Commit graph

187 commits

Author SHA1 Message Date
Greg Kroah-Hartman
79bd4cbaf9 This is the 4.19.199 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAmEBH+4ACgkQONu9yGCS
 aT7yuQ//egce5FzvmQ5PHmXL6idX4qjFlXQHGvoQaeZY30BkpnrmvfGy88i16am/
 T/4btxgFaFZCW2nkU2TDuAc1eHcorfkWEoFSWiao2I+UbyHsY5k1seafjKHKtdPZ
 CIq3e1iK4BdUoqdqM/a3w6r1xNj38t/EJuf7uXc8EkH5V37qm2ruzw1DUKB4EIvB
 ScM3bpFDBxlJDdXg1uls2OnVvivnlHyVPsbVcuskh3yTqzNhQQi58h6Az/Ed2Glq
 ajWnZ/lB2GQXOAz+S/ugquEbU5RZBH2+v3gyUEgP7ECwVaBzq6Mv7LcwcCBlN9Dh
 tzJRNgA9/Om4eaBp4oL9n6bIeVTwajpbZu+lMsI81AjJqkk8/69l7u+Yh4ST8y73
 /O8DCfE2YZGPOAdDCtvDtzRcimpf3uGdAQNWpQ9JKyTNb1Q0L8OTe5BEYLHbeH1c
 bARR/sKBJTogHBNbiRaRbIJlmyEXD5vu9/HwE8UTd7H+NyQwhSY5mxKMx4QJiooC
 fbXS/ATyNO0SZek1oR8DqrozQ3iieBaIMEdlD4bHHkgtIr4ZLoxFqSRoyjM2G2sX
 yh2V5wrxfqJRA1o8N+9/M8itkL8/TGOqkB7aBc+IKE8Et28s7/sUUcbAZWhp1ldf
 304V61wqedfZIW/jAyCP8ARGTIkDHSRZcKVHRYcE+N3tQoQhgX0=
 =3t6U
 -----END PGP SIGNATURE-----

Merge 4.19.199 into android-4.19-stable

Changes in 4.19.199
	ARM: dts: gemini: rename mdio to the right name
	ARM: dts: gemini: add device_type on pci
	ARM: dts: rockchip: fix pinctrl sleep nodename for rk3036-kylin and rk3288
	arm64: dts: rockchip: fix pinctrl sleep nodename for rk3399.dtsi
	ARM: dts: rockchip: Fix the timer clocks order
	ARM: dts: rockchip: Fix IOMMU nodes properties on rk322x
	ARM: dts: rockchip: Fix power-controller node names for rk3288
	arm64: dts: rockchip: Fix power-controller node names for rk3328
	reset: ti-syscon: fix to_ti_syscon_reset_data macro
	ARM: brcmstb: dts: fix NAND nodes names
	ARM: Cygnus: dts: fix NAND nodes names
	ARM: NSP: dts: fix NAND nodes names
	ARM: dts: BCM63xx: Fix NAND nodes names
	ARM: dts: Hurricane 2: Fix NAND nodes names
	ARM: dts: imx6: phyFLEX: Fix UART hardware flow control
	ARM: imx: pm-imx5: Fix references to imx5_cpu_suspend_info
	rtc: mxc_v2: add missing MODULE_DEVICE_TABLE
	ARM: dts: stm32: fix gpio-keys node on STM32 MCU boards
	ARM: dts: stm32: fix RCC node name on stm32f429 MCU
	ARM: dts: stm32: fix timer nodes on STM32 MCU to prevent warnings
	arm64: dts: juno: Update SCPI nodes as per the YAML schema
	ARM: dts: rockchip: fix supply properties in io-domains nodes
	ARM: dts: stm32: fix i2c node name on stm32f746 to prevent warnings
	ARM: dts: stm32: move stmmac axi config in ethernet node on stm32mp15
	soc/tegra: fuse: Fix Tegra234-only builds
	arm64: dts: ls208xa: remove bus-num from dspi node
	thermal/core: Correct function name thermal_zone_device_unregister()
	kbuild: mkcompile_h: consider timestamp if KBUILD_BUILD_TIMESTAMP is set
	rtc: max77686: Do not enforce (incorrect) interrupt trigger type
	scsi: aic7xxx: Fix unintentional sign extension issue on left shift of u8
	scsi: libsas: Add LUN number check in .slave_alloc callback
	scsi: libfc: Fix array index out of bound exception
	sched/fair: Fix CFS bandwidth hrtimer expiry type
	mm: slab: fix kmem_cache_create failed when sysfs node not destroyed
	dm writecache: return the exact table values that were set
	dm writecache: fix writing beyond end of underlying device when shrinking
	net: dsa: mv88e6xxx: enable .rmu_disable() on Topaz
	net: ipv6: fix return value of ip6_skb_dst_mtu
	netfilter: ctnetlink: suspicious RCU usage in ctnetlink_dump_helpinfo
	net: bridge: sync fdb to new unicast-filtering ports
	net: bcmgenet: Ensure all TX/RX queues DMAs are disabled
	net: moxa: fix UAF in moxart_mac_probe
	net: qcom/emac: fix UAF in emac_remove
	net: ti: fix UAF in tlan_remove_one
	net: send SYNACK packet with accepted fwmark
	net: validate lwtstate->data before returning from skb_tunnel_info()
	dma-buf/sync_file: Don't leak fences on merge failure
	tcp: annotate data races around tp->mtu_info
	ipv6: tcp: drop silly ICMPv6 packet too big messages
	bpftool: Properly close va_list 'ap' by va_end() on error
	udp: annotate data races around unix_sk(sk)->gso_size
	net: ip_tunnel: fix mtu calculation for ETHER tunnel devices
	igb: Fix use-after-free error during reset
	ixgbe: Fix an error handling path in 'ixgbe_probe()'
	igb: Fix an error handling path in 'igb_probe()'
	fm10k: Fix an error handling path in 'fm10k_probe()'
	e1000e: Fix an error handling path in 'e1000_probe()'
	iavf: Fix an error handling path in 'iavf_probe()'
	igb: Check if num of q_vectors is smaller than max before array access
	igb: Fix position of assignment to *ring
	ipv6: fix 'disable_policy' for fwd packets
	nvme-pci: do not call nvme_dev_remove_admin from nvme_remove
	perf map: Fix dso->nsinfo refcounting
	perf probe: Fix dso->nsinfo refcounting
	perf dso: Fix memory leak in dso__new_map()
	perf lzma: Close lzma stream on exit
	perf test bpf: Free obj_buf
	perf probe-file: Delete namelist in del_events() on the error path
	spi: mediatek: fix fifo rx mode
	liquidio: Fix unintentional sign extension issue on left shift of u16
	s390/bpf: Perform r1 range checking before accessing jit->seen_reg[r1]
	bpftool: Check malloc return value in mount_bpffs_for_pin
	net: fix uninit-value in caif_seqpkt_sendmsg
	net: decnet: Fix sleeping inside in af_decnet
	KVM: PPC: Fix kvm_arch_vcpu_ioctl vcpu_load leak
	netrom: Decrease sock refcount when sock timers expire
	scsi: iscsi: Fix iface sysfs attr detection
	scsi: target: Fix protect handling in WRITE SAME(32)
	spi: cadence: Correct initialisation of runtime PM again
	net/tcp_fastopen: fix data races around tfo_active_disable_stamp
	net/sched: act_skbmod: Skip non-Ethernet packets
	nvme-pci: don't WARN_ON in nvme_reset_work if ctrl.state is not RESETTING
	Revert "USB: quirks: ignore remote wake-up on Fibocom L850-GL LTE modem"
	sctp: update active_key for asoc when old key is being replaced
	net: sched: cls_api: Fix the the wrong parameter
	drm/panel: raspberrypi-touchscreen: Prevent double-free
	proc: Avoid mixing integer types in mem_rw()
	Revert "MIPS: add PMD table accounting into MIPS'pmd_alloc_one"
	s390/ftrace: fix ftrace_update_ftrace_func implementation
	ALSA: usb-audio: Add registration quirk for JBL Quantum headsets
	ALSA: sb: Fix potential ABBA deadlock in CSP driver
	xhci: Fix lost USB 2 remote wake
	KVM: PPC: Book3S: Fix H_RTAS rets buffer overflow
	usb: hub: Disable USB 3 device initiated lpm if exit latency is too high
	usb: hub: Fix link power management max exit latency (MEL) calculations
	USB: usb-storage: Add LaCie Rugged USB3-FW to IGNORE_UAS
	usb: max-3421: Prevent corruption of freed memory
	usb: renesas_usbhs: Fix superfluous irqs happen after usb_pkt_pop()
	USB: serial: option: add support for u-blox LARA-R6 family
	USB: serial: cp210x: fix comments for GE CS1000
	USB: serial: cp210x: add ID for CEL EM3588 USB ZigBee stick
	usb: dwc2: gadget: Fix sending zero length packet in DDMA mode.
	tracing: Fix bug in rb_per_cpu_empty() that might cause deadloop.
	media: ngene: Fix out-of-bounds bug in ngene_command_config_free_buf()
	ixgbe: Fix packet corruption due to missing DMA sync
	selftest: use mmap instead of posix_memalign to allocate memory
	nds32: fix up stack guard gap
	drm: Return -ENOTTY for non-drm ioctls
	KVM: do not assume PTE is writable after follow_pfn
	KVM: do not allow mapping valid but non-reference-counted pages
	KVM: Use kvm_pfn_t for local PFN variable in hva_to_pfn_remapped()
	net: dsa: mv88e6xxx: use correct .stats_set_histogram() on Topaz
	net: bcmgenet: ensure EXT_ENERGY_DET_MASK is clear
	iio: accel: bma180: Use explicit member assignment
	iio: accel: bma180: Fix BMA25x bandwidth register values
	btrfs: compression: don't try to compress if we don't have enough pages
	PCI: Mark AMD Navi14 GPU ATS as broken
	spi: spi-fsl-dspi: Fix a resource leak in an error handling path
	xhci: add xhci_get_virt_ep() helper
	Linux 4.19.199

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I64b971750ef2532ef201367d980a3519b8c8a591
2021-07-28 13:24:42 +02:00
Nanyong Sun
bb7dd800a5 mm: slab: fix kmem_cache_create failed when sysfs node not destroyed
The commit d38a2b7a9c93 ("mm: memcg/slab: fix memory leak at non-root
kmem_cache destroy") introduced a problem: If one thread destroy a
kmem_cache A and another thread concurrently create a kmem_cache B,
which is mergeable with A and has same size with A, the B may fail to
create due to the duplicate sysfs node.
The scenario in detail:
1) Thread 1 uses kmem_cache_destroy() to destroy kmem_cache A which is
mergeable, it decreases A's refcount and if refcount is 0, then call
memcg_set_kmem_cache_dying() which set A->memcg_params.dying = true,
then unlock the slab_mutex and call flush_memcg_workqueue(), it may cost
a while.
Note: now the sysfs node(like '/kernel/slab/:0000248') of A is still
present, it will be deleted in shutdown_cache() which will be called
after flush_memcg_workqueue() is done and lock the slab_mutex again.
2) Now if thread 2 is coming, it use kmem_cache_create() to create B, which
is mergeable with A(their size is same), it gain the lock of slab_mutex,
then call __kmem_cache_alias() trying to find a mergeable node, because
of the below added code in commit d38a2b7a9c93 ("mm: memcg/slab: fix
memory leak at non-root kmem_cache destroy"), B is not mergeable with
A whose memcg_params.dying is true.

int slab_unmergeable(struct kmem_cache *s)
 	if (s->refcount < 0)
 		return 1;

	/*
	 * Skip the dying kmem_cache.
	 */
	if (s->memcg_params.dying)
		return 1;

 	return 0;
 }

So B has to create its own sysfs node by calling:
 create_cache->
	__kmem_cache_create->
		sysfs_slab_add->
			kobject_init_and_add
Because B is mergeable itself, its filename of sysfs node is based on its size,
like '/kernel/slab/:0000248', which is duplicate with A, and the sysfs
node of A is still present now, so kobject_init_and_add() will return
fail and result in kmem_cache_create() fail.

Concurrently modprobe and rmmod the two modules below can reproduce the issue
quickly: nf_conntrack_expect, se_sess_cache. See call trace in the end.

LTS versions of v4.19.y and v5.4.y have this problem, whereas linux versions after
v5.9 do not have this problem because the patchset: ("The new cgroup slab memory
controller") almost refactored memcg slab.

A potential solution(this patch belongs): Just let the dying kmem_cache be mergeable,
the slab_mutex lock can prevent the race between alias kmem_cache creating thread
and root kmem_cache destroying thread. In the destroying thread, after
flush_memcg_workqueue() is done, judge the refcount again, if someone
reference it again during un-lock time, we don't need to destroy the kmem_cache
completely, we can reuse it.

Another potential solution: revert the commit d38a2b7a9c93 ("mm: memcg/slab:
fix memory leak at non-root kmem_cache destroy"), compare to the fail of
kmem_cache_create, the memory leak in special scenario seems less harmful.

Call trace:
 sysfs: cannot create duplicate filename '/kernel/slab/:0000248'
 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
 Call trace:
  dump_backtrace+0x0/0x198
  show_stack+0x24/0x30
  dump_stack+0xb0/0x100
  sysfs_warn_dup+0x6c/0x88
  sysfs_create_dir_ns+0x104/0x120
  kobject_add_internal+0xd0/0x378
  kobject_init_and_add+0x90/0xd8
  sysfs_slab_add+0x16c/0x2d0
  __kmem_cache_create+0x16c/0x1d8
  create_cache+0xbc/0x1f8
  kmem_cache_create_usercopy+0x1a0/0x230
  kmem_cache_create+0x50/0x68
  init_se_kmem_caches+0x38/0x258 [target_core_mod]
  target_core_init_configfs+0x8c/0x390 [target_core_mod]
  do_one_initcall+0x54/0x230
  do_init_module+0x64/0x1ec
  load_module+0x150c/0x16f0
  __se_sys_finit_module+0xf0/0x108
  __arm64_sys_finit_module+0x24/0x30
  el0_svc_common+0x80/0x1c0
  el0_svc_handler+0x78/0xe0
  el0_svc+0x10/0x260
 kobject_add_internal failed for :0000248 with -EEXIST, don't try to register things with the same name in the same directory.
 kmem_cache_create(se_sess_cache) failed with error -17
 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
 Call trace:
  dump_backtrace+0x0/0x198
  show_stack+0x24/0x30
  dump_stack+0xb0/0x100
  kmem_cache_create_usercopy+0xa8/0x230
  kmem_cache_create+0x50/0x68
  init_se_kmem_caches+0x38/0x258 [target_core_mod]
  target_core_init_configfs+0x8c/0x390 [target_core_mod]
  do_one_initcall+0x54/0x230
  do_init_module+0x64/0x1ec
  load_module+0x150c/0x16f0
  __se_sys_finit_module+0xf0/0x108
  __arm64_sys_finit_module+0x24/0x30
  el0_svc_common+0x80/0x1c0
  el0_svc_handler+0x78/0xe0
  el0_svc+0x10/0x260

Fixes: d38a2b7a9c93 ("mm: memcg/slab: fix memory leak at non-root kmem_cache destroy")
Signed-off-by: Nanyong Sun <sunnanyong@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-28 11:13:44 +02:00
Greg Kroah-Hartman
bcf9517454 This is the 4.19.135 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAl8hMIIACgkQONu9yGCS
 aT4+fQ/+LvplGwblkH8vuttKsz17BHXD8/FcL6LIbLKTyaWJMWp/raMWQyQLrZpL
 B58dFVZxenmpljLvupB9a1qifZk00U8M+aoU45Pf6PHAww2sGoU1h5sZexqRqOmN
 FAh3hLMq1qyJ6qDIugZ0sbtDaO7t5GwvT1YKKo6V9hqi0XamTVrppI/EVVDDA0ve
 /WigyxjT51DIPd3bmjJ3Xn920artrW+fydA+jTyMBBME/qFi5s2yN7Rui0ViNz44
 crwGxAN1v3+MboulHFsnCdLAlh9hyI4VNXpvpNhKIoVE9BMHgBmmnWA+0KUIjAeA
 8GfL2TcspjElNnz9T4f957Rj6Ft7qlStYIyJ45rcGRMXkyNs1lw5CDfkJcy8giVD
 7yImkQZ2c8jCgkr/Vor/MfHOPtg1KzpAuNrWZnobTdnaBGxgcC61pnKHxF5Vx40h
 78hOFXqunGNMwNBR4EEjmP4B3zapeHVo4GXBPtwY8M878Uj28z2pL4Vx6MhbvmTf
 1i8xipclcgpV5ZyN+zv8XA55pcw8ahQOuUknEx+3yH0chlf5cIxXhr92g1DrDwoF
 YvNYJQA7qJpgx/k582u6bJYkBdNa+XJaBLjQUhI/Z9UVS33S/CouGHpFyIMpVMx9
 vo3ujFpuUP4ZCeKENjINa7RfQhD7oHQQQrk5RcsFBYJaWgCdi3A=
 =ugxS
 -----END PGP SIGNATURE-----

Merge 4.19.135 into android-4.19-stable

Changes in 4.19.135
	soc: qcom: rpmh: Dirt can only make you dirtier, not cleaner
	gpio: arizona: handle pm_runtime_get_sync failure case
	gpio: arizona: put pm_runtime in case of failure
	pinctrl: amd: fix npins for uart0 in kerncz_groups
	mac80211: allow rx of mesh eapol frames with default rx key
	scsi: scsi_transport_spi: Fix function pointer check
	xtensa: fix __sync_fetch_and_{and,or}_4 declarations
	xtensa: update *pos in cpuinfo_op.next
	drivers/net/wan/lapbether: Fixed the value of hard_header_len
	net: sky2: initialize return of gm_phy_read
	drm/nouveau/i2c/g94-: increase NV_PMGR_DP_AUXCTL_TRANSACTREQ timeout
	drivers/firmware/psci: Fix memory leakage in alloc_init_cpu_groups()
	fuse: fix weird page warning
	irqdomain/treewide: Keep firmware node unconditionally allocated
	SUNRPC reverting d03727b248d0 ("NFSv4 fix CLOSE not waiting for direct IO compeletion")
	spi: spi-fsl-dspi: Exit the ISR with IRQ_NONE when it's not ours
	tipc: clean up skb list lock handling on send path
	IB/umem: fix reference count leak in ib_umem_odp_get()
	uprobes: Change handle_swbp() to send SIGTRAP with si_code=SI_KERNEL, to fix GDB regression
	ALSA: info: Drop WARN_ON() from buffer NULL sanity check
	ASoC: rt5670: Correct RT5670_LDO_SEL_MASK
	btrfs: fix double free on ulist after backref resolution failure
	btrfs: fix mount failure caused by race with umount
	btrfs: fix page leaks after failure to lock page for delalloc
	bnxt_en: Fix race when modifying pause settings.
	fpga: dfl: fix bug in port reset handshake
	hippi: Fix a size used in a 'pci_free_consistent()' in an error handling path
	ax88172a: fix ax88172a_unbind() failures
	net: dp83640: fix SIOCSHWTSTAMP to update the struct with actual configuration
	ieee802154: fix one possible memleak in adf7242_probe
	drm: sun4i: hdmi: Fix inverted HPD result
	net: smc91x: Fix possible memory leak in smc_drv_probe()
	bonding: check error value of register_netdevice() immediately
	mlxsw: destroy workqueue when trap_register in mlxsw_emad_init
	qed: suppress "don't support RoCE & iWARP" flooding on HW init
	ipvs: fix the connection sync failed in some cases
	net: ethernet: ave: Fix error returns in ave_init
	i2c: rcar: always clear ICSAR to avoid side effects
	bonding: check return value of register_netdevice() in bond_newlink()
	serial: exar: Fix GPIO configuration for Sealevel cards based on XR17V35X
	scripts/decode_stacktrace: strip basepath from all paths
	scripts/gdb: fix lx-symbols 'gdb.error' while loading modules
	HID: i2c-hid: add Mediacom FlexBook edge13 to descriptor override
	HID: alps: support devices with report id 2
	HID: steam: fixes race in handling device list.
	HID: apple: Disable Fn-key key-re-mapping on clone keyboards
	dmaengine: tegra210-adma: Fix runtime PM imbalance on error
	Input: add `SW_MACHINE_COVER`
	spi: mediatek: use correct SPI_CFG2_REG MACRO
	regmap: dev_get_regmap_match(): fix string comparison
	hwmon: (aspeed-pwm-tacho) Avoid possible buffer overflow
	dmaengine: ioat setting ioat timeout as module parameter
	Input: synaptics - enable InterTouch for ThinkPad X1E 1st gen
	usb: gadget: udc: gr_udc: fix memleak on error handling path in gr_ep_init()
	hwmon: (adm1275) Make sure we are reading enough data for different chips
	hwmon: (scmi) Fix potential buffer overflow in scmi_hwmon_probe()
	arm64: Use test_tsk_thread_flag() for checking TIF_SINGLESTEP
	x86: math-emu: Fix up 'cmp' insn for clang ias
	RISC-V: Upgrade smp_mb__after_spinlock() to iorw,iorw
	binder: Don't use mmput() from shrinker function.
	usb: xhci-mtk: fix the failure of bandwidth allocation
	usb: xhci: Fix ASM2142/ASM3142 DMA addressing
	Revert "cifs: Fix the target file was deleted when rename failed."
	staging: wlan-ng: properly check endpoint types
	staging: comedi: addi_apci_1032: check INSN_CONFIG_DIGITAL_TRIG shift
	staging: comedi: ni_6527: fix INSN_CONFIG_DIGITAL_TRIG support
	staging: comedi: addi_apci_1500: check INSN_CONFIG_DIGITAL_TRIG shift
	staging: comedi: addi_apci_1564: check INSN_CONFIG_DIGITAL_TRIG shift
	serial: 8250: fix null-ptr-deref in serial8250_start_tx()
	serial: 8250_mtk: Fix high-speed baud rates clamping
	fbdev: Detect integer underflow at "struct fbcon_ops"->clear_margins.
	vt: Reject zero-sized screen buffer size.
	Makefile: Fix GCC_TOOLCHAIN_DIR prefix for Clang cross compilation
	mm/memcg: fix refcount error while moving and swapping
	mm: memcg/slab: synchronize access to kmem_cache dying flag using a spinlock
	mm: memcg/slab: fix memory leak at non-root kmem_cache destroy
	io-mapping: indicate mapping failure
	drm/amdgpu: Fix NULL dereference in dpm sysfs handlers
	drm/amd/powerplay: fix a crash when overclocking Vega M
	parisc: Add atomic64_set_release() define to avoid CPU soft lockups
	x86, vmlinux.lds: Page-align end of ..page_aligned sections
	ASoC: rt5670: Add new gpio1_is_ext_spk_en quirk and enable it on the Lenovo Miix 2 10
	ASoC: qcom: Drop HAS_DMA dependency to fix link failure
	dm integrity: fix integrity recalculation that is improperly skipped
	ath9k: Fix general protection fault in ath9k_hif_usb_rx_cb
	ath9k: Fix regression with Atheros 9271
	Linux 4.19.135

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I0bbcde83e7c810352d998f28d3484efa2b9ede8e
2020-07-29 13:22:30 +02:00
Muchun Song
d87ddcdb2d mm: memcg/slab: fix memory leak at non-root kmem_cache destroy
commit d38a2b7a9c939e6d7329ab92b96559ccebf7b135 upstream.

If the kmem_cache refcount is greater than one, we should not mark the
root kmem_cache as dying.  If we mark the root kmem_cache dying
incorrectly, the non-root kmem_cache can never be destroyed.  It
resulted in memory leak when memcg was destroyed.  We can use the
following steps to reproduce.

  1) Use kmem_cache_create() to create a new kmem_cache named A.
  2) Coincidentally, the kmem_cache A is an alias for kmem_cache B,
     so the refcount of B is just increased.
  3) Use kmem_cache_destroy() to destroy the kmem_cache A, just
     decrease the B's refcount but mark the B as dying.
  4) Create a new memory cgroup and alloc memory from the kmem_cache
     B. It leads to create a non-root kmem_cache for allocating memory.
  5) When destroy the memory cgroup created in the step 4), the
     non-root kmem_cache can never be destroyed.

If we repeat steps 4) and 5), this will cause a lot of memory leak.  So
only when refcount reach zero, we mark the root kmem_cache as dying.

Fixes: 92ee383f6d ("mm: fix race between kmem_cache destroy, create and deactivate")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200716165103.83462-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-29 10:16:57 +02:00
Roman Gushchin
763b04c6b2 mm: memcg/slab: synchronize access to kmem_cache dying flag using a spinlock
[ Upstream commit 63b02ef7dc4ec239df45c018ac0adbd02ba30a0c ]

Currently the memcg_params.dying flag and the corresponding workqueue used
for the asynchronous deactivation of kmem_caches is synchronized using the
slab_mutex.

It makes impossible to check this flag from the irq context, which will be
required in order to implement asynchronous release of kmem_caches.

So let's switch over to the irq-save flavor of the spinlock-based
synchronization.

Link: http://lkml.kernel.org/r/20190611231813.3148843-8-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-29 10:16:57 +02:00
Greg Kroah-Hartman
b3293788b9 Linux 4.19.131
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE4n5dijQDou9mhzu83qZv95d3LNwFAl78APEACgkQ3qZv95d3
 LNyt+w/+PkFP8++ZsiI6GegXraxVbGuY4ndXroXAiTYa0uZjdsIhqJpgyVsJ/pbq
 jU/Hcfv8a0UGme7Hqy61KwN6aaCpM27zxE3aV/N9othtJWn59hiB51CyCcKMrjxK
 Mj6PN+yHxLPzCNBszEvOsICsBQt9HtJB11gcbJQPJ2skriVxSER0QrZi2s5jJuoS
 vVbxfRngXCnzTsxmpbYjMh1sE9/z/dNpCuyQ13f1MPAPpWFP1SxmMUfknXEO8gkF
 ThRIhI6uHDucAQxhP42McBsuoP64KfB90fKzFEuWmlit4OCmqW9subTeaI8V1muK
 CxkPqwRnyYmqbAM9auRwbJxtYfT0ONtDZj4zbLulq4qMTJF650968RQNIW+B1K3C
 jika93Am0YbNPOyq3m9Ac96NaTFjjhpIzu13P6xUQNf3/ydPKY9PHif2CnWCHPsX
 BO9fap7gsWHa88khjEGYXwcQCOC+UzQlcsT6CsWPTUTmcLObHiv863Rqm7LpXjit
 9gjKlNHdP6U0q+bz5aiiEtoNJ/2ZDwoz1I+srbrk7QMdVzAn+uRRtLRQxmJtryw1
 oTnJJu0iv9Zspn/PFXwlrpsYDDEBFfXFWvC+izfz8nm8CPFKgH9G96XNefcXlI9e
 3qxjDpkFb74R6ovnWKtJY8pR1qX/5TRC0/+/WpbZBILqW4Z0k5w=
 =YVa/
 -----END PGP SIGNATURE-----

Merge 4.19.131 into android-4.19-stable

Changes in 4.19.131
	net: be more gentle about silly gso requests coming from user
	block/bio-integrity: don't free 'buf' if bio_integrity_add_page() failed
	fanotify: fix ignore mask logic for events on child and on dir
	mtd: rawnand: marvell: Fix the condition on a return code
	net: bcmgenet: remove HFB_CTRL access
	net: sched: export __netdev_watchdog_up()
	EDAC/amd64: Add Family 17h Model 30h PCI IDs
	i2c: tegra: Cleanup kerneldoc comments
	i2c: tegra: Add missing kerneldoc for some fields
	i2c: tegra: Fix Maximum transfer size
	fix a braino in "sparc32: fix register window handling in genregs32_[gs]et()"
	ALSA: hda/realtek - Enable the headset of ASUS B9450FA with ALC294
	ALSA: hda/realtek: Enable mute LED on an HP system
	ALSA: hda/realtek - Enable micmute LED on and HP system
	apparmor: don't try to replace stale label in ptraceme check
	ibmveth: Fix max MTU limit
	mld: fix memory leak in ipv6_mc_destroy_dev()
	net: bridge: enfore alignment for ethernet address
	net: fix memleak in register_netdevice()
	net: place xmit recursion in softnet data
	net: use correct this_cpu primitive in dev_recursion_level
	net: increment xmit_recursion level in dev_direct_xmit()
	net: usb: ax88179_178a: fix packet alignment padding
	rocker: fix incorrect error handling in dma_rings_init
	rxrpc: Fix notification call on completion of discarded calls
	sctp: Don't advertise IPv4 addresses if ipv6only is set on the socket
	tcp: don't ignore ECN CWR on pure ACK
	tcp: grow window for OOO packets only for SACK flows
	tg3: driver sleeps indefinitely when EEH errors exceed eeh_max_freezes
	ip6_gre: fix use-after-free in ip6gre_tunnel_lookup()
	net: phy: Check harder for errors in get_phy_id()
	ip_tunnel: fix use-after-free in ip_tunnel_lookup()
	sch_cake: don't try to reallocate or unshare skb unconditionally
	sch_cake: fix a few style nits
	tcp_cubic: fix spurious HYSTART_DELAY exit upon drop in min RTT
	sch_cake: don't call diffserv parsing code when it is not needed
	net: Fix the arp error in some cases
	net: Do not clear the sock TX queue in sk_set_socket()
	net: core: reduce recursion limit value
	USB: ohci-sm501: Add missed iounmap() in remove
	usb: dwc2: Postponed gadget registration to the udc class driver
	usb: add USB_QUIRK_DELAY_INIT for Logitech C922
	USB: ehci: reopen solution for Synopsys HC bug
	usb: host: xhci-mtk: avoid runtime suspend when removing hcd
	xhci: Poll for U0 after disabling USB2 LPM
	usb: host: ehci-exynos: Fix error check in exynos_ehci_probe()
	usb: typec: tcpci_rt1711h: avoid screaming irq causing boot hangs
	ALSA: usb-audio: add quirk for Denon DCD-1500RE
	ALSA: usb-audio: add quirk for Samsung USBC Headset (AKG)
	ALSA: usb-audio: Fix OOB access of mixer element list
	scsi: zfcp: Fix panic on ERP timeout for previously dismissed ERP action
	xhci: Fix incorrect EP_STATE_MASK
	xhci: Fix enumeration issue when setting max packet size for FS devices.
	xhci: Return if xHCI doesn't support LPM
	cdc-acm: Add DISABLE_ECHO quirk for Microchip/SMSC chip
	loop: replace kill_bdev with invalidate_bdev
	IB/mad: Fix use after free when destroying MAD agent
	cifs/smb3: Fix data inconsistent when punch hole
	cifs/smb3: Fix data inconsistent when zero file range
	xfrm: Fix double ESP trailer insertion in IPsec crypto offload.
	ASoC: q6asm: handle EOS correctly
	efi/esrt: Fix reference count leak in esre_create_sysfs_entry.
	regualtor: pfuze100: correct sw1a/sw2 on pfuze3000
	ASoC: fsl_ssi: Fix bclk calculation for mono channel
	ARM: dts: Fix duovero smsc interrupt for suspend
	x86/resctrl: Fix a NULL vs IS_ERR() static checker warning in rdt_cdp_peer_get()
	regmap: Fix memory leak from regmap_register_patch
	ARM: dts: NSP: Correct FA2 mailbox node
	rxrpc: Fix handling of rwind from an ACK packet
	RDMA/qedr: Fix KASAN: use-after-free in ucma_event_handler+0x532
	RDMA/cma: Protect bind_list and listen_list while finding matching cm id
	ASoC: rockchip: Fix a reference count leak.
	RDMA/mad: Fix possible memory leak in ib_mad_post_receive_mads()
	net: qed: fix left elements count calculation
	net: qed: fix NVMe login fails over VFs
	net: qed: fix excessive QM ILT lines consumption
	cxgb4: move handling L2T ARP failures to caller
	ARM: imx5: add missing put_device() call in imx_suspend_alloc_ocram()
	usb: gadget: udc: Potential Oops in error handling code
	netfilter: ipset: fix unaligned atomic access
	net: bcmgenet: use hardware padding of runt frames
	i2c: fsi: Fix the port number field in status register
	i2c: core: check returned size of emulated smbus block read
	sched/deadline: Initialize ->dl_boosted
	sched/core: Fix PI boosting between RT and DEADLINE tasks
	sata_rcar: handle pm_runtime_get_sync failure cases
	ata/libata: Fix usage of page address by page_address in ata_scsi_mode_select_xlat function
	drm/amd/display: Use kfree() to free rgb_user in calculate_user_regamma_ramp()
	riscv/atomic: Fix sign extension for RV64I
	hwrng: ks-sa - Fix runtime PM imbalance on error
	ibmvnic: Harden device login requests
	net: alx: fix race condition in alx_remove
	s390/ptrace: fix setting syscall number
	s390/vdso: fix vDSO clock_getres()
	arm64: sve: Fix build failure when ARM64_SVE=y and SYSCTL=n
	kbuild: improve cc-option to clean up all temporary files
	blktrace: break out of blktrace setup on concurrent calls
	RISC-V: Don't allow write+exec only page mapping request in mmap
	ALSA: hda: Add NVIDIA codec IDs 9a & 9d through a0 to patch table
	ALSA: hda/realtek - Add quirk for MSI GE63 laptop
	ACPI: sysfs: Fix pm_profile_attr type
	erofs: fix partially uninitialized misuse in z_erofs_onlinepage_fixup
	KVM: X86: Fix MSR range of APIC registers in X2APIC mode
	KVM: nVMX: Plumb L2 GPA through to PML emulation
	x86/asm/64: Align start of __clear_user() loop to 16-bytes
	btrfs: fix data block group relocation failure due to concurrent scrub
	btrfs: fix failure of RWF_NOWAIT write into prealloc extent beyond eof
	mm/slab: use memzero_explicit() in kzfree()
	ocfs2: avoid inode removal while nfsd is accessing it
	ocfs2: load global_inode_alloc
	ocfs2: fix value of OCFS2_INVALID_SLOT
	ocfs2: fix panic on nfs server over ocfs2
	arm64: perf: Report the PC value in REGS_ABI_32 mode
	tracing: Fix event trigger to accept redundant spaces
	ring-buffer: Zero out time extend if it is nested and not absolute
	drm: rcar-du: Fix build error
	drm/radeon: fix fb_div check in ni_init_smc_spll_table()
	Staging: rtl8723bs: prevent buffer overflow in update_sta_support_rate()
	sunrpc: fixed rollback in rpc_gssd_dummy_populate()
	SUNRPC: Properly set the @subbuf parameter of xdr_buf_subsegment()
	pNFS/flexfiles: Fix list corruption if the mirror count changes
	NFSv4 fix CLOSE not waiting for direct IO compeletion
	dm writecache: correct uncommitted_block when discarding uncommitted entry
	dm writecache: add cond_resched to loop in persistent_memory_claim()
	xfs: add agf freeblocks verify in xfs_agf_verify
	Revert "tty: hvc: Fix data abort due to race in hvc_open"
	Linux 4.19.131

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I2c5abdfc2979e50d441bb0e0bcd499e03c61cefd
2020-07-01 13:11:06 +02:00
Waiman Long
9ac47ed7c9 mm/slab: use memzero_explicit() in kzfree()
commit 8982ae527fbef170ef298650c15d55a9ccd33973 upstream.

The kzfree() function is normally used to clear some sensitive
information, like encryption keys, in the buffer before freeing it back to
the pool.  Memset() is currently used for buffer clearing.  However
unlikely, there is still a non-zero probability that the compiler may
choose to optimize away the memory clearing especially if LTO is being
used in the future.

To make sure that this optimization will never happen,
memzero_explicit(), which is introduced in v3.18, is now used in
kzfree() to future-proof it.

Link: http://lkml.kernel.org/r/20200616154311.12314-2-longman@redhat.com
Fixes: 3ef0e5ba46 ("slab: introduce kzfree()")
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 23:17:16 -04:00
Greg Kroah-Hartman
8cb4870403 This is the 4.19.98 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAl4pSYMACgkQONu9yGCS
 aT7Rkg/8C/AXaTp+2HxRj3ZO56uzpMBMb5duBzdzxnEnvFp+DIM7xxRX+NFI5CSK
 4rjnxMd2tPsFtqiWo/bBCUcHh9gu5HJKOMFRZGaRYAXvJ/8hgahgzkBE00JiAB6r
 mrk9Y/pwcKxMFsAHtu3xM0oENeefXOmavVTHc9N3DQLd3hNuyTrPztBMFaDg8djR
 pSwh1uE2G+Z2UOdi2kXmHiEIG6NViIqp+qFYI5CUIyeKfvOEsR5nSQ97LyNQ+dUX
 qshARQFuk78+Ax+GNPTQXiWdzN7+SH5aw5frFtdhAN90F+XrRDj4ZXw+EkX+/M2J
 NZU9P/v41ESG8RWxbAZ6osAUkQ4Dgq2BQpdyRxNNjTchXc0Kr4K6BCKuhY6cGxS7
 0PXPV7MsuAHYIrIvzG2lqif9gmknA0UrGVKuYJIZxBaWlHD2mEkFby0W0HIcBwir
 yKKK3fkFjmsGKYzh+VZVoGySWDbs7qYASWXHOCz0QCLb0CT8/ePbyxLdjY7u5KyX
 wDaDHXG9nm6Nu68HD/9CRnUkiK8dnsODZ0k+sBZfEa+xvHPJCdv3gnrf4SwU7dj7
 ZyhO9XkFzncOJDoxYxiXTfI+zbU1ZhaDw7fk2PFvAI6P1xRS3m6rp8pDWp8iw/MX
 92Sz1YzS68+otHLi+OBGxzu10PwMDtu2nUvqn68SYq6Rp0mZnnE=
 =2O94
 -----END PGP SIGNATURE-----

Merge 4.19.98 into android-4.19

Changes in 4.19.98
	ARM: dts: meson8: fix the size of the PMU registers
	clk: qcom: gcc-sdm845: Add missing flag to votable GDSCs
	dt-bindings: reset: meson8b: fix duplicate reset IDs
	ARM: dts: imx6q-dhcom: fix rtc compatible
	clk: Don't try to enable critical clocks if prepare failed
	ASoC: msm8916-wcd-digital: Reset RX interpolation path after use
	iio: buffer: align the size of scan bytes to size of the largest element
	USB: serial: simple: Add Motorola Solutions TETRA MTP3xxx and MTP85xx
	USB: serial: option: Add support for Quectel RM500Q
	USB: serial: opticon: fix control-message timeouts
	USB: serial: option: add support for Quectel RM500Q in QDL mode
	USB: serial: suppress driver bind attributes
	USB: serial: ch341: handle unbound port at reset_resume
	USB: serial: io_edgeport: handle unbound ports on URB completion
	USB: serial: io_edgeport: add missing active-port sanity check
	USB: serial: keyspan: handle unbound ports
	USB: serial: quatech2: handle unbound ports
	scsi: fnic: fix invalid stack access
	scsi: mptfusion: Fix double fetch bug in ioctl
	ASoC: msm8916-wcd-analog: Fix selected events for MIC BIAS External1
	ASoC: msm8916-wcd-analog: Fix MIC BIAS Internal1
	ARM: dts: imx6q-dhcom: Fix SGTL5000 VDDIO regulator connection
	ALSA: dice: fix fallback from protocol extension into limited functionality
	ALSA: seq: Fix racy access for queue timer in proc read
	ALSA: usb-audio: fix sync-ep altsetting sanity check
	arm64: dts: allwinner: a64: olinuxino: Fix SDIO supply regulator
	Fix built-in early-load Intel microcode alignment
	block: fix an integer overflow in logical block size
	ARM: dts: am571x-idk: Fix gpios property to have the correct gpio number
	LSM: generalize flag passing to security_capable
	ptrace: reintroduce usage of subjective credentials in ptrace_has_cap()
	usb: core: hub: Improved device recognition on remote wakeup
	x86/resctrl: Fix an imbalance in domain_remove_cpu()
	x86/CPU/AMD: Ensure clearing of SME/SEV features is maintained
	x86/efistub: Disable paging at mixed mode entry
	drm/i915: Add missing include file <linux/math64.h>
	x86/resctrl: Fix potential memory leak
	perf hists: Fix variable name's inconsistency in hists__for_each() macro
	perf report: Fix incorrectly added dimensions as switch perf data file
	mm/shmem.c: thp, shmem: fix conflict of above-47bit hint address and PMD alignment
	mm: memcg/slab: call flush_memcg_workqueue() only if memcg workqueue is valid
	btrfs: rework arguments of btrfs_unlink_subvol
	btrfs: fix invalid removal of root ref
	btrfs: do not delete mismatched root refs
	btrfs: fix memory leak in qgroup accounting
	mm/page-writeback.c: avoid potential division by zero in wb_min_max_ratio()
	ARM: dts: imx6qdl: Add Engicam i.Core 1.5 MX6
	ARM: dts: imx6q-icore-mipi: Use 1.5 version of i.Core MX6DL
	ARM: dts: imx7: Fix Toradex Colibri iMX7S 256MB NAND flash support
	net: stmmac: 16KB buffer must be 16 byte aligned
	net: stmmac: Enable 16KB buffer size
	mm/huge_memory.c: make __thp_get_unmapped_area static
	mm/huge_memory.c: thp: fix conflict of above-47bit hint address and PMD alignment
	arm64: dts: agilex/stratix10: fix pmu interrupt numbers
	bpf: Fix incorrect verifier simulation of ARSH under ALU32
	cfg80211: fix deadlocks in autodisconnect work
	cfg80211: fix memory leak in cfg80211_cqm_rssi_update
	cfg80211: fix page refcount issue in A-MSDU decap
	netfilter: fix a use-after-free in mtype_destroy()
	netfilter: arp_tables: init netns pointer in xt_tgdtor_param struct
	netfilter: nft_tunnel: fix null-attribute check
	netfilter: nf_tables: remove WARN and add NLA_STRING upper limits
	netfilter: nf_tables: store transaction list locally while requesting module
	netfilter: nf_tables: fix flowtable list del corruption
	NFC: pn533: fix bulk-message timeout
	batman-adv: Fix DAT candidate selection on little endian systems
	macvlan: use skb_reset_mac_header() in macvlan_queue_xmit()
	hv_netvsc: Fix memory leak when removing rndis device
	net: dsa: tag_qca: fix doubled Tx statistics
	net: hns: fix soft lockup when there is not enough memory
	net: usb: lan78xx: limit size of local TSO packets
	net/wan/fsl_ucc_hdlc: fix out of bounds write on array utdm_info
	ptp: free ptp device pin descriptors properly
	r8152: add missing endpoint sanity check
	tcp: fix marked lost packets not being retransmitted
	sh_eth: check sh_eth_cpu_data::dual_port when dumping registers
	mlxsw: spectrum: Wipe xstats.backlog of down ports
	mlxsw: spectrum_qdisc: Include MC TCs in Qdisc counters
	xen/blkfront: Adjust indentation in xlvbd_alloc_gendisk
	tcp: refine rule to allow EPOLLOUT generation under mem pressure
	irqchip: Place CONFIG_SIFIVE_PLIC into the menu
	cw1200: Fix a signedness bug in cw1200_load_firmware()
	arm64: dts: meson-gxl-s905x-khadas-vim: fix gpio-keys-polled node
	cfg80211: check for set_wiphy_params
	tick/sched: Annotate lockless access to last_jiffies_update
	arm64: dts: marvell: Fix CP110 NAND controller node multi-line comment alignment
	Revert "arm64: dts: juno: add dma-ranges property"
	mtd: devices: fix mchp23k256 read and write
	drm/nouveau/bar/nv50: check bar1 vmm return value
	drm/nouveau/bar/gf100: ensure BAR is mapped
	drm/nouveau/mmu: qualify vmm during dtor
	reiserfs: fix handling of -EOPNOTSUPP in reiserfs_for_each_xattr
	scsi: esas2r: unlock on error in esas2r_nvram_read_direct()
	scsi: qla4xxx: fix double free bug
	scsi: bnx2i: fix potential use after free
	scsi: target: core: Fix a pr_debug() argument
	scsi: qla2xxx: Fix qla2x00_request_irqs() for MSI
	scsi: qla2xxx: fix rports not being mark as lost in sync fabric scan
	scsi: core: scsi_trace: Use get_unaligned_be*()
	perf probe: Fix wrong address verification
	clk: sprd: Use IS_ERR() to validate the return value of syscon_regmap_lookup_by_phandle()
	regulator: ab8500: Remove SYSCLKREQ from enum ab8505_regulator_id
	hwmon: (pmbus/ibm-cffps) Switch LEDs to blocking brightness call
	Linux 4.19.98

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I74a43a9e60734aec6d24b10374ba97de89172eca
2020-01-23 08:36:16 +01:00
Adrian Huang
bc6030569c mm: memcg/slab: call flush_memcg_workqueue() only if memcg workqueue is valid
commit 2fe20210fc5f5e62644678b8f927c49f2c6f42a7 upstream.

When booting with amd_iommu=off, the following WARNING message
appears:

  AMD-Vi: AMD IOMMU disabled on kernel command-line
  ------------[ cut here ]------------
  WARNING: CPU: 0 PID: 0 at kernel/workqueue.c:2772 flush_workqueue+0x42e/0x450
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.5.0-rc3-amd-iommu #6
  Hardware name: Lenovo ThinkSystem SR655-2S/7D2WRCZ000, BIOS D8E101L-1.00 12/05/2019
  RIP: 0010:flush_workqueue+0x42e/0x450
  Code: ff 0f 0b e9 7a fd ff ff 4d 89 ef e9 33 fe ff ff 0f 0b e9 7f fd ff ff 0f 0b e9 bc fd ff ff 0f 0b e9 a8 fd ff ff e8 52 2c fe ff <0f> 0b 31 d2 48 c7 c6 e0 88 c5 95 48 c7 c7 d8 ad f0 95 e8 19 f5 04
  Call Trace:
   kmem_cache_destroy+0x69/0x260
   iommu_go_to_state+0x40c/0x5ab
   amd_iommu_prepare+0x16/0x2a
   irq_remapping_prepare+0x36/0x5f
   enable_IR_x2apic+0x21/0x172
   default_setup_apic_routing+0x12/0x6f
   apic_intr_mode_init+0x1a1/0x1f1
   x86_late_time_init+0x17/0x1c
   start_kernel+0x480/0x53f
   secondary_startup_64+0xb6/0xc0
  ---[ end trace 30894107c3749449 ]---
  x2apic: IRQ remapping doesn't support X2APIC mode
  x2apic disabled

The warning is caused by the calling of 'kmem_cache_destroy()'
in free_iommu_resources(). Here is the call path:

  free_iommu_resources
    kmem_cache_destroy
      flush_memcg_workqueue
        flush_workqueue

The root cause is that the IOMMU subsystem runs before the workqueue
subsystem, which the variable 'wq_online' is still 'false'.  This leads
to the statement 'if (WARN_ON(!wq_online))' in flush_workqueue() is
'true'.

Since the variable 'memcg_kmem_cache_wq' is not allocated during the
time, it is unnecessary to call flush_memcg_workqueue().  This prevents
the WARNING message triggered by flush_workqueue().

Link: http://lkml.kernel.org/r/20200103085503.1665-1-ahuang12@lenovo.com
Fixes: 92ee383f6d ("mm: fix race between kmem_cache destroy, create and deactivate")
Signed-off-by: Adrian Huang <ahuang12@lenovo.com>
Reported-by: Xiaochun Lee <lixc17@lenovo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23 08:21:30 +01:00
Vlastimil Babka
31575ef872 UPSTREAM: mm, slab: shorten kmalloc cache names for large sizes
Kmalloc cache names can get quite long for large object sizes, when the
sizes are expressed in bytes.  Use 'k' and 'M' prefixes to make the names
as short as possible e.g.  in /proc/slabinfo.  This works, as we mostly
use power-of-two sizes, with exceptions only below 1k.

Example: 'kmalloc-4194304' becomes 'kmalloc-4M'

Link: http://lkml.kernel.org/r/20180731090649.16028-7-vbabka@suse.cz
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

(cherry picked from commit f0d77874143df90f9831f30254eb149fc4d76b40)

Bug: 138148041
Test: verify KReclaimable accounting after ION allocation+deallocation
Change-Id: I0698007dc6ccbeb55d607a7792ee0ff40e4c38c1
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
2019-12-13 14:04:52 -08:00
Vlastimil Babka
ae97b196f9 UPSTREAM: mm, slab/slub: introduce kmalloc-reclaimable caches
Kmem caches can be created with a SLAB_RECLAIM_ACCOUNT flag, which
indicates they contain objects which can be reclaimed under memory
pressure (typically through a shrinker).  This makes the slab pages
accounted as NR_SLAB_RECLAIMABLE in vmstat, which is reflected also the
MemAvailable meminfo counter and in overcommit decisions.  The slab pages
are also allocated with __GFP_RECLAIMABLE, which is good for
anti-fragmentation through grouping pages by mobility.

The generic kmalloc-X caches are created without this flag, but sometimes
are used also for objects that can be reclaimed, which due to varying size
cannot have a dedicated kmem cache with SLAB_RECLAIM_ACCOUNT flag.  A
prominent example are dcache external names, which prompted the creation
of a new, manually managed vmstat counter NR_INDIRECTLY_RECLAIMABLE_BYTES
in commit f1782c9bc5 ("dcache: account external names as indirectly
reclaimable memory").

To better handle this and any other similar cases, this patch introduces
SLAB_RECLAIM_ACCOUNT variants of kmalloc caches, named kmalloc-rcl-X.
They are used whenever the kmalloc() call passes __GFP_RECLAIMABLE among
gfp flags.  They are added to the kmalloc_caches array as a new type.
Allocations with both __GFP_DMA and __GFP_RECLAIMABLE will use a dma type
cache.

This change only applies to SLAB and SLUB, not SLOB.  This is fine, since
SLOB's target are tiny system and this patch does add some overhead of
kmem management objects.

Link: http://lkml.kernel.org/r/20180731090649.16028-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

(cherry picked from commit 1291523f2c1d631fea34102fd241fb54a4e8f7a0)

Bug: 138148041
Test: verify KReclaimable accounting after ION allocation+deallocation
Change-Id: Ifd4fa79c0b1f27606f91f2f2b2e92464664ab021
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
2019-12-13 14:04:15 -08:00
Vlastimil Babka
9d8edd9223 UPSTREAM: mm, slab: combine kmalloc_caches and kmalloc_dma_caches
Patch series "kmalloc-reclaimable caches", v4.

As discussed at LSF/MM [1] here's a patchset that introduces
kmalloc-reclaimable caches (more details in the second patch) and uses
them for dcache external names.  That allows us to repurpose the
NR_INDIRECTLY_RECLAIMABLE_BYTES counter later in the series.

With patch 3/6, dcache external names are allocated from kmalloc-rcl-*
caches, eliminating the need for manual accounting.  More importantly, it
also ensures the reclaimable kmalloc allocations are grouped in pages
separate from the regular kmalloc allocations.  The need for proper
accounting of dcache external names has shown it's easy for misbehaving
process to allocate lots of them, causing premature OOMs.  Without the
added grouping, it's likely that a similar workload can interleave the
dcache external names allocations with regular kmalloc allocations (note:
I haven't searched myself for an example of such regular kmalloc
allocation, but I would be very surprised if there wasn't some).  A
pathological case would be e.g.  one 64byte regular allocations with 63
external dcache names in a page (64x64=4096), which means the page is not
freed even after reclaiming after all dcache names, and the process can
thus "steal" the whole page with single 64byte allocation.

If other kmalloc users similar to dcache external names become identified,
they can also benefit from the new functionality simply by adding
__GFP_RECLAIMABLE to the kmalloc calls.

Side benefits of the patchset (that could be also merged separately)
include removed branch for detecting __GFP_DMA kmalloc(), and shortening
kmalloc cache names in /proc/slabinfo output.  The latter is potentially
an ABI break in case there are tools parsing the names and expecting the
values to be in bytes.

This is how /proc/slabinfo looks like after booting in virtme:

...
kmalloc-rcl-4M         0      0 4194304    1 1024 : tunables    1    1    0 : slabdata      0      0      0
...
kmalloc-rcl-96         7     32    128   32    1 : tunables  120   60    8 : slabdata      1      1      0
kmalloc-rcl-64        25    128     64   64    1 : tunables  120   60    8 : slabdata      2      2      0
kmalloc-rcl-32         0      0     32  124    1 : tunables  120   60    8 : slabdata      0      0      0
kmalloc-4M             0      0 4194304    1 1024 : tunables    1    1    0 : slabdata      0      0      0
kmalloc-2M             0      0 2097152    1  512 : tunables    1    1    0 : slabdata      0      0      0
kmalloc-1M             0      0 1048576    1  256 : tunables    1    1    0 : slabdata      0      0      0
...

/proc/vmstat with renamed nr_indirectly_reclaimable_bytes counter:

...
nr_slab_reclaimable 2817
nr_slab_unreclaimable 1781
...
nr_kernel_misc_reclaimable 0
...

/proc/meminfo with new KReclaimable counter:

...
Shmem:               564 kB
KReclaimable:      11260 kB
Slab:              18368 kB
SReclaimable:      11260 kB
SUnreclaim:         7108 kB
KernelStack:        1248 kB
...

This patch (of 6):

The kmalloc caches currently mainain separate (optional) array
kmalloc_dma_caches for __GFP_DMA allocations.  There are tests for
__GFP_DMA in the allocation hotpaths.  We can avoid the branches by
combining kmalloc_caches and kmalloc_dma_caches into a single
two-dimensional array where the outer dimension is cache "type".  This
will also allow to add kmalloc-reclaimable caches as a third type.

Link: http://lkml.kernel.org/r/20180731090649.16028-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

(cherry picked from commit cc252eae85e09552f9c1e7ac0c3227f835efdf2d)

Bug: 138148041
Test: verify KReclaimable accounting after ION allocation+deallocation
Change-Id: I4eaac2a0c45f40e9a2adbf2c7ea8c1fb92c39397
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
2019-12-13 14:04:05 -08:00
Andrey Konovalov
11543367c3 UPSTREAM: kasan, kmemleak: pass tagged pointers to kmemleak
(Upstream commit 53128245b43daad600d9fe72940206570e064112).

Right now we call kmemleak hooks before assigning tags to pointers in
KASAN hooks.  As a result, when an objects gets allocated, kmemleak sees a
differently tagged pointer, compared to the one it sees when the object
gets freed.  Fix it by calling KASAN hooks before kmemleak's ones.

Link: http://lkml.kernel.org/r/cd825aa4897b0fc37d3316838993881daccbe9f5.1549921721.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: Qian Cai <cai@lca.pw>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Bug: 128674696
Change-Id: I7766731cf2fe22effd91bfb89da915355d0e7981
2019-09-24 17:44:14 -07:00
Andrey Konovalov
70b223ca1d UPSTREAM: kasan, mm: perform untagged pointers comparison in krealloc
(Upstream commit 772a2fa50ffb2f4282be8436da6e70530a2ac63c).

The krealloc function checks where the same buffer was reused or a new one
allocated by comparing kernel pointers.  Tag-based KASAN changes memory
tag on the krealloc'ed chunk of memory and therefore also changes the
pointer tag of the returned pointer.  Therefore we need to perform
comparison on untagged (with tags reset) pointers to check whether it's
the same memory region or not.

Link: http://lkml.kernel.org/r/14f6190d7846186a3506cd66d82446646fe65090.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Bug: 128674696
Change-Id: I1e64158a5a0d683fc19c76296bc5fa345639bf30
2019-09-24 17:44:12 -07:00
Andrey Konovalov
0697e14f31 UPSTREAM: kasan, mm: change hooks signatures
(Upstream commit 0116523cfffa62aeb5aa3b85ce7419f3dae0c1b8).

Patch series "kasan: add software tag-based mode for arm64", v13.

This patchset adds a new software tag-based mode to KASAN [1].  (Initially
this mode was called KHWASAN, but it got renamed, see the naming rationale
at the end of this section).

The plan is to implement HWASan [2] for the kernel with the incentive,
that it's going to have comparable to KASAN performance, but in the same
time consume much less memory, trading that off for somewhat imprecise bug
detection and being supported only for arm64.

The underlying ideas of the approach used by software tag-based KASAN are:

1. By using the Top Byte Ignore (TBI) arm64 CPU feature, we can store
   pointer tags in the top byte of each kernel pointer.

2. Using shadow memory, we can store memory tags for each chunk of kernel
   memory.

3. On each memory allocation, we can generate a random tag, embed it into
   the returned pointer and set the memory tags that correspond to this
   chunk of memory to the same value.

4. By using compiler instrumentation, before each memory access we can add
   a check that the pointer tag matches the tag of the memory that is being
   accessed.

5. On a tag mismatch we report an error.

With this patchset the existing KASAN mode gets renamed to generic KASAN,
with the word "generic" meaning that the implementation can be supported
by any architecture as it is purely software.

The new mode this patchset adds is called software tag-based KASAN.  The
word "tag-based" refers to the fact that this mode uses tags embedded into
the top byte of kernel pointers and the TBI arm64 CPU feature that allows
to dereference such pointers.  The word "software" here means that shadow
memory manipulation and tag checking on pointer dereference is done in
software.  As it is the only tag-based implementation right now, "software
tag-based" KASAN is sometimes referred to as simply "tag-based" in this
patchset.

A potential expansion of this mode is a hardware tag-based mode, which
would use hardware memory tagging support (announced by Arm [3]) instead
of compiler instrumentation and manual shadow memory manipulation.

Same as generic KASAN, software tag-based KASAN is strictly a debugging
feature.

[1] https://www.kernel.org/doc/html/latest/dev-tools/kasan.html

[2] http://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html

[3] https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a

====== Rationale

On mobile devices generic KASAN's memory usage is significant problem.
One of the main reasons to have tag-based KASAN is to be able to perform a
similar set of checks as the generic one does, but with lower memory
requirements.

Comment from Vishwath Mohan <vishwath@google.com>:

I don't have data on-hand, but anecdotally both ASAN and KASAN have proven
problematic to enable for environments that don't tolerate the increased
memory pressure well.  This includes

(a) Low-memory form factors - Wear, TV, Things, lower-tier phones like Go,
(c) Connected components like Pixel's visual core [1].

These are both places I'd love to have a low(er) memory footprint option at
my disposal.

Comment from Evgenii Stepanov <eugenis@google.com>:

Looking at a live Android device under load, slab (according to
/proc/meminfo) + kernel stack take 8-10% available RAM (~350MB).  KASAN's
overhead of 2x - 3x on top of it is not insignificant.

Not having this overhead enables near-production use - ex.  running
KASAN/KHWASAN kernel on a personal, daily-use device to catch bugs that do
not reproduce in test configuration.  These are the ones that often cost
the most engineering time to track down.

CPU overhead is bad, but generally tolerable.  RAM is critical, in our
experience.  Once it gets low enough, OOM-killer makes your life
miserable.

[1] https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/

====== Technical details

Software tag-based KASAN mode is implemented in a very similar way to the
generic one. This patchset essentially does the following:

1. TCR_TBI1 is set to enable Top Byte Ignore.

2. Shadow memory is used (with a different scale, 1:16, so each shadow
   byte corresponds to 16 bytes of kernel memory) to store memory tags.

3. All slab objects are aligned to shadow scale, which is 16 bytes.

4. All pointers returned from the slab allocator are tagged with a random
   tag and the corresponding shadow memory is poisoned with the same value.

5. Compiler instrumentation is used to insert tag checks. Either by
   calling callbacks or by inlining them (CONFIG_KASAN_OUTLINE and
   CONFIG_KASAN_INLINE flags are reused).

6. When a tag mismatch is detected in callback instrumentation mode
   KASAN simply prints a bug report. In case of inline instrumentation,
   clang inserts a brk instruction, and KASAN has it's own brk handler,
   which reports the bug.

7. The memory in between slab objects is marked with a reserved tag, and
   acts as a redzone.

8. When a slab object is freed it's marked with a reserved tag.

Bug detection is imprecise for two reasons:

1. We won't catch some small out-of-bounds accesses, that fall into the
   same shadow cell, as the last byte of a slab object.

2. We only have 1 byte to store tags, which means we have a 1/256
   probability of a tag match for an incorrect access (actually even
   slightly less due to reserved tag values).

Despite that there's a particular type of bugs that tag-based KASAN can
detect compared to generic KASAN: use-after-free after the object has been
allocated by someone else.

====== Testing

Some kernel developers voiced a concern that changing the top byte of
kernel pointers may lead to subtle bugs that are difficult to discover.
To address this concern deliberate testing has been performed.

It doesn't seem feasible to do some kind of static checking to find
potential issues with pointer tagging, so a dynamic approach was taken.
All pointer comparisons/subtractions have been instrumented in an LLVM
compiler pass and a kernel module that would print a bug report whenever
two pointers with different tags are being compared/subtracted (ignoring
comparisons with NULL pointers and with pointers obtained by casting an
error code to a pointer type) has been used.  Then the kernel has been
booted in QEMU and on an Odroid C2 board and syzkaller has been run.

This yielded the following results.

The two places that look interesting are:

is_vmalloc_addr in include/linux/mm.h
is_kernel_rodata in mm/util.c

Here we compare a pointer with some fixed untagged values to make sure
that the pointer lies in a particular part of the kernel address space.
Since tag-based KASAN doesn't add tags to pointers that belong to rodata
or vmalloc regions, this should work as is.  To make sure debug checks to
those two functions that check that the result doesn't change whether we
operate on pointers with or without untagging has been added.

A few other cases that don't look that interesting:

Comparing pointers to achieve unique sorting order of pointee objects
(e.g. sorting locks addresses before performing a double lock):

tty_ldisc_lock_pair_timeout in drivers/tty/tty_ldisc.c
pipe_double_lock in fs/pipe.c
unix_state_double_lock in net/unix/af_unix.c
lock_two_nondirectories in fs/inode.c
mutex_lock_double in kernel/events/core.c

ep_cmp_ffd in fs/eventpoll.c
fsnotify_compare_groups fs/notify/mark.c

Nothing needs to be done here, since the tags embedded into pointers
don't change, so the sorting order would still be unique.

Checks that a pointer belongs to some particular allocation:

is_sibling_entry in lib/radix-tree.c
object_is_on_stack in include/linux/sched/task_stack.h

Nothing needs to be done here either, since two pointers can only belong
to the same allocation if they have the same tag.

Overall, since the kernel boots and works, there are no critical bugs.
As for the rest, the traditional kernel testing way (use until fails) is
the only one that looks feasible.

Another point here is that tag-based KASAN is available under a separate
config option that needs to be deliberately enabled. Even though it might
be used in a "near-production" environment to find bugs that are not found
during fuzzing or running tests, it is still a debug tool.

====== Benchmarks

The following numbers were collected on Odroid C2 board. Both generic and
tag-based KASAN were used in inline instrumentation mode.

Boot time [1]:
* ~1.7 sec for clean kernel
* ~5.0 sec for generic KASAN
* ~5.0 sec for tag-based KASAN

Network performance [2]:
* 8.33 Gbits/sec for clean kernel
* 3.17 Gbits/sec for generic KASAN
* 2.85 Gbits/sec for tag-based KASAN

Slab memory usage after boot [3]:
* ~40 kb for clean kernel
* ~105 kb (~260% overhead) for generic KASAN
* ~47 kb (~20% overhead) for tag-based KASAN

KASAN memory overhead consists of three main parts:
1. Increased slab memory usage due to redzones.
2. Shadow memory (the whole reserved once during boot).
3. Quaratine (grows gradually until some preset limit; the more the limit,
   the more the chance to detect a use-after-free).

Comparing tag-based vs generic KASAN for each of these points:
1. 20% vs 260% overhead.
2. 1/16th vs 1/8th of physical memory.
3. Tag-based KASAN doesn't require quarantine.

[1] Time before the ext4 driver is initialized.
[2] Measured as `iperf -s & iperf -c 127.0.0.1 -t 30`.
[3] Measured as `cat /proc/meminfo | grep Slab`.

====== Some notes

A few notes:

1. The patchset can be found here:
   https://github.com/xairy/kasan-prototype/tree/khwasan

2. Building requires a recent Clang version (7.0.0 or later).

3. Stack instrumentation is not supported yet and will be added later.

This patch (of 25):

Tag-based KASAN changes the value of the top byte of pointers returned
from the kernel allocation functions (such as kmalloc).  This patch
updates KASAN hooks signatures and their usage in SLAB and SLUB code to
reflect that.

Link: http://lkml.kernel.org/r/aec2b5e3973781ff8a6bb6760f8543643202c451.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Bug: 128674696
Change-Id: I62e554e732ec79ffd195e2269c8a50aed14381c0
2019-09-24 17:44:11 -07:00
Nicolas Boichat
62d342d670 mm: add support for kmem caches in DMA32 zone
commit 6d6ea1e967a246f12cfe2f5fb743b70b2e608d4a upstream.

Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables",
v6.

This is a followup to the discussion in [1], [2].

IOMMUs using ARMv7 short-descriptor format require page tables (level 1
and 2) to be allocated within the first 4GB of RAM, even on 64-bit
systems.

For L1 tables that are bigger than a page, we can just use
__get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still
use GFP_DMA).

For L2 tables that only take 1KB, it would be a waste to allocate a full
page, so we considered 3 approaches:
 1. This series, adding support for GFP_DMA32 slab caches.
 2. genalloc, which requires pre-allocating the maximum number of L2 page
    tables (4096, so 4MB of memory).
 3. page_frag, which is not very memory-efficient as it is unable to reuse
    freed fragments until the whole page is freed. [3]

This series is the most memory-efficient approach.

stable@ note:
  We confirmed that this is a regression, and IOMMU errors happen on 4.19
  and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue
  most likely starts from commit ad67f5a654 ("arm64: replace ZONE_DMA
  with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek
  platforms (and maybe others?).

[1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html
[2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html
[3] https://patchwork.codeaurora.org/patch/671639/

This patch (of 3):

IOMMUs using ARMv7 short-descriptor format require page tables to be
allocated within the first 4GB of RAM, even on 64-bit systems.  On arm64,
this is done by passing GFP_DMA32 flag to memory allocation functions.

For IOMMU L2 tables that only take 1KB, it would be a waste to allocate
a full page using get_free_pages, so we considered 3 approaches:
 1. This patch, adding support for GFP_DMA32 slab caches.
 2. genalloc, which requires pre-allocating the maximum number of L2
    page tables (4096, so 4MB of memory).
 3. page_frag, which is not very memory-efficient as it is unable
    to reuse freed fragments until the whole page is freed.

This change makes it possible to create a custom cache in DMA32 zone using
kmem_cache_create, then allocate memory using kmem_cache_alloc.

We do not create a DMA32 kmalloc cache array, as there are currently no
users of kmalloc(..., GFP_DMA32).  These calls will continue to trigger a
warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK.

This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32
kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and
unnecessary).

Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Sasha Levin <Alexander.Levin@microsoft.com>
Cc: Huaisheng Ye <yehs1@lenovo.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yong Wu <yong.wu@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Tomasz Figa <tfiga@google.com>
Cc: Yingjoe Chen <yingjoe.chen@mediatek.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-03 06:26:28 +02:00
Dmitry Vyukov
3996e891ec mm: don't warn about large allocations for slab
commit 61448479a9f2c954cde0cfe778cb6bec5d0a748d upstream.

Slub does not call kmalloc_slab() for sizes > KMALLOC_MAX_CACHE_SIZE,
instead it falls back to kmalloc_large().

For slab KMALLOC_MAX_CACHE_SIZE == KMALLOC_MAX_SIZE and it calls
kmalloc_slab() for all allocations relying on NULL return value for
over-sized allocations.

This inconsistency leads to unwanted warnings from kmalloc_slab() for
over-sized allocations for slab.  Returning NULL for failed allocations is
the expected behavior.

Make slub and slab code consistent by checking size >
KMALLOC_MAX_CACHE_SIZE in slab before calling kmalloc_slab().

While we are here also fix the check in kmalloc_slab().  We should check
against KMALLOC_MAX_CACHE_SIZE rather than KMALLOC_MAX_SIZE.  It all kinda
worked because for slab the constants are the same, and slub always checks
the size against KMALLOC_MAX_CACHE_SIZE before kmalloc_slab().  But if we
get there with size > KMALLOC_MAX_CACHE_SIZE anyhow bad things will
happen.  For example, in case of a newly introduced bug in slub code.

Also move the check in kmalloc_slab() from function entry to the size >
192 case.  This partially compensates for the additional check in slab
code and makes slub code a bit faster (at least theoretically).

Also drop __GFP_NOWARN in the warning check.  This warning means a bug in
slab code itself, user-passed flags have nothing to do with it.

Nothing of this affects slob.

Link: http://lkml.kernel.org/r/20180927171502.226522-1-dvyukov@gmail.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: syzbot+87829a10073277282ad1@syzkaller.appspotmail.com
Reported-by: syzbot+ef4e8fc3a06e9019bb40@syzkaller.appspotmail.com
Reported-by: syzbot+6e438f4036df52cbb863@syzkaller.appspotmail.com
Reported-by: syzbot+8574471d8734457d98aa@syzkaller.appspotmail.com
Reported-by: syzbot+af1504df0807a083dbd9@syzkaller.appspotmail.com
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-01 09:37:28 +01:00
Kirill Tkhai
84c07d11aa mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB
Introduce new config option, which is used to replace repeating
CONFIG_MEMCG && !CONFIG_SLOB pattern.  Next patches add a little more
memcg+kmem related code, so let's keep the defines more clearly.

Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Mikulas Patocka
d50d82faa0 slub: fix failure when we delete and create a slab cache
In kernel 4.17 I removed some code from dm-bufio that did slab cache
merging (commit 21bb132767: "dm bufio: remove code that merges slab
caches") - both slab and slub support merging caches with identical
attributes, so dm-bufio now just calls kmem_cache_create and relies on
implicit merging.

This uncovered a bug in the slub subsystem - if we delete a cache and
immediatelly create another cache with the same attributes, it fails
because of duplicate filename in /sys/kernel/slab/.  The slub subsystem
offloads freeing the cache to a workqueue - and if we create the new
cache before the workqueue runs, it complains because of duplicate
filename in sysfs.

This patch fixes the bug by moving the call of kobject_del from
sysfs_slab_remove_workfn to shutdown_cache.  kobject_del must be called
while we hold slab_mutex - so that the sysfs entry is deleted before a
cache with the same attributes could be created.

Running device-mapper-test-suite with:

  dmtest run --suite thin-provisioning -n /commit_failure_causes_fallback/

triggered:

  Buffer I/O error on dev dm-0, logical block 1572848, async page read
  device-mapper: thin: 253:1: metadata operation 'dm_pool_alloc_data_block' failed: error = -5
  device-mapper: thin: 253:1: aborting current metadata transaction
  sysfs: cannot create duplicate filename '/kernel/slab/:a-0000144'
  CPU: 2 PID: 1037 Comm: kworker/u48:1 Not tainted 4.17.0.snitm+ #25
  Hardware name: Supermicro SYS-1029P-WTR/X11DDW-L, BIOS 2.0a 12/06/2017
  Workqueue: dm-thin do_worker [dm_thin_pool]
  Call Trace:
   dump_stack+0x5a/0x73
   sysfs_warn_dup+0x58/0x70
   sysfs_create_dir_ns+0x77/0x80
   kobject_add_internal+0xba/0x2e0
   kobject_init_and_add+0x70/0xb0
   sysfs_slab_add+0xb1/0x250
   __kmem_cache_create+0x116/0x150
   create_cache+0xd9/0x1f0
   kmem_cache_create_usercopy+0x1c1/0x250
   kmem_cache_create+0x18/0x20
   dm_bufio_client_create+0x1ae/0x410 [dm_bufio]
   dm_block_manager_create+0x5e/0x90 [dm_persistent_data]
   __create_persistent_data_objects+0x38/0x940 [dm_thin_pool]
   dm_pool_abort_metadata+0x64/0x90 [dm_thin_pool]
   metadata_operation_failed+0x59/0x100 [dm_thin_pool]
   alloc_data_block.isra.53+0x86/0x180 [dm_thin_pool]
   process_cell+0x2a3/0x550 [dm_thin_pool]
   do_worker+0x28d/0x8f0 [dm_thin_pool]
   process_one_work+0x171/0x370
   worker_thread+0x49/0x3f0
   kthread+0xf8/0x130
   ret_from_fork+0x35/0x40
  kobject_add_internal failed for :a-0000144 with -EEXIST, don't try to register things with the same name in the same directory.
  kmem_cache_create(dm_bufio_buffer-16) failed with error -17

Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1806151817130.6333@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Reported-by: Mike Snitzer <snitzer@redhat.com>
Tested-by: Mike Snitzer <snitzer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-28 11:16:44 -07:00
Joe Perches
0825a6f986 mm: use octal not symbolic permissions
mm/*.c files use symbolic and octal styles for permissions.

Using octal and not symbolic permissions is preferred by many as more
readable.

https://lkml.org/lkml/2016/8/2/1945

Prefer the direct use of octal for permissions.

Done using
$ scripts/checkpatch.pl -f --types=SYMBOLIC_PERMS --fix-inplace mm/*.c
and some typing.

Before:	 $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
44
After:	 $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
86

Miscellanea:

o Whitespace neatening around these conversions.

Link: http://lkml.kernel.org/r/2e032ef111eebcd4c5952bae86763b541d373469.1522102887.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:25 +09:00
Shakeel Butt
92ee383f6d mm: fix race between kmem_cache destroy, create and deactivate
The memcg kmem cache creation and deactivation (SLUB only) is
asynchronous.  If a root kmem cache is destroyed whose memcg cache is in
the process of creation or deactivation, the kernel may crash.

Example of one such crash:
	general protection fault: 0000 [#1] SMP PTI
	CPU: 1 PID: 1721 Comm: kworker/14:1 Not tainted 4.17.0-smp
	...
	Workqueue: memcg_kmem_cache kmemcg_deactivate_workfn
	RIP: 0010:has_cpu_slab
	...
	Call Trace:
	? on_each_cpu_cond
	__kmem_cache_shrink
	kmemcg_cache_deact_after_rcu
	kmemcg_deactivate_workfn
	process_one_work
	worker_thread
	kthread
	ret_from_fork+0x35/0x40

To fix this race, on root kmem cache destruction, mark the cache as
dying and flush the workqueue used for memcg kmem cache creation and
deactivation.  SLUB's memcg kmem cache deactivation also includes RCU
callback and thus make sure all previous registered RCU callbacks have
completed as well.

[shakeelb@google.com: handle the RCU callbacks for SLUB deactivation]
  Link: http://lkml.kernel.org/r/20180611192951.195727-1-shakeelb@google.com
[shakeelb@google.com: add more documentation, rename fields for readability]
  Link: http://lkml.kernel.org/r/20180522201336.196994-1-shakeelb@google.com
[akpm@linux-foundation.org: fix build, per Shakeel]
[shakeelb@google.com: v3.  Instead of refcount, flush the workqueue]
  Link: http://lkml.kernel.org/r/20180530001204.183758-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180521174116.171846-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:23 +09:00
Howard McLauchlan
4f6923fbb3 mm: make should_failslab always available for fault injection
should_failslab() is a convenient function to hook into for directed
error injection into kmalloc().  However, it is only available if a
config flag is set.

The following BCC script, for example, fails kmalloc() calls after a
btrfs umount:

    from bcc import BPF

    prog = r"""
    BPF_HASH(flag);

    #include <linux/mm.h>

    int kprobe__btrfs_close_devices(void *ctx) {
            u64 key = 1;
            flag.update(&key, &key);
            return 0;
    }

    int kprobe__should_failslab(struct pt_regs *ctx) {
            u64 key = 1;
            u64 *res;
            res = flag.lookup(&key);
            if (res != 0) {
                bpf_override_return(ctx, -ENOMEM);
            }
            return 0;
    }
    """
    b = BPF(text=prog)

    while 1:
        b.kprobe_poll()

This patch refactors the should_failslab implementation so that the
function is always available for error injection, independent of flags.

This change would be similar in nature to commit f5490d3ec921 ("block:
Add should_fail_bio() for bpf error injection").

Link: http://lkml.kernel.org/r/20180222020320.6944-1-hmclauchlan@fb.com
Signed-off-by: Howard McLauchlan <hmclauchlan@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:26 -07:00
Mikulas Patocka
1ba586de22 mm/slab_common.c: remove test if cache name is accessible
Since commit db265eca77 ("mm/sl[aou]b: Move duping of slab name to
slab_common.c"), the kernel always duplicates the slab cache name when
creating a slab cache, so the test if the slab name is accessible is
useless.

Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1803231133310.22626@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Shakeel Butt
613a5eb567 slab, slub: remove size disparity on debug kernel
I have noticed on debug kernel with SLAB, the size of some non-root
slabs were larger than their corresponding root slabs.

e.g. for radix_tree_node:
  $cat /proc/slabinfo | grep radix
  name     <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ...
  radix_tree_node 15052    15075      4096         1             1 ...

  $cat /cgroup/memory/temp/memory.kmem.slabinfo | grep radix
  name     <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ...
  radix_tree_node 1581      158       4120         1             2 ...

However for SLUB in debug kernel, the sizes were same.  On further
inspection it is found that SLUB always use kmem_cache.object_size to
measure the kmem_cache.size while SLAB use the given kmem_cache.size.
In the debug kernel the slab's size can be larger than its object_size.
Thus in the creation of non-root slab, the SLAB uses the root's size as
base to calculate the non-root slab's size and thus non-root slab's size
can be larger than the root slab's size.  For SLUB, the non-root slab's
size is measured based on the root's object_size and thus the size will
remain same for root and non-root slab.

This patch makes slab's object_size the default base to measure the
slab's size.

Link: http://lkml.kernel.org/r/20180313165428.58699-1-shakeelb@google.com
Fixes: 794b1248be ("memcg, slab: separate memcg vs root cache creation paths")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Alexey Dobriyan
302d55d51d slab: use 32-bit arithmetic in freelist_randomize()
SLAB doesn't support 4GB+ of objects per slab, therefore randomization
doesn't need size_t.

Link: http://lkml.kernel.org/r/20180305200730.15812-25-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Alexey Dobriyan
7bbdb81ee3 slab: make usercopy region 32-bit
If kmem case sizes are 32-bit, then usecopy region should be too.

Link: http://lkml.kernel.org/r/20180305200730.15812-21-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Alexey Dobriyan
1b473f29d5 slub: make ->object_size unsigned int
Linux doesn't support negative length objects.

Link: http://lkml.kernel.org/r/20180305200730.15812-17-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Alexey Dobriyan
ac914d08bb slab: make size_index_elem() unsigned int
size_index_elem() always works with small sizes (kmalloc caches are
32-bit) and returns small indexes.

Link: http://lkml.kernel.org/r/20180305200730.15812-8-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
d5f866550d slab: make size_index[] array u8
All those small numbers are reverse indexes into kmalloc caches array
and can't be negative.

On x86_64 "unsigned int = fls()" can drop CDQE instruction:

	add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-2 (-2)
	Function                                     old     new   delta
	kmalloc_slab                                 101      99      -2

Link: http://lkml.kernel.org/r/20180305200730.15812-7-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
f4957d5bd0 slab: make kmem_cache_create() work with 32-bit sizes
struct kmem_cache::size and ::align were always 32-bit.

Out of curiosity I created 4GB kmem_cache, it oopsed with division by 0.
kmem_cache_create(1UL<<32+1) created 1-byte cache as expected.

size_t doesn't work and never did.

Link: http://lkml.kernel.org/r/20180305200730.15812-6-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
361d575e5c slab: make create_boot_cache() work with 32-bit sizes
struct kmem_cache::size has always been "int", all those
"size_t size" are fake.

Link: http://lkml.kernel.org/r/20180305200730.15812-5-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
55de8b9c60 slab: make create_kmalloc_cache() work with 32-bit sizes
KMALLOC_MAX_CACHE_SIZE is 32-bit so is the largest kmalloc cache size.

Christoph said:
:
: Ok SLABs maximum allocation size is limited to 32M (see
: include/linux/slab.h:
:
: #define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
:                                 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
:
: And SLUB/SLOB pass all larger requests to the page allocator anyways.

Link: http://lkml.kernel.org/r/20180305200730.15812-4-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
0be70327ec slab: make kmalloc_size() return "unsigned int"
kmalloc_size() derives size of kmalloc cache from internal index, which
can't be negative.

Propagate unsignedness a bit.

Link: http://lkml.kernel.org/r/20180305200730.15812-3-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
c86305743b slab: fixup calculate_alignment() argument type
Link: http://lkml.kernel.org/r/20180305200730.15812-1-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
1c99ba2918 mm/slab_common.c: mark kmalloc machinery as __ro_after_init
kmalloc caches aren't relocated after being set up neither does
"size_index" array.

Link: http://lkml.kernel.org/r/20180226203519.GA6886@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Linus Torvalds
617aebe6a9 Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
 available to be copied to/from userspace in the face of bugs. To further
 restrict what memory is available for copying, this creates a way to
 whitelist specific areas of a given slab cache object for copying to/from
 userspace, allowing much finer granularity of access control. Slab caches
 that are never exposed to userspace can declare no whitelist for their
 objects, thereby keeping them unavailable to userspace via dynamic copy
 operations. (Note, an implicit form of whitelisting is the use of constant
 sizes in usercopy operations and get_user()/put_user(); these bypass all
 hardened usercopy checks since these sizes cannot change at runtime.)
 
 This new check is WARN-by-default, so any mistakes can be found over the
 next several releases without breaking anyone's system.
 
 The series has roughly the following sections:
 - remove %p and improve reporting with offset
 - prepare infrastructure and whitelist kmalloc
 - update VFS subsystem with whitelists
 - update SCSI subsystem with whitelists
 - update network subsystem with whitelists
 - update process memory with whitelists
 - update per-architecture thread_struct with whitelists
 - update KVM with whitelists and fix ioctl bug
 - mark all other allocations as not whitelisted
 - update lkdtm for more sensible test overage
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJabvleAAoJEIly9N/cbcAmO1kQAJnjVPutnLSbnUteZxtsv7W4
 43Cggvokfxr6l08Yh3hUowNxZVKjhF9uwMVgRRg9Nl5WdYCN+vCQbHz+ZdzGJXKq
 cGqdKWgexMKX+aBdNDrK7BphUeD46sH7JWR+a/lDV/BgPxBCm9i5ZZCgXbPP89AZ
 NpLBji7gz49wMsnm/x135xtNlZ3dG0oKETzi7MiR+NtKtUGvoIszSKy5JdPZ4m8q
 9fnXmHqmwM6uQFuzDJPt1o+D1fusTuYnjI7EgyrJRRhQ+BB3qEFZApXnKNDRS9Dm
 uB7jtcwefJCjlZVCf2+PWTOEifH2WFZXLPFlC8f44jK6iRW2Nc+wVRisJ3vSNBG1
 gaRUe/FSge68eyfQj5OFiwM/2099MNkKdZ0fSOjEBeubQpiFChjgWgcOXa5Bhlrr
 C4CIhFV2qg/tOuHDAF+Q5S96oZkaTy5qcEEwhBSW15ySDUaRWFSrtboNt6ZVOhug
 d8JJvDCQWoNu1IQozcbv6xW/Rk7miy8c0INZ4q33YUvIZpH862+vgDWfTJ73Zy9H
 jR/8eG6t3kFHKS1vWdKZzOX1bEcnd02CGElFnFYUEewKoV7ZeeLsYX7zodyUAKyi
 Yp5CImsDbWWTsptBg6h9nt2TseXTxYCt2bbmpJcqzsqSCUwOQNQ4/YpuzLeG0ihc
 JgOmUnQNJWCTwUUw5AS1
 =tzmJ
 -----END PGP SIGNATURE-----

Merge tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull hardened usercopy whitelisting from Kees Cook:
 "Currently, hardened usercopy performs dynamic bounds checking on slab
  cache objects. This is good, but still leaves a lot of kernel memory
  available to be copied to/from userspace in the face of bugs.

  To further restrict what memory is available for copying, this creates
  a way to whitelist specific areas of a given slab cache object for
  copying to/from userspace, allowing much finer granularity of access
  control.

  Slab caches that are never exposed to userspace can declare no
  whitelist for their objects, thereby keeping them unavailable to
  userspace via dynamic copy operations. (Note, an implicit form of
  whitelisting is the use of constant sizes in usercopy operations and
  get_user()/put_user(); these bypass all hardened usercopy checks since
  these sizes cannot change at runtime.)

  This new check is WARN-by-default, so any mistakes can be found over
  the next several releases without breaking anyone's system.

  The series has roughly the following sections:
   - remove %p and improve reporting with offset
   - prepare infrastructure and whitelist kmalloc
   - update VFS subsystem with whitelists
   - update SCSI subsystem with whitelists
   - update network subsystem with whitelists
   - update process memory with whitelists
   - update per-architecture thread_struct with whitelists
   - update KVM with whitelists and fix ioctl bug
   - mark all other allocations as not whitelisted
   - update lkdtm for more sensible test overage"

* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
  lkdtm: Update usercopy tests for whitelisting
  usercopy: Restrict non-usercopy caches to size 0
  kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
  kvm: whitelist struct kvm_vcpu_arch
  arm: Implement thread_struct whitelist for hardened usercopy
  arm64: Implement thread_struct whitelist for hardened usercopy
  x86: Implement thread_struct whitelist for hardened usercopy
  fork: Provide usercopy whitelisting for task_struct
  fork: Define usercopy region in thread_stack slab caches
  fork: Define usercopy region in mm_struct slab caches
  net: Restrict unwhitelisted proto caches to size 0
  sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
  sctp: Define usercopy region in SCTP proto slab cache
  caif: Define usercopy region in caif proto slab cache
  ip: Define usercopy region in IP proto slab cache
  net: Define usercopy region in struct proto slab cache
  scsi: Define usercopy region in scsi_sense_cache slab cache
  cifs: Define usercopy region in cifs_request slab cache
  vxfs: Define usercopy region in vxfs_inode slab cache
  ufs: Define usercopy region in ufs_inode_cache slab cache
  ...
2018-02-03 16:25:42 -08:00
Byongho Lee
692ae74aaf mm/slab_common.c: make calculate_alignment() static
calculate_alignment() function is only used inside slab_common.c.  So
make it static and let the compiler do more optimizations.

After this patch there's a small improvement in text and data size.

  $ gcc --version
    gcc (GCC) 7.2.1 20171128

Before:
  text	   data	    bss	    dec	     hex	filename
  9890457  3828702  1212364 14931523 e3d643	vmlinux

After:
  text	   data	    bss	    dec	     hex	filename
  9890437  3828670  1212364 14931471 e3d60f	vmlinux

Also I fixed a style problem reported by checkpatch.

  WARNING: Missing a blank line after declarations
  #53: FILE: mm/slab_common.c:286:
  +		unsigned long ralign = cache_line_size();
  +		while (size <= ralign / 2)

Link: http://lkml.kernel.org/r/20171210080132.406-1-bhlee.kernel@gmail.com
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:35 -08:00
Kees Cook
6d07d1cd30 usercopy: Restrict non-usercopy caches to size 0
With all known usercopied cache whitelists now defined in the
kernel, switch the default usercopy region of kmem_cache_create()
to size 0. Any new caches with usercopy regions will now need to use
kmem_cache_create_usercopy() instead of kmem_cache_create().

This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code are
mine and don't reflect the original grsecurity/PaX code.

Cc: David Windsor <dave@nullcore.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-01-15 12:08:08 -08:00
David Windsor
6c0c21adc7 usercopy: Mark kmalloc caches as usercopy caches
Mark the kmalloc slab caches as entirely whitelisted. These caches
are frequently used to fulfill kernel allocations that contain data
to be copied to/from userspace. Internal-only uses are also common,
but are scattered in the kernel. For now, mark all the kmalloc caches
as whitelisted.

This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code are
mine and don't reflect the original grsecurity/PaX code.

Signed-off-by: David Windsor <dave@nullcore.net>
[kees: merged in moved kmalloc hunks, adjust commit log]
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christoph Lameter <cl@linux.com>
2018-01-15 12:07:49 -08:00
Kees Cook
2d891fbc3b usercopy: Allow strict enforcement of whitelists
This introduces CONFIG_HARDENED_USERCOPY_FALLBACK to control the
behavior of hardened usercopy whitelist violations. By default, whitelist
violations will continue to WARN() so that any bad or missing usercopy
whitelists can be discovered without being too disruptive.

If this config is disabled at build time or a system is booted with
"slab_common.usercopy_fallback=0", usercopy whitelists will BUG() instead
of WARN(). This is useful for admins that want to use usercopy whitelists
immediately.

Suggested-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-01-15 12:07:48 -08:00
David Windsor
8eb8284b41 usercopy: Prepare for usercopy whitelisting
This patch prepares the slab allocator to handle caches having annotations
(useroffset and usersize) defining usercopy regions.

This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on
my understanding of the code. Changes or omissions from the original
code are mine and don't reflect the original grsecurity/PaX code.

Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs. To further
restrict what memory is available for copying, this creates a way to
whitelist specific areas of a given slab cache object for copying to/from
userspace, allowing much finer granularity of access control. Slab caches
that are never exposed to userspace can declare no whitelist for their
objects, thereby keeping them unavailable to userspace via dynamic copy
operations. (Note, an implicit form of whitelisting is the use of constant
sizes in usercopy operations and get_user()/put_user(); these bypass
hardened usercopy checks since these sizes cannot change at runtime.)

To support this whitelist annotation, usercopy region offset and size
members are added to struct kmem_cache. The slab allocator receives a
new function, kmem_cache_create_usercopy(), that creates a new cache
with a usercopy region defined, suitable for declaring spans of fields
within the objects that get copied to/from userspace.

In this patch, the default kmem_cache_create() marks the entire allocation
as whitelisted, leaving it semantically unchanged. Once all fine-grained
whitelists have been added (in subsequent patches), this will be changed
to a usersize of 0, making caches created with kmem_cache_create() not
copyable to/from userspace.

After the entire usercopy whitelist series is applied, less than 15%
of the slab cache memory remains exposed to potential usercopy bugs
after a fresh boot:

Total Slab Memory:           48074720
Usercopyable Memory:          6367532  13.2%
         task_struct                    0.2%         4480/1630720
         RAW                            0.3%            300/96000
         RAWv6                          2.1%           1408/64768
         ext4_inode_cache               3.0%       269760/8740224
         dentry                        11.1%       585984/5273856
         mm_struct                     29.1%         54912/188448
         kmalloc-8                    100.0%          24576/24576
         kmalloc-16                   100.0%          28672/28672
         kmalloc-32                   100.0%          81920/81920
         kmalloc-192                  100.0%          96768/96768
         kmalloc-128                  100.0%        143360/143360
         names_cache                  100.0%        163840/163840
         kmalloc-64                   100.0%        167936/167936
         kmalloc-256                  100.0%        339968/339968
         kmalloc-512                  100.0%        350720/350720
         kmalloc-96                   100.0%        455616/455616
         kmalloc-8192                 100.0%        655360/655360
         kmalloc-1024                 100.0%        812032/812032
         kmalloc-4096                 100.0%        819200/819200
         kmalloc-2048                 100.0%      1310720/1310720

After some kernel build workloads, the percentage (mainly driven by
dentry and inode caches expanding) drops under 10%:

Total Slab Memory:           95516184
Usercopyable Memory:          8497452   8.8%
         task_struct                    0.2%         4000/1456000
         RAW                            0.3%            300/96000
         RAWv6                          2.1%           1408/64768
         ext4_inode_cache               3.0%     1217280/39439872
         dentry                        11.1%     1623200/14608800
         mm_struct                     29.1%         73216/251264
         kmalloc-8                    100.0%          24576/24576
         kmalloc-16                   100.0%          28672/28672
         kmalloc-32                   100.0%          94208/94208
         kmalloc-192                  100.0%          96768/96768
         kmalloc-128                  100.0%        143360/143360
         names_cache                  100.0%        163840/163840
         kmalloc-64                   100.0%        245760/245760
         kmalloc-256                  100.0%        339968/339968
         kmalloc-512                  100.0%        350720/350720
         kmalloc-96                   100.0%        563520/563520
         kmalloc-8192                 100.0%        655360/655360
         kmalloc-1024                 100.0%        794624/794624
         kmalloc-4096                 100.0%        819200/819200
         kmalloc-2048                 100.0%      1257472/1257472

Signed-off-by: David Windsor <dave@nullcore.net>
[kees: adjust commit log, split out a few extra kmalloc hunks]
[kees: add field names to function declarations]
[kees: convert BUGs to WARNs and fail closed]
[kees: add attack surface reduction analysis to commit log]
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christoph Lameter <cl@linux.com>
2018-01-15 12:07:47 -08:00
Levin, Alexander (Sasha Levin)
75f296d93b kmemcheck: stop using GFP_NOTRACK and SLAB_NOTRACK
Convert all allocations that used a NOTRACK flag to stop using it.

Link: http://lkml.kernel.org/r/20171007030159.22241-3-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Hansen <devtimhansen@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:04 -08:00
Alexey Dobriyan
d50112edde slab, slub, slob: add slab_flags_t
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON,
etc).

SLAB is bloated temporarily by switching to "unsigned long", but only
temporarily.

Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Yang Shi
852d8be0ad mm: oom: show unreclaimable slab info when unreclaimable slabs > user memory
The kernel may panic when an oom happens without killable process
sometimes it is caused by huge unreclaimable slabs used by kernel.

Although kdump could help debug such problem, however, kdump is not
available on all architectures and it might be malfunction sometime.
And, since kernel already panic it is worthy capturing such information
in dmesg to aid touble shooting.

Print out unreclaimable slab info (used size and total size) which
actual memory usage is not zero (num_objs * size != 0) when
unreclaimable slabs amount is greater than total user memory (LRU
pages).

The output looks like:

  Unreclaimable slab info:
  Name                      Used          Total
  rpc_buffers               31KB         31KB
  rpc_tasks                  7KB          7KB
  ebitmap_node            1964KB       1964KB
  avtab_node              5024KB       5024KB
  xfs_buf                 1402KB       1402KB
  xfs_ili                  134KB        134KB
  xfs_efi_item             115KB        115KB
  xfs_efd_item             115KB        115KB
  xfs_buf_item             134KB        134KB
  xfs_log_item_desc        342KB        342KB
  xfs_trans               1412KB       1412KB
  xfs_ifork                212KB        212KB

[yang.s@alibaba-inc.com: v11]
  Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com
Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Yang Shi
5b36577109 mm: slabinfo: remove CONFIG_SLABINFO
According to discussion with Christoph
(https://marc.info/?l=linux-kernel&m=150695909709711&w=2), it sounds like
it is pointless to keep CONFIG_SLABINFO around.

This patch removes the CONFIG_SLABINFO config option, but /proc/slabinfo
is still available.

[yang.s@alibaba-inc.com: v11]
  Link: http://lkml.kernel.org/r/1507656303-103845-3-git-send-email-yang.s@alibaba-inc.com
Link: http://lkml.kernel.org/r/1507152550-46205-3-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Johannes Weiner
f80c7dab95 mm: memcontrol: use vmalloc fallback for large kmem memcg arrays
For quick per-memcg indexing, slab caches and list_lru structures
maintain linear arrays of descriptors.  As the number of concurrent
memory cgroups in the system goes up, this requires large contiguous
allocations (8k cgroups = order-5, 16k cgroups = order-6 etc.) for every
existing slab cache and list_lru, which can easily fail on loaded
systems.  E.g.:

  mkdir: page allocation failure: order:5, mode:0x14040c0(GFP_KERNEL|__GFP_COMP), nodemask=(null)
  CPU: 1 PID: 6399 Comm: mkdir Not tainted 4.13.0-mm1-00065-g720bbe532b7c-dirty #481
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
  Call Trace:
   ? __alloc_pages_direct_compact+0x4c/0x110
   __alloc_pages_nodemask+0xf50/0x1430
   alloc_pages_current+0x60/0xc0
   kmalloc_order_trace+0x29/0x1b0
   __kmalloc+0x1f4/0x320
   memcg_update_all_list_lrus+0xca/0x2e0
   mem_cgroup_css_alloc+0x612/0x670
   cgroup_apply_control_enable+0x19e/0x360
   cgroup_mkdir+0x322/0x490
   kernfs_iop_mkdir+0x55/0x80
   vfs_mkdir+0xd0/0x120
   SyS_mkdirat+0x6c/0xe0
   SyS_mkdir+0x14/0x20
   entry_SYSCALL_64_fastpath+0x18/0xad
  Mem-Info:
  active_anon:2965 inactive_anon:19 isolated_anon:0
   active_file:100270 inactive_file:98846 isolated_file:0
   unevictable:0 dirty:0 writeback:0 unstable:0
   slab_reclaimable:7328 slab_unreclaimable:16402
   mapped:771 shmem:52 pagetables:278 bounce:0
   free:13718 free_pcp:0 free_cma:0

This output is from an artificial reproducer, but we have repeatedly
observed order-7 failures in production in the Facebook fleet.  These
systems become useless as they cannot run more jobs, even though there
is plenty of memory to allocate 128 individual pages.

Use kvmalloc and kvzalloc to fall back to vmalloc space if these arrays
prove too large for allocating them physically contiguous.

Link: http://lkml.kernel.org/r/20170918184919.20644-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:25 -07:00
Kees Cook
7660a6fddc mm: allow slab_nomerge to be set at build time
Some hardened environments want to build kernels with slab_nomerge
already set (so that they do not depend on remembering to set the kernel
command line option).  This is desired to reduce the risk of kernel heap
overflows being able to overwrite objects from merged caches and changes
the requirements for cache layout control, increasing the difficulty of
these attacks.  By keeping caches unmerged, these kinds of exploits can
usually only damage objects in the same cache (though the risk to
metadata exploitation is unchanged).

Link: http://lkml.kernel.org/r/20170620230911.GA25238@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: David Windsor <dave@nullcore.net>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: David Windsor <dave@nullcore.net>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Daniel Mack <daniel@zonque.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Paul E. McKenney
5f0d5a3ae7 mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU
A group of Linux kernel hackers reported chasing a bug that resulted
from their assumption that SLAB_DESTROY_BY_RCU provided an existence
guarantee, that is, that no block from such a slab would be reallocated
during an RCU read-side critical section.  Of course, that is not the
case.  Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire
slab of blocks.

However, there is a phrase for this, namely "type safety".  This commit
therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order
to avoid future instances of this sort of confusion.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
[ paulmck: Add comments mentioning the old name, as requested by Eric
  Dumazet, in order to help people familiar with the old name find
  the new one. ]
Acked-by: David Rientjes <rientjes@google.com>
2017-04-18 11:42:36 -07:00
Greg Thelen
f9fa1d919c kasan: drain quarantine of memcg slab objects
Per memcg slab accounting and kasan have a problem with kmem_cache
destruction.
 - kmem_cache_create() allocates a kmem_cache, which is used for
   allocations from processes running in root (top) memcg.
 - Processes running in non root memcg and allocating with either
   __GFP_ACCOUNT or from a SLAB_ACCOUNT cache use a per memcg
   kmem_cache.
 - Kasan catches use-after-free by having kfree() and kmem_cache_free()
   defer freeing of objects. Objects are placed in a quarantine.
 - kmem_cache_destroy() destroys root and non root kmem_caches. It takes
   care to drain the quarantine of objects from the root memcg's
   kmem_cache, but ignores objects associated with non root memcg. This
   causes leaks because quarantined per memcg objects refer to per memcg
   kmem cache being destroyed.

To see the problem:

 1) create a slab cache with kmem_cache_create(,,,SLAB_ACCOUNT,)
 2) from non root memcg, allocate and free a few objects from cache
 3) dispose of the cache with kmem_cache_destroy() kmem_cache_destroy()
    will trigger a "Slab cache still has objects" warning indicating
    that the per memcg kmem_cache structure was leaked.

Fix the leak by draining kasan quarantined objects allocated from non
root memcg.

Racing memcg deletion is tricky, but handled.  kmem_cache_destroy() =>
shutdown_memcg_caches() => __shutdown_memcg_cache() => shutdown_cache()
flushes per memcg quarantined objects, even if that memcg has been
rmdir'd and gone through memcg_deactivate_kmem_caches().

This leak only affects destroyed SLAB_ACCOUNT kmem caches when kasan is
enabled.  So I don't think it's worth patching stable kernels.

Link: http://lkml.kernel.org/r/1482257462-36948-1-git-send-email-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00