android_kernel_motorola_sm6225/include/linux/i2o.h

1264 lines
37 KiB
C
Raw Normal View History

/*
* I2O kernel space accessible structures/APIs
*
* (c) Copyright 1999, 2000 Red Hat Software
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*************************************************************************
*
* This header file defined the I2O APIs/structures for use by
* the I2O kernel modules.
*
*/
#ifndef _I2O_H
#define _I2O_H
#ifdef __KERNEL__ /* This file to be included by kernel only */
#include <linux/i2o-dev.h>
/* How many different OSM's are we allowing */
#define I2O_MAX_DRIVERS 8
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/workqueue.h> /* work_struct */
#include <linux/mempool.h>
#include <linux/mutex.h>
#include <asm/io.h>
#include <asm/semaphore.h> /* Needed for MUTEX init macros */
/* message queue empty */
#define I2O_QUEUE_EMPTY 0xffffffff
/*
* Cache strategies
*/
/* The NULL strategy leaves everything up to the controller. This tends to be a
* pessimal but functional choice.
*/
#define CACHE_NULL 0
/* Prefetch data when reading. We continually attempt to load the next 32 sectors
* into the controller cache.
*/
#define CACHE_PREFETCH 1
/* Prefetch data when reading. We sometimes attempt to load the next 32 sectors
* into the controller cache. When an I/O is less <= 8K we assume its probably
* not sequential and don't prefetch (default)
*/
#define CACHE_SMARTFETCH 2
/* Data is written to the cache and then out on to the disk. The I/O must be
* physically on the medium before the write is acknowledged (default without
* NVRAM)
*/
#define CACHE_WRITETHROUGH 17
/* Data is written to the cache and then out on to the disk. The controller
* is permitted to write back the cache any way it wants. (default if battery
* backed NVRAM is present). It can be useful to set this for swap regardless of
* battery state.
*/
#define CACHE_WRITEBACK 18
/* Optimise for under powered controllers, especially on RAID1 and RAID0. We
* write large I/O's directly to disk bypassing the cache to avoid the extra
* memory copy hits. Small writes are writeback cached
*/
#define CACHE_SMARTBACK 19
/* Optimise for under powered controllers, especially on RAID1 and RAID0. We
* write large I/O's directly to disk bypassing the cache to avoid the extra
* memory copy hits. Small writes are writethrough cached. Suitable for devices
* lacking battery backup
*/
#define CACHE_SMARTTHROUGH 20
/*
* Ioctl structures
*/
#define BLKI2OGRSTRAT _IOR('2', 1, int)
#define BLKI2OGWSTRAT _IOR('2', 2, int)
#define BLKI2OSRSTRAT _IOW('2', 3, int)
#define BLKI2OSWSTRAT _IOW('2', 4, int)
/*
* I2O Function codes
*/
/*
* Executive Class
*/
#define I2O_CMD_ADAPTER_ASSIGN 0xB3
#define I2O_CMD_ADAPTER_READ 0xB2
#define I2O_CMD_ADAPTER_RELEASE 0xB5
#define I2O_CMD_BIOS_INFO_SET 0xA5
#define I2O_CMD_BOOT_DEVICE_SET 0xA7
#define I2O_CMD_CONFIG_VALIDATE 0xBB
#define I2O_CMD_CONN_SETUP 0xCA
#define I2O_CMD_DDM_DESTROY 0xB1
#define I2O_CMD_DDM_ENABLE 0xD5
#define I2O_CMD_DDM_QUIESCE 0xC7
#define I2O_CMD_DDM_RESET 0xD9
#define I2O_CMD_DDM_SUSPEND 0xAF
#define I2O_CMD_DEVICE_ASSIGN 0xB7
#define I2O_CMD_DEVICE_RELEASE 0xB9
#define I2O_CMD_HRT_GET 0xA8
#define I2O_CMD_ADAPTER_CLEAR 0xBE
#define I2O_CMD_ADAPTER_CONNECT 0xC9
#define I2O_CMD_ADAPTER_RESET 0xBD
#define I2O_CMD_LCT_NOTIFY 0xA2
#define I2O_CMD_OUTBOUND_INIT 0xA1
#define I2O_CMD_PATH_ENABLE 0xD3
#define I2O_CMD_PATH_QUIESCE 0xC5
#define I2O_CMD_PATH_RESET 0xD7
#define I2O_CMD_STATIC_MF_CREATE 0xDD
#define I2O_CMD_STATIC_MF_RELEASE 0xDF
#define I2O_CMD_STATUS_GET 0xA0
#define I2O_CMD_SW_DOWNLOAD 0xA9
#define I2O_CMD_SW_UPLOAD 0xAB
#define I2O_CMD_SW_REMOVE 0xAD
#define I2O_CMD_SYS_ENABLE 0xD1
#define I2O_CMD_SYS_MODIFY 0xC1
#define I2O_CMD_SYS_QUIESCE 0xC3
#define I2O_CMD_SYS_TAB_SET 0xA3
/*
* Utility Class
*/
#define I2O_CMD_UTIL_NOP 0x00
#define I2O_CMD_UTIL_ABORT 0x01
#define I2O_CMD_UTIL_CLAIM 0x09
#define I2O_CMD_UTIL_RELEASE 0x0B
#define I2O_CMD_UTIL_PARAMS_GET 0x06
#define I2O_CMD_UTIL_PARAMS_SET 0x05
#define I2O_CMD_UTIL_EVT_REGISTER 0x13
#define I2O_CMD_UTIL_EVT_ACK 0x14
#define I2O_CMD_UTIL_CONFIG_DIALOG 0x10
#define I2O_CMD_UTIL_DEVICE_RESERVE 0x0D
#define I2O_CMD_UTIL_DEVICE_RELEASE 0x0F
#define I2O_CMD_UTIL_LOCK 0x17
#define I2O_CMD_UTIL_LOCK_RELEASE 0x19
#define I2O_CMD_UTIL_REPLY_FAULT_NOTIFY 0x15
/*
* SCSI Host Bus Adapter Class
*/
#define I2O_CMD_SCSI_EXEC 0x81
#define I2O_CMD_SCSI_ABORT 0x83
#define I2O_CMD_SCSI_BUSRESET 0x27
/*
* Bus Adapter Class
*/
#define I2O_CMD_BUS_ADAPTER_RESET 0x85
#define I2O_CMD_BUS_RESET 0x87
#define I2O_CMD_BUS_SCAN 0x89
#define I2O_CMD_BUS_QUIESCE 0x8b
/*
* Random Block Storage Class
*/
#define I2O_CMD_BLOCK_READ 0x30
#define I2O_CMD_BLOCK_WRITE 0x31
#define I2O_CMD_BLOCK_CFLUSH 0x37
#define I2O_CMD_BLOCK_MLOCK 0x49
#define I2O_CMD_BLOCK_MUNLOCK 0x4B
#define I2O_CMD_BLOCK_MMOUNT 0x41
#define I2O_CMD_BLOCK_MEJECT 0x43
#define I2O_CMD_BLOCK_POWER 0x70
#define I2O_CMD_PRIVATE 0xFF
/* Command status values */
#define I2O_CMD_IN_PROGRESS 0x01
#define I2O_CMD_REJECTED 0x02
#define I2O_CMD_FAILED 0x03
#define I2O_CMD_COMPLETED 0x04
/* I2O API function return values */
#define I2O_RTN_NO_ERROR 0
#define I2O_RTN_NOT_INIT 1
#define I2O_RTN_FREE_Q_EMPTY 2
#define I2O_RTN_TCB_ERROR 3
#define I2O_RTN_TRANSACTION_ERROR 4
#define I2O_RTN_ADAPTER_ALREADY_INIT 5
#define I2O_RTN_MALLOC_ERROR 6
#define I2O_RTN_ADPTR_NOT_REGISTERED 7
#define I2O_RTN_MSG_REPLY_TIMEOUT 8
#define I2O_RTN_NO_STATUS 9
#define I2O_RTN_NO_FIRM_VER 10
#define I2O_RTN_NO_LINK_SPEED 11
/* Reply message status defines for all messages */
#define I2O_REPLY_STATUS_SUCCESS 0x00
#define I2O_REPLY_STATUS_ABORT_DIRTY 0x01
#define I2O_REPLY_STATUS_ABORT_NO_DATA_TRANSFER 0x02
#define I2O_REPLY_STATUS_ABORT_PARTIAL_TRANSFER 0x03
#define I2O_REPLY_STATUS_ERROR_DIRTY 0x04
#define I2O_REPLY_STATUS_ERROR_NO_DATA_TRANSFER 0x05
#define I2O_REPLY_STATUS_ERROR_PARTIAL_TRANSFER 0x06
#define I2O_REPLY_STATUS_PROCESS_ABORT_DIRTY 0x08
#define I2O_REPLY_STATUS_PROCESS_ABORT_NO_DATA_TRANSFER 0x09
#define I2O_REPLY_STATUS_PROCESS_ABORT_PARTIAL_TRANSFER 0x0A
#define I2O_REPLY_STATUS_TRANSACTION_ERROR 0x0B
#define I2O_REPLY_STATUS_PROGRESS_REPORT 0x80
/* Status codes and Error Information for Parameter functions */
#define I2O_PARAMS_STATUS_SUCCESS 0x00
#define I2O_PARAMS_STATUS_BAD_KEY_ABORT 0x01
#define I2O_PARAMS_STATUS_BAD_KEY_CONTINUE 0x02
#define I2O_PARAMS_STATUS_BUFFER_FULL 0x03
#define I2O_PARAMS_STATUS_BUFFER_TOO_SMALL 0x04
#define I2O_PARAMS_STATUS_FIELD_UNREADABLE 0x05
#define I2O_PARAMS_STATUS_FIELD_UNWRITEABLE 0x06
#define I2O_PARAMS_STATUS_INSUFFICIENT_FIELDS 0x07
#define I2O_PARAMS_STATUS_INVALID_GROUP_ID 0x08
#define I2O_PARAMS_STATUS_INVALID_OPERATION 0x09
#define I2O_PARAMS_STATUS_NO_KEY_FIELD 0x0A
#define I2O_PARAMS_STATUS_NO_SUCH_FIELD 0x0B
#define I2O_PARAMS_STATUS_NON_DYNAMIC_GROUP 0x0C
#define I2O_PARAMS_STATUS_OPERATION_ERROR 0x0D
#define I2O_PARAMS_STATUS_SCALAR_ERROR 0x0E
#define I2O_PARAMS_STATUS_TABLE_ERROR 0x0F
#define I2O_PARAMS_STATUS_WRONG_GROUP_TYPE 0x10
/* DetailedStatusCode defines for Executive, DDM, Util and Transaction error
* messages: Table 3-2 Detailed Status Codes.*/
#define I2O_DSC_SUCCESS 0x0000
#define I2O_DSC_BAD_KEY 0x0002
#define I2O_DSC_TCL_ERROR 0x0003
#define I2O_DSC_REPLY_BUFFER_FULL 0x0004
#define I2O_DSC_NO_SUCH_PAGE 0x0005
#define I2O_DSC_INSUFFICIENT_RESOURCE_SOFT 0x0006
#define I2O_DSC_INSUFFICIENT_RESOURCE_HARD 0x0007
#define I2O_DSC_CHAIN_BUFFER_TOO_LARGE 0x0009
#define I2O_DSC_UNSUPPORTED_FUNCTION 0x000A
#define I2O_DSC_DEVICE_LOCKED 0x000B
#define I2O_DSC_DEVICE_RESET 0x000C
#define I2O_DSC_INAPPROPRIATE_FUNCTION 0x000D
#define I2O_DSC_INVALID_INITIATOR_ADDRESS 0x000E
#define I2O_DSC_INVALID_MESSAGE_FLAGS 0x000F
#define I2O_DSC_INVALID_OFFSET 0x0010
#define I2O_DSC_INVALID_PARAMETER 0x0011
#define I2O_DSC_INVALID_REQUEST 0x0012
#define I2O_DSC_INVALID_TARGET_ADDRESS 0x0013
#define I2O_DSC_MESSAGE_TOO_LARGE 0x0014
#define I2O_DSC_MESSAGE_TOO_SMALL 0x0015
#define I2O_DSC_MISSING_PARAMETER 0x0016
#define I2O_DSC_TIMEOUT 0x0017
#define I2O_DSC_UNKNOWN_ERROR 0x0018
#define I2O_DSC_UNKNOWN_FUNCTION 0x0019
#define I2O_DSC_UNSUPPORTED_VERSION 0x001A
#define I2O_DSC_DEVICE_BUSY 0x001B
#define I2O_DSC_DEVICE_NOT_AVAILABLE 0x001C
/* DetailedStatusCode defines for Block Storage Operation: Table 6-7 Detailed
Status Codes.*/
#define I2O_BSA_DSC_SUCCESS 0x0000
#define I2O_BSA_DSC_MEDIA_ERROR 0x0001
#define I2O_BSA_DSC_ACCESS_ERROR 0x0002
#define I2O_BSA_DSC_DEVICE_FAILURE 0x0003
#define I2O_BSA_DSC_DEVICE_NOT_READY 0x0004
#define I2O_BSA_DSC_MEDIA_NOT_PRESENT 0x0005
#define I2O_BSA_DSC_MEDIA_LOCKED 0x0006
#define I2O_BSA_DSC_MEDIA_FAILURE 0x0007
#define I2O_BSA_DSC_PROTOCOL_FAILURE 0x0008
#define I2O_BSA_DSC_BUS_FAILURE 0x0009
#define I2O_BSA_DSC_ACCESS_VIOLATION 0x000A
#define I2O_BSA_DSC_WRITE_PROTECTED 0x000B
#define I2O_BSA_DSC_DEVICE_RESET 0x000C
#define I2O_BSA_DSC_VOLUME_CHANGED 0x000D
#define I2O_BSA_DSC_TIMEOUT 0x000E
/* FailureStatusCodes, Table 3-3 Message Failure Codes */
#define I2O_FSC_TRANSPORT_SERVICE_SUSPENDED 0x81
#define I2O_FSC_TRANSPORT_SERVICE_TERMINATED 0x82
#define I2O_FSC_TRANSPORT_CONGESTION 0x83
#define I2O_FSC_TRANSPORT_FAILURE 0x84
#define I2O_FSC_TRANSPORT_STATE_ERROR 0x85
#define I2O_FSC_TRANSPORT_TIME_OUT 0x86
#define I2O_FSC_TRANSPORT_ROUTING_FAILURE 0x87
#define I2O_FSC_TRANSPORT_INVALID_VERSION 0x88
#define I2O_FSC_TRANSPORT_INVALID_OFFSET 0x89
#define I2O_FSC_TRANSPORT_INVALID_MSG_FLAGS 0x8A
#define I2O_FSC_TRANSPORT_FRAME_TOO_SMALL 0x8B
#define I2O_FSC_TRANSPORT_FRAME_TOO_LARGE 0x8C
#define I2O_FSC_TRANSPORT_INVALID_TARGET_ID 0x8D
#define I2O_FSC_TRANSPORT_INVALID_INITIATOR_ID 0x8E
#define I2O_FSC_TRANSPORT_INVALID_INITIATOR_CONTEXT 0x8F
#define I2O_FSC_TRANSPORT_UNKNOWN_FAILURE 0xFF
/* Device Claim Types */
#define I2O_CLAIM_PRIMARY 0x01000000
#define I2O_CLAIM_MANAGEMENT 0x02000000
#define I2O_CLAIM_AUTHORIZED 0x03000000
#define I2O_CLAIM_SECONDARY 0x04000000
/* Message header defines for VersionOffset */
#define I2OVER15 0x0001
#define I2OVER20 0x0002
/* Default is 1.5 */
#define I2OVERSION I2OVER15
#define SGL_OFFSET_0 I2OVERSION
#define SGL_OFFSET_4 (0x0040 | I2OVERSION)
#define SGL_OFFSET_5 (0x0050 | I2OVERSION)
#define SGL_OFFSET_6 (0x0060 | I2OVERSION)
#define SGL_OFFSET_7 (0x0070 | I2OVERSION)
#define SGL_OFFSET_8 (0x0080 | I2OVERSION)
#define SGL_OFFSET_9 (0x0090 | I2OVERSION)
#define SGL_OFFSET_10 (0x00A0 | I2OVERSION)
#define SGL_OFFSET_11 (0x00B0 | I2OVERSION)
#define SGL_OFFSET_12 (0x00C0 | I2OVERSION)
#define SGL_OFFSET(x) (((x)<<4) | I2OVERSION)
/* Transaction Reply Lists (TRL) Control Word structure */
#define TRL_SINGLE_FIXED_LENGTH 0x00
#define TRL_SINGLE_VARIABLE_LENGTH 0x40
#define TRL_MULTIPLE_FIXED_LENGTH 0x80
/* msg header defines for MsgFlags */
#define MSG_STATIC 0x0100
#define MSG_64BIT_CNTXT 0x0200
#define MSG_MULTI_TRANS 0x1000
#define MSG_FAIL 0x2000
#define MSG_FINAL 0x4000
#define MSG_REPLY 0x8000
/* minimum size msg */
#define THREE_WORD_MSG_SIZE 0x00030000
#define FOUR_WORD_MSG_SIZE 0x00040000
#define FIVE_WORD_MSG_SIZE 0x00050000
#define SIX_WORD_MSG_SIZE 0x00060000
#define SEVEN_WORD_MSG_SIZE 0x00070000
#define EIGHT_WORD_MSG_SIZE 0x00080000
#define NINE_WORD_MSG_SIZE 0x00090000
#define TEN_WORD_MSG_SIZE 0x000A0000
#define ELEVEN_WORD_MSG_SIZE 0x000B0000
#define I2O_MESSAGE_SIZE(x) ((x)<<16)
/* special TID assignments */
#define ADAPTER_TID 0
#define HOST_TID 1
/* outbound queue defines */
#define I2O_MAX_OUTBOUND_MSG_FRAMES 128
#define I2O_OUTBOUND_MSG_FRAME_SIZE 128 /* in 32-bit words */
/* inbound queue definitions */
#define I2O_MSG_INPOOL_MIN 32
#define I2O_INBOUND_MSG_FRAME_SIZE 128 /* in 32-bit words */
#define I2O_POST_WAIT_OK 0
#define I2O_POST_WAIT_TIMEOUT -ETIMEDOUT
#define I2O_CONTEXT_LIST_MIN_LENGTH 15
#define I2O_CONTEXT_LIST_USED 0x01
#define I2O_CONTEXT_LIST_DELETED 0x02
/* timeouts */
#define I2O_TIMEOUT_INIT_OUTBOUND_QUEUE 15
#define I2O_TIMEOUT_MESSAGE_GET 5
#define I2O_TIMEOUT_RESET 30
#define I2O_TIMEOUT_STATUS_GET 5
#define I2O_TIMEOUT_LCT_GET 360
#define I2O_TIMEOUT_SCSI_SCB_ABORT 240
/* retries */
#define I2O_HRT_GET_TRIES 3
#define I2O_LCT_GET_TRIES 3
/* defines for max_sectors and max_phys_segments */
#define I2O_MAX_SECTORS 1024
#define I2O_MAX_SECTORS_LIMITED 128
#define I2O_MAX_PHYS_SEGMENTS MAX_PHYS_SEGMENTS
/*
* Message structures
*/
struct i2o_message {
union {
struct {
u8 version_offset;
u8 flags;
u16 size;
u32 target_tid:12;
u32 init_tid:12;
u32 function:8;
u32 icntxt; /* initiator context */
u32 tcntxt; /* transaction context */
} s;
u32 head[4];
} u;
/* List follows */
u32 body[0];
};
/* MFA and I2O message used by mempool */
struct i2o_msg_mfa {
u32 mfa; /* MFA returned by the controller */
struct i2o_message msg; /* I2O message */
};
/*
* Each I2O device entity has one of these. There is one per device.
*/
struct i2o_device {
i2o_lct_entry lct_data; /* Device LCT information */
struct i2o_controller *iop; /* Controlling IOP */
struct list_head list; /* node in IOP devices list */
struct device device;
struct mutex lock; /* device lock */
};
/*
* Event structure provided to the event handling function
*/
struct i2o_event {
struct work_struct work;
struct i2o_device *i2o_dev; /* I2O device pointer from which the
event reply was initiated */
u16 size; /* Size of data in 32-bit words */
u32 tcntxt; /* Transaction context used at
registration */
u32 event_indicator; /* Event indicator from reply */
u32 data[0]; /* Event data from reply */
};
/*
* I2O classes which could be handled by the OSM
*/
struct i2o_class_id {
u16 class_id:12;
};
/*
* I2O driver structure for OSMs
*/
struct i2o_driver {
char *name; /* OSM name */
int context; /* Low 8 bits of the transaction info */
struct i2o_class_id *classes; /* I2O classes that this OSM handles */
/* Message reply handler */
int (*reply) (struct i2o_controller *, u32, struct i2o_message *);
/* Event handler */
work_func_t event;
struct workqueue_struct *event_queue; /* Event queue */
struct device_driver driver;
/* notification of changes */
void (*notify_controller_add) (struct i2o_controller *);
void (*notify_controller_remove) (struct i2o_controller *);
void (*notify_device_add) (struct i2o_device *);
void (*notify_device_remove) (struct i2o_device *);
struct semaphore lock;
};
/*
* Contains DMA mapped address information
*/
struct i2o_dma {
void *virt;
dma_addr_t phys;
size_t len;
};
/*
* Contains slab cache and mempool information
*/
struct i2o_pool {
char *name;
struct kmem_cache *slab;
mempool_t *mempool;
};
/*
* Contains IO mapped address information
*/
struct i2o_io {
void __iomem *virt;
unsigned long phys;
unsigned long len;
};
/*
* Context queue entry, used for 32-bit context on 64-bit systems
*/
struct i2o_context_list_element {
struct list_head list;
u32 context;
void *ptr;
unsigned long timestamp;
};
/*
* Each I2O controller has one of these objects
*/
struct i2o_controller {
char name[16];
int unit;
int type;
struct pci_dev *pdev; /* PCI device */
unsigned int promise:1; /* Promise controller */
unsigned int adaptec:1; /* DPT / Adaptec controller */
unsigned int raptor:1; /* split bar */
unsigned int no_quiesce:1; /* dont quiesce before reset */
unsigned int short_req:1; /* use small block sizes */
unsigned int limit_sectors:1; /* limit number of sectors / request */
unsigned int pae_support:1; /* controller has 64-bit SGL support */
struct list_head devices; /* list of I2O devices */
struct list_head list; /* Controller list */
void __iomem *in_port; /* Inbout port address */
void __iomem *out_port; /* Outbound port address */
void __iomem *irq_status; /* Interrupt status register address */
void __iomem *irq_mask; /* Interrupt mask register address */
struct i2o_dma status; /* IOP status block */
struct i2o_dma hrt; /* HW Resource Table */
i2o_lct *lct; /* Logical Config Table */
struct i2o_dma dlct; /* Temp LCT */
struct mutex lct_lock; /* Lock for LCT updates */
struct i2o_dma status_block; /* IOP status block */
struct i2o_io base; /* controller messaging unit */
struct i2o_io in_queue; /* inbound message queue Host->IOP */
struct i2o_dma out_queue; /* outbound message queue IOP->Host */
struct i2o_pool in_msg; /* mempool for inbound messages */
unsigned int battery:1; /* Has a battery backup */
unsigned int io_alloc:1; /* An I/O resource was allocated */
unsigned int mem_alloc:1; /* A memory resource was allocated */
struct resource io_resource; /* I/O resource allocated to the IOP */
struct resource mem_resource; /* Mem resource allocated to the IOP */
struct device device;
struct i2o_device *exec; /* Executive */
#if BITS_PER_LONG == 64
spinlock_t context_list_lock; /* lock for context_list */
atomic_t context_list_counter; /* needed for unique contexts */
struct list_head context_list; /* list of context id's
and pointers */
#endif
spinlock_t lock; /* lock for controller
configuration */
void *driver_data[I2O_MAX_DRIVERS]; /* storage for drivers */
};
/*
* I2O System table entry
*
* The system table contains information about all the IOPs in the
* system. It is sent to all IOPs so that they can create peer2peer
* connections between them.
*/
struct i2o_sys_tbl_entry {
u16 org_id;
u16 reserved1;
u32 iop_id:12;
u32 reserved2:20;
u16 seg_num:12;
u16 i2o_version:4;
u8 iop_state;
u8 msg_type;
u16 frame_size;
u16 reserved3;
u32 last_changed;
u32 iop_capabilities;
u32 inbound_low;
u32 inbound_high;
};
struct i2o_sys_tbl {
u8 num_entries;
u8 version;
u16 reserved1;
u32 change_ind;
u32 reserved2;
u32 reserved3;
struct i2o_sys_tbl_entry iops[0];
};
extern struct list_head i2o_controllers;
/* Message functions */
static inline struct i2o_message *i2o_msg_get(struct i2o_controller *);
extern struct i2o_message *i2o_msg_get_wait(struct i2o_controller *, int);
static inline void i2o_msg_post(struct i2o_controller *, struct i2o_message *);
static inline int i2o_msg_post_wait(struct i2o_controller *,
struct i2o_message *, unsigned long);
extern int i2o_msg_post_wait_mem(struct i2o_controller *, struct i2o_message *,
unsigned long, struct i2o_dma *);
static inline void i2o_flush_reply(struct i2o_controller *, u32);
/* IOP functions */
extern int i2o_status_get(struct i2o_controller *);
extern int i2o_event_register(struct i2o_device *, struct i2o_driver *, int,
u32);
extern struct i2o_device *i2o_iop_find_device(struct i2o_controller *, u16);
extern struct i2o_controller *i2o_find_iop(int);
/* Functions needed for handling 64-bit pointers in 32-bit context */
#if BITS_PER_LONG == 64
extern u32 i2o_cntxt_list_add(struct i2o_controller *, void *);
extern void *i2o_cntxt_list_get(struct i2o_controller *, u32);
extern u32 i2o_cntxt_list_remove(struct i2o_controller *, void *);
extern u32 i2o_cntxt_list_get_ptr(struct i2o_controller *, void *);
static inline u32 i2o_ptr_low(void *ptr)
{
return (u32) (u64) ptr;
};
static inline u32 i2o_ptr_high(void *ptr)
{
return (u32) ((u64) ptr >> 32);
};
static inline u32 i2o_dma_low(dma_addr_t dma_addr)
{
return (u32) (u64) dma_addr;
};
static inline u32 i2o_dma_high(dma_addr_t dma_addr)
{
return (u32) ((u64) dma_addr >> 32);
};
#else
static inline u32 i2o_cntxt_list_add(struct i2o_controller *c, void *ptr)
{
return (u32) ptr;
};
static inline void *i2o_cntxt_list_get(struct i2o_controller *c, u32 context)
{
return (void *)context;
};
static inline u32 i2o_cntxt_list_remove(struct i2o_controller *c, void *ptr)
{
return (u32) ptr;
};
static inline u32 i2o_cntxt_list_get_ptr(struct i2o_controller *c, void *ptr)
{
return (u32) ptr;
};
static inline u32 i2o_ptr_low(void *ptr)
{
return (u32) ptr;
};
static inline u32 i2o_ptr_high(void *ptr)
{
return 0;
};
static inline u32 i2o_dma_low(dma_addr_t dma_addr)
{
return (u32) dma_addr;
};
static inline u32 i2o_dma_high(dma_addr_t dma_addr)
{
return 0;
};
#endif
/**
* i2o_sg_tablesize - Calculate the maximum number of elements in a SGL
* @c: I2O controller for which the calculation should be done
* @body_size: maximum body size used for message in 32-bit words.
*
* Return the maximum number of SG elements in a SG list.
*/
static inline u16 i2o_sg_tablesize(struct i2o_controller *c, u16 body_size)
{
i2o_status_block *sb = c->status_block.virt;
u16 sg_count =
(sb->inbound_frame_size - sizeof(struct i2o_message) / 4) -
body_size;
if (c->pae_support) {
/*
* for 64-bit a SG attribute element must be added and each
* SG element needs 12 bytes instead of 8.
*/
sg_count -= 2;
sg_count /= 3;
} else
sg_count /= 2;
if (c->short_req && (sg_count > 8))
sg_count = 8;
return sg_count;
};
/**
* i2o_dma_map_single - Map pointer to controller and fill in I2O message.
* @c: I2O controller
* @ptr: pointer to the data which should be mapped
* @size: size of data in bytes
* @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE
* @sg_ptr: pointer to the SG list inside the I2O message
*
* This function does all necessary DMA handling and also writes the I2O
* SGL elements into the I2O message. For details on DMA handling see also
* dma_map_single(). The pointer sg_ptr will only be set to the end of the
* SG list if the allocation was successful.
*
* Returns DMA address which must be checked for failures using
* dma_mapping_error().
*/
static inline dma_addr_t i2o_dma_map_single(struct i2o_controller *c, void *ptr,
size_t size,
enum dma_data_direction direction,
u32 ** sg_ptr)
{
u32 sg_flags;
u32 *mptr = *sg_ptr;
dma_addr_t dma_addr;
switch (direction) {
case DMA_TO_DEVICE:
sg_flags = 0xd4000000;
break;
case DMA_FROM_DEVICE:
sg_flags = 0xd0000000;
break;
default:
return 0;
}
dma_addr = dma_map_single(&c->pdev->dev, ptr, size, direction);
if (!dma_mapping_error(dma_addr)) {
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
if ((sizeof(dma_addr_t) > 4) && c->pae_support) {
*mptr++ = cpu_to_le32(0x7C020002);
*mptr++ = cpu_to_le32(PAGE_SIZE);
}
#endif
*mptr++ = cpu_to_le32(sg_flags | size);
*mptr++ = cpu_to_le32(i2o_dma_low(dma_addr));
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
if ((sizeof(dma_addr_t) > 4) && c->pae_support)
*mptr++ = cpu_to_le32(i2o_dma_high(dma_addr));
#endif
*sg_ptr = mptr;
}
return dma_addr;
};
/**
* i2o_dma_map_sg - Map a SG List to controller and fill in I2O message.
* @c: I2O controller
* @sg: SG list to be mapped
* @sg_count: number of elements in the SG list
* @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE
* @sg_ptr: pointer to the SG list inside the I2O message
*
* This function does all necessary DMA handling and also writes the I2O
* SGL elements into the I2O message. For details on DMA handling see also
* dma_map_sg(). The pointer sg_ptr will only be set to the end of the SG
* list if the allocation was successful.
*
* Returns 0 on failure or 1 on success.
*/
static inline int i2o_dma_map_sg(struct i2o_controller *c,
struct scatterlist *sg, int sg_count,
enum dma_data_direction direction,
u32 ** sg_ptr)
{
u32 sg_flags;
u32 *mptr = *sg_ptr;
switch (direction) {
case DMA_TO_DEVICE:
sg_flags = 0x14000000;
break;
case DMA_FROM_DEVICE:
sg_flags = 0x10000000;
break;
default:
return 0;
}
sg_count = dma_map_sg(&c->pdev->dev, sg, sg_count, direction);
if (!sg_count)
return 0;
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
if ((sizeof(dma_addr_t) > 4) && c->pae_support) {
*mptr++ = cpu_to_le32(0x7C020002);
*mptr++ = cpu_to_le32(PAGE_SIZE);
}
#endif
while (sg_count-- > 0) {
if (!sg_count)
sg_flags |= 0xC0000000;
*mptr++ = cpu_to_le32(sg_flags | sg_dma_len(sg));
*mptr++ = cpu_to_le32(i2o_dma_low(sg_dma_address(sg)));
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
if ((sizeof(dma_addr_t) > 4) && c->pae_support)
*mptr++ = cpu_to_le32(i2o_dma_high(sg_dma_address(sg)));
#endif
sg++;
}
*sg_ptr = mptr;
return 1;
};
/**
* i2o_dma_alloc - Allocate DMA memory
* @dev: struct device pointer to the PCI device of the I2O controller
* @addr: i2o_dma struct which should get the DMA buffer
* @len: length of the new DMA memory
* @gfp_mask: GFP mask
*
* Allocate a coherent DMA memory and write the pointers into addr.
*
* Returns 0 on success or -ENOMEM on failure.
*/
static inline int i2o_dma_alloc(struct device *dev, struct i2o_dma *addr,
size_t len, gfp_t gfp_mask)
{
struct pci_dev *pdev = to_pci_dev(dev);
int dma_64 = 0;
if ((sizeof(dma_addr_t) > 4) && (pdev->dma_mask == DMA_64BIT_MASK)) {
dma_64 = 1;
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK))
return -ENOMEM;
}
addr->virt = dma_alloc_coherent(dev, len, &addr->phys, gfp_mask);
if ((sizeof(dma_addr_t) > 4) && dma_64)
if (pci_set_dma_mask(pdev, DMA_64BIT_MASK))
printk(KERN_WARNING "i2o: unable to set 64-bit DMA");
if (!addr->virt)
return -ENOMEM;
memset(addr->virt, 0, len);
addr->len = len;
return 0;
};
/**
* i2o_dma_free - Free DMA memory
* @dev: struct device pointer to the PCI device of the I2O controller
* @addr: i2o_dma struct which contains the DMA buffer
*
* Free a coherent DMA memory and set virtual address of addr to NULL.
*/
static inline void i2o_dma_free(struct device *dev, struct i2o_dma *addr)
{
if (addr->virt) {
if (addr->phys)
dma_free_coherent(dev, addr->len, addr->virt,
addr->phys);
else
kfree(addr->virt);
addr->virt = NULL;
}
};
/**
* i2o_dma_realloc - Realloc DMA memory
* @dev: struct device pointer to the PCI device of the I2O controller
* @addr: pointer to a i2o_dma struct DMA buffer
* @len: new length of memory
* @gfp_mask: GFP mask
*
* If there was something allocated in the addr, free it first. If len > 0
* than try to allocate it and write the addresses back to the addr
* structure. If len == 0 set the virtual address to NULL.
*
* Returns the 0 on success or negative error code on failure.
*/
static inline int i2o_dma_realloc(struct device *dev, struct i2o_dma *addr,
size_t len, gfp_t gfp_mask)
{
i2o_dma_free(dev, addr);
if (len)
return i2o_dma_alloc(dev, addr, len, gfp_mask);
return 0;
};
/*
* i2o_pool_alloc - Allocate an slab cache and mempool
* @mempool: pointer to struct i2o_pool to write data into.
* @name: name which is used to identify cache
* @size: size of each object
* @min_nr: minimum number of objects
*
* First allocates a slab cache with name and size. Then allocates a
* mempool which uses the slab cache for allocation and freeing.
*
* Returns 0 on success or negative error code on failure.
*/
static inline int i2o_pool_alloc(struct i2o_pool *pool, const char *name,
size_t size, int min_nr)
{
pool->name = kmalloc(strlen(name) + 1, GFP_KERNEL);
if (!pool->name)
goto exit;
strcpy(pool->name, name);
pool->slab =
kmem_cache_create(pool->name, size, 0, SLAB_HWCACHE_ALIGN, NULL);
if (!pool->slab)
goto free_name;
pool->mempool = mempool_create_slab_pool(min_nr, pool->slab);
if (!pool->mempool)
goto free_slab;
return 0;
free_slab:
kmem_cache_destroy(pool->slab);
free_name:
kfree(pool->name);
exit:
return -ENOMEM;
};
/*
* i2o_pool_free - Free slab cache and mempool again
* @mempool: pointer to struct i2o_pool which should be freed
*
* Note that you have to return all objects to the mempool again before
* calling i2o_pool_free().
*/
static inline void i2o_pool_free(struct i2o_pool *pool)
{
mempool_destroy(pool->mempool);
kmem_cache_destroy(pool->slab);
kfree(pool->name);
};
/* I2O driver (OSM) functions */
extern int i2o_driver_register(struct i2o_driver *);
extern void i2o_driver_unregister(struct i2o_driver *);
/**
* i2o_driver_notify_controller_add - Send notification of added controller
* @drv: I2O driver
* @c: I2O controller
*
* Send notification of added controller to a single registered driver.
*/
static inline void i2o_driver_notify_controller_add(struct i2o_driver *drv,
struct i2o_controller *c)
{
if (drv->notify_controller_add)
drv->notify_controller_add(c);
};
/**
* i2o_driver_notify_controller_remove - Send notification of removed controller
* @drv: I2O driver
* @c: I2O controller
*
* Send notification of removed controller to a single registered driver.
*/
static inline void i2o_driver_notify_controller_remove(struct i2o_driver *drv,
struct i2o_controller *c)
{
if (drv->notify_controller_remove)
drv->notify_controller_remove(c);
};
/**
* i2o_driver_notify_device_add - Send notification of added device
* @drv: I2O driver
* @i2o_dev: the added i2o_device
*
* Send notification of added device to a single registered driver.
*/
static inline void i2o_driver_notify_device_add(struct i2o_driver *drv,
struct i2o_device *i2o_dev)
{
if (drv->notify_device_add)
drv->notify_device_add(i2o_dev);
};
/**
* i2o_driver_notify_device_remove - Send notification of removed device
* @drv: I2O driver
* @i2o_dev: the added i2o_device
*
* Send notification of removed device to a single registered driver.
*/
static inline void i2o_driver_notify_device_remove(struct i2o_driver *drv,
struct i2o_device *i2o_dev)
{
if (drv->notify_device_remove)
drv->notify_device_remove(i2o_dev);
};
extern void i2o_driver_notify_controller_add_all(struct i2o_controller *);
extern void i2o_driver_notify_controller_remove_all(struct i2o_controller *);
extern void i2o_driver_notify_device_add_all(struct i2o_device *);
extern void i2o_driver_notify_device_remove_all(struct i2o_device *);
/* I2O device functions */
extern int i2o_device_claim(struct i2o_device *);
extern int i2o_device_claim_release(struct i2o_device *);
/* Exec OSM functions */
extern int i2o_exec_lct_get(struct i2o_controller *);
/* device / driver / kobject conversion functions */
#define to_i2o_driver(drv) container_of(drv,struct i2o_driver, driver)
#define to_i2o_device(dev) container_of(dev, struct i2o_device, device)
#define to_i2o_controller(dev) container_of(dev, struct i2o_controller, device)
#define kobj_to_i2o_device(kobj) to_i2o_device(container_of(kobj, struct device, kobj))
/**
* i2o_out_to_virt - Turn an I2O message to a virtual address
* @c: controller
* @m: message engine value
*
* Turn a receive message from an I2O controller bus address into
* a Linux virtual address. The shared page frame is a linear block
* so we simply have to shift the offset. This function does not
* work for sender side messages as they are ioremap objects
* provided by the I2O controller.
*/
static inline struct i2o_message *i2o_msg_out_to_virt(struct i2o_controller *c,
u32 m)
{
BUG_ON(m < c->out_queue.phys
|| m >= c->out_queue.phys + c->out_queue.len);
return c->out_queue.virt + (m - c->out_queue.phys);
};
/**
* i2o_msg_in_to_virt - Turn an I2O message to a virtual address
* @c: controller
* @m: message engine value
*
* Turn a send message from an I2O controller bus address into
* a Linux virtual address. The shared page frame is a linear block
* so we simply have to shift the offset. This function does not
* work for receive side messages as they are kmalloc objects
* in a different pool.
*/
static inline struct i2o_message __iomem *i2o_msg_in_to_virt(struct
i2o_controller *c,
u32 m)
{
return c->in_queue.virt + m;
};
/**
* i2o_msg_get - obtain an I2O message from the IOP
* @c: I2O controller
*
* This function tries to get a message frame. If no message frame is
* available do not wait until one is availabe (see also i2o_msg_get_wait).
* The returned pointer to the message frame is not in I/O memory, it is
* allocated from a mempool. But because a MFA is allocated from the
* controller too it is guaranteed that i2o_msg_post() will never fail.
*
* On a success a pointer to the message frame is returned. If the message
* queue is empty -EBUSY is returned and if no memory is available -ENOMEM
* is returned.
*/
static inline struct i2o_message *i2o_msg_get(struct i2o_controller *c)
{
struct i2o_msg_mfa *mmsg = mempool_alloc(c->in_msg.mempool, GFP_ATOMIC);
if (!mmsg)
return ERR_PTR(-ENOMEM);
mmsg->mfa = readl(c->in_port);
if (unlikely(mmsg->mfa >= c->in_queue.len)) {
u32 mfa = mmsg->mfa;
mempool_free(mmsg, c->in_msg.mempool);
if (mfa == I2O_QUEUE_EMPTY)
return ERR_PTR(-EBUSY);
return ERR_PTR(-EFAULT);
}
return &mmsg->msg;
};
/**
* i2o_msg_post - Post I2O message to I2O controller
* @c: I2O controller to which the message should be send
* @msg: message returned by i2o_msg_get()
*
* Post the message to the I2O controller and return immediately.
*/
static inline void i2o_msg_post(struct i2o_controller *c,
struct i2o_message *msg)
{
struct i2o_msg_mfa *mmsg;
mmsg = container_of(msg, struct i2o_msg_mfa, msg);
memcpy_toio(i2o_msg_in_to_virt(c, mmsg->mfa), msg,
(le32_to_cpu(msg->u.head[0]) >> 16) << 2);
writel(mmsg->mfa, c->in_port);
mempool_free(mmsg, c->in_msg.mempool);
};
/**
* i2o_msg_post_wait - Post and wait a message and wait until return
* @c: controller
* @msg: message to post
* @timeout: time in seconds to wait
*
* This API allows an OSM to post a message and then be told whether or
* not the system received a successful reply. If the message times out
* then the value '-ETIMEDOUT' is returned.
*
* Returns 0 on success or negative error code on failure.
*/
static inline int i2o_msg_post_wait(struct i2o_controller *c,
struct i2o_message *msg,
unsigned long timeout)
{
return i2o_msg_post_wait_mem(c, msg, timeout, NULL);
};
/**
* i2o_msg_nop_mfa - Returns a fetched MFA back to the controller
* @c: I2O controller from which the MFA was fetched
* @mfa: MFA which should be returned
*
* This function must be used for preserved messages, because i2o_msg_nop()
* also returns the allocated memory back to the msg_pool mempool.
*/
static inline void i2o_msg_nop_mfa(struct i2o_controller *c, u32 mfa)
{
struct i2o_message __iomem *msg;
u32 nop[3] = {
THREE_WORD_MSG_SIZE | SGL_OFFSET_0,
I2O_CMD_UTIL_NOP << 24 | HOST_TID << 12 | ADAPTER_TID,
0x00000000
};
msg = i2o_msg_in_to_virt(c, mfa);
memcpy_toio(msg, nop, sizeof(nop));
writel(mfa, c->in_port);
};
/**
* i2o_msg_nop - Returns a message which is not used
* @c: I2O controller from which the message was created
* @msg: message which should be returned
*
* If you fetch a message via i2o_msg_get, and can't use it, you must
* return the message with this function. Otherwise the MFA is lost as well
* as the allocated memory from the mempool.
*/
static inline void i2o_msg_nop(struct i2o_controller *c,
struct i2o_message *msg)
{
struct i2o_msg_mfa *mmsg;
mmsg = container_of(msg, struct i2o_msg_mfa, msg);
i2o_msg_nop_mfa(c, mmsg->mfa);
mempool_free(mmsg, c->in_msg.mempool);
};
/**
* i2o_flush_reply - Flush reply from I2O controller
* @c: I2O controller
* @m: the message identifier
*
* The I2O controller must be informed that the reply message is not needed
* anymore. If you forget to flush the reply, the message frame can't be
* used by the controller anymore and is therefore lost.
*/
static inline void i2o_flush_reply(struct i2o_controller *c, u32 m)
{
writel(m, c->out_port);
};
/*
* Endian handling wrapped into the macro - keeps the core code
* cleaner.
*/
#define i2o_raw_writel(val, mem) __raw_writel(cpu_to_le32(val), mem)
extern int i2o_parm_field_get(struct i2o_device *, int, int, void *, int);
extern int i2o_parm_table_get(struct i2o_device *, int, int, int, void *, int,
void *, int);
/* debugging and troubleshooting/diagnostic helpers. */
#define osm_printk(level, format, arg...) \
printk(level "%s: " format, OSM_NAME , ## arg)
#ifdef DEBUG
#define osm_debug(format, arg...) \
osm_printk(KERN_DEBUG, format , ## arg)
#else
#define osm_debug(format, arg...) \
do { } while (0)
#endif
#define osm_err(format, arg...) \
osm_printk(KERN_ERR, format , ## arg)
#define osm_info(format, arg...) \
osm_printk(KERN_INFO, format , ## arg)
#define osm_warn(format, arg...) \
osm_printk(KERN_WARNING, format , ## arg)
/* debugging functions */
extern void i2o_report_status(const char *, const char *, struct i2o_message *);
extern void i2o_dump_message(struct i2o_message *);
extern void i2o_dump_hrt(struct i2o_controller *c);
extern void i2o_debug_state(struct i2o_controller *c);
#endif /* __KERNEL__ */
#endif /* _I2O_H */