start);
EXPORT_SYMBOL(snd_usbmidi_disconnect);