This patch makes the following needlessly global code static:
- swap_lock
- nr_swapfiles
- struct swap_list
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean up messy conditional calling of test_clear_page_writeback() from both
rotate_reclaimable_page() and end_page_writeback().
The only user of rotate_reclaimable_page() is end_page_writeback() so this is
OK.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following patches replace multiple zonelists per node with two zonelists
that are filtered based on the GFP flags. The patches as a set fix a bug with
regard to the use of MPOL_BIND and ZONE_MOVABLE. With this patchset, the
MPOL_BIND will apply to the two highest zones when the highest zone is
ZONE_MOVABLE. This should be considered as an alternative fix for the
MPOL_BIND+ZONE_MOVABLE in 2.6.23 to the previously discussed hack that filters
only custom zonelists.
The first patch cleans up an inconsistency where direct reclaim uses
zonelist->zones where other places use zonelist.
The second patch introduces a helper function node_zonelist() for looking up
the appropriate zonelist for a GFP mask which simplifies patches later in the
set.
The third patch defines/remembers the "preferred zone" for numa statistics, as
it is no longer always the first zone in a zonelist.
The forth patch replaces multiple zonelists with two zonelists that are
filtered. The two zonelists are due to the fact that the memoryless patchset
introduces a second set of zonelists for __GFP_THISNODE.
The fifth patch introduces helper macros for retrieving the zone and node
indices of entries in a zonelist.
The final patch introduces filtering of the zonelists based on a nodemask.
Two zonelists exist per node, one for normal allocations and one for
__GFP_THISNODE.
Performance results varied depending on the machine configuration. In real
workloads the gain/loss will depend on how much the userspace portion of the
benchmark benefits from having more cache available due to reduced referencing
of zonelists.
These are the range of performance losses/gains when running against
2.6.24-rc4-mm1. The set and these machines are a mix of i386, x86_64 and
ppc64 both NUMA and non-NUMA.
loss to gain
Total CPU time on Kernbench: -0.86% to 1.13%
Elapsed time on Kernbench: -0.79% to 0.76%
page_test from aim9: -4.37% to 0.79%
brk_test from aim9: -0.71% to 4.07%
fork_test from aim9: -1.84% to 4.60%
exec_test from aim9: -0.71% to 1.08%
This patch:
The allocator deals with zonelists which indicate the order in which zones
should be targeted for an allocation. Similarly, direct reclaim of pages
iterates over an array of zones. For consistency, this patch converts direct
reclaim to use a zonelist. No functionality is changed by this patch. This
simplifies zonelist iterators in the next patch.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
FASTCALL() is always expanded to empty, remove it.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nick Piggin pointed out that swap cache and page cache addition routines
could be called from non GFP_KERNEL contexts. This patch makes the
charging routine aware of the gfp context. Charging might fail if the
cgroup is over it's limit, in which case a suitable error is returned.
This patch was tested on a Powerpc box. I am still looking at being able
to test the path, through which allocations happen in non GFP_KERNEL
contexts.
[kamezawa.hiroyu@jp.fujitsu.com: problem with ZONE_MOVABLE]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the page_cgroup to the per cgroup LRU. The reclaim algorithm has
been modified to make the isolate_lru_pages() as a pluggable component. The
scan_control data structure now accepts the cgroup on behalf of which
reclaims are carried out. try_to_free_pages() has been extended to become
cgroup aware.
[akpm@linux-foundation.org: fix warning]
[Lee.Schermerhorn@hp.com: initialize all scan_control's isolate_pages member]
[bunk@kernel.org: make do_try_to_free_pages() static]
[hugh@veritas.com: memcgroup: fix try_to_free order]
[kamezawa.hiroyu@jp.fujitsu.com: this unlock_page_cgroup() is unnecessary]
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
move_to_swap_cache and move_from_swap_cache functions (which swizzle a page
between tmpfs page cache and swap cache, to avoid page copying) are only used
by shmem.c; and our subsequent fix for unionfs needs different treatments in
the two instances of move_from_swap_cache. Move them from swap_state.c into
their callsites shmem_writepage, shmem_unuse_inode and shmem_getpage, making
add_to_swap_cache externally visible.
shmem.c likes to say set_page_dirty where swap_state.c liked to say
SetPageDirty: respect that diversity, which __set_page_dirty_no_writeback
makes moot (and implies we should lose that "shift page from clean_pages to
dirty_pages list" comment: it's on neither).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Building in a filesystem on a loop device on a tmpfs file can hang when
swapping, the loop thread caught in that infamous throttle_vm_writeout.
In theory this is a long standing problem, which I've either never seen in
practice, or long ago suppressed the recollection, after discounting my load
and my tmpfs size as unrealistically high. But now, with the new aops, it has
become easy to hang on one machine.
Loop used to grab_cache_page before the old prepare_write to tmpfs, which
seems to have been enough to free up some memory for any swapin needed; but
the new write_begin lets tmpfs find or allocate the page (much nicer, since
grab_cache_page missed tmpfs pages in swapcache).
When allocating a fresh page, tmpfs respects loop's mapping_gfp_mask, which
has __GFP_IO|__GFP_FS stripped off, and throttle_vm_writeout is designed to
break out when __GFP_IO or GFP_FS is unset; but when tmfps swaps in,
read_swap_cache_async allocates with GFP_HIGHUSER_MOVABLE regardless of the
mapping_gfp_mask - hence the hang.
So, pass gfp_mask down the line from shmem_getpage to shmem_swapin to
swapin_readahead to read_swap_cache_async to add_to_swap_cache.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swapin_readahead has never sat well in mm/memory.c: move it to mm/swap_state.c
beside its kindred read_swap_cache_async. Why were its args in a different
order? rearrange them. And since it was always followed by a
read_swap_cache_async of the target page, fold that in and return struct
page*. Then CONFIG_SWAP=n no longer needs valid_swaphandles and
read_swap_cache_async stubs.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bring back the avr32, blackfin, sh, sparc architectures into working order,
by reverting the effects of this change that came in via the x86 tree:
commit a5a19c63f4
Author: Jeremy Fitzhardinge <jeremy@goop.org>
Date: Wed Jan 30 13:33:39 2008 +0100
x86: demacro asm-x86/pgalloc_32.h
Sorry about that!
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Convert macros into inline functions, for better type-checking.
This patch required a little bit of fiddling with headers in order to
make __(pte|pmd)_free_tlb inline rather than macros.
asm-generic/tlb.h includes asm/pgalloc.h, though it doesn't directly
use any pgalloc definitions. I removed this include to avoid an
include cycle, but it may cause secondary compile failures by things
depending on the indirect inclusion; arch/x86/mm/hugetlbpage.c was one
such place; there may be others.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the OOM killer's extern function prototypes to include/linux/oom.h and
include it where necessary.
[clg@fr.ibm.com: build fix]
Cc: Andrea Arcangeli <andrea@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As bi_end_io is only called once when the reqeust is complete,
the 'size' argument is now redundant. Remove it.
Now there is no need for bio_endio to subtract the size completed
from bi_size. So don't do that either.
While we are at it, change bi_end_io to return void.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
When we are out of memory of a suitable size we enter reclaim. The current
reclaim algorithm targets pages in LRU order, which is great for fairness at
order-0 but highly unsuitable if you desire pages at higher orders. To get
pages of higher order we must shoot down a very high proportion of memory;
>95% in a lot of cases.
This patch set adds a lumpy reclaim algorithm to the allocator. It targets
groups of pages at the specified order anchored at the end of the active and
inactive lists. This encourages groups of pages at the requested orders to
move from active to inactive, and active to free lists. This behaviour is
only triggered out of direct reclaim when higher order pages have been
requested.
This patch set is particularly effective when utilised with an
anti-fragmentation scheme which groups pages of similar reclaimability
together.
This patch set is based on Peter Zijlstra's lumpy reclaim V2 patch which forms
the foundation. Credit to Mel Gorman for sanitity checking.
Mel said:
The patches have an application with hugepage pool resizing.
When lumpy-reclaim is used used with ZONE_MOVABLE, the hugepages pool can
be resized with greater reliability. Testing on a desktop machine with 2GB
of RAM showed that growing the hugepage pool with ZONE_MOVABLE on it's own
was very slow as the success rate was quite low. Without lumpy-reclaim,
each attempt to grow the pool by 100 pages would yield 1 or 2 hugepages.
With lumpy-reclaim, getting 40 to 70 hugepages on each attempt was typical.
[akpm@osdl.org: ia64 pfn_to_nid fixes and loop cleanup]
[bunk@stusta.de: static declarations for internal functions]
[a.p.zijlstra@chello.nl: initial lumpy V2 implementation]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Function is unnecessary now. We can use the summing features of the ZVCs to
get the values we need.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nr_free_pages is now a simple access to a global variable. Make it a macro
instead of a function.
The nr_free_pages now requires vmstat.h to be included. There is one
occurrence in power management where we need to add the include. Directly
refrer to global_page_state() there to clarify why the #include was added.
[akpm@osdl.org: arm build fix]
[akpm@osdl.org: sparc64 build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the kernels later than 2.6.19 there is a regression that makes swsusp
fail if the resume device is not explicitly specified.
It can be fixed by adding an additional parameter to
mm/swapfile.c:swap_type_of() allowing us to pass the (struct block_device
*) corresponding to the first available swap back to the caller.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make swsusp use block device offsets instead of swap offsets to identify swap
locations and make it use the same code paths for writing as well as for
reading data.
This allows us to use the same code for handling swap files and swap
partitions and to simplify the code, eg. by dropping rw_swap_page_sync().
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The Linux kernel handles swap files almost in the same way as it handles swap
partitions and there are only two differences between these two types of swap
areas:
(1) swap files need not be contiguous,
(2) the header of a swap file is not in the first block of the partition
that holds it. From the swsusp's point of view (1) is not a problem,
because it is already taken care of by the swap-handling code, but (2) has
to be taken into consideration.
In principle the location of a swap file's header may be determined with the
help of appropriate filesystem driver. Unfortunately, however, it requires
the filesystem holding the swap file to be mounted, and if this filesystem is
journaled, it cannot be mounted during a resume from disk. For this reason we
need some other means by which swap areas can be identified.
For example, to identify a swap area we can use the partition that holds the
area and the offset from the beginning of this partition at which the swap
header is located.
The following patch allows swsusp to identify swap areas this way. It changes
swap_type_of() so that it takes an additional argument representing an offset
of the swap header within the partition represented by its first argument.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The new swap token patches replace the current token traversal algo. The old
algo had a crude timeout parameter that was used to handover the token from
one task to another. This algo, transfers the token to the tasks that are in
need of the token. The urgency for the token is based on the number of times
a task is required to swap-in pages. Accordingly, the priority of a task is
incremented if it has been badly affected due to swap-outs. To ensure that
the token doesnt bounce around rapidly, the token holders are given a priority
boost. The priority of tasks is also decremented, if their rate of swap-in's
keeps reducing. This way, the condition to check whether to pre-empt the swap
token, is a matter of comparing two task's priority fields.
[akpm@osdl.org: cleanups]
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@celunite.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Implement async reads for swsusp resuming.
Crufty old PIII testbox:
15.7 MB/s -> 20.3 MB/s
Sony Vaio:
14.6 MB/s -> 33.3 MB/s
I didn't implement the post-resume bio_set_pages_dirty(). I don't really
understand why resume needs to run set_page_dirty() against these pages.
It might be a worry that this code modifies PG_Uptodate, PG_Error and
PG_Locked against the image pages. Can this possibly affect the resumed-into
kernel? Hopefully not, if we're atomically restoring its mem_map?
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Jens Axboe <axboe@suse.de>
Cc: Laurent Riffard <laurent.riffard@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Switch the swsusp writeout code from 4k-at-a-time to 4MB-at-a-time.
Crufty old PIII testbox:
12.9 MB/s -> 20.9 MB/s
Sony Vaio:
14.7 MB/s -> 26.5 MB/s
The implementation is crude. A better one would use larger BIOs, but wouldn't
gain any performance.
The memcpys will be mostly pipelined with the IO and basically come for free.
The ENOMEM path has not been tested. It should be.
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently one can enable slab reclaim by setting an explicit option in
/proc/sys/vm/zone_reclaim_mode. Slab reclaim is then used as a final
option if the freeing of unmapped file backed pages is not enough to free
enough pages to allow a local allocation.
However, that means that the slab can grow excessively and that most memory
of a node may be used by slabs. We have had a case where a machine with
46GB of memory was using 40-42GB for slab. Zone reclaim was effective in
dealing with pagecache pages. However, slab reclaim was only done during
global reclaim (which is a bit rare on NUMA systems).
This patch implements slab reclaim during zone reclaim. Zone reclaim
occurs if there is a danger of an off node allocation. At that point we
1. Shrink the per node page cache if the number of pagecache
pages is more than min_unmapped_ratio percent of pages in a zone.
2. Shrink the slab cache if the number of the nodes reclaimable slab pages
(patch depends on earlier one that implements that counter)
are more than min_slab_ratio (a new /proc/sys/vm tunable).
The shrinking of the slab cache is a bit problematic since it is not node
specific. So we simply calculate what point in the slab we want to reach
(current per node slab use minus the number of pages that neeed to be
allocated) and then repeately run the global reclaim until that is
unsuccessful or we have reached the limit. I hope we will have zone based
slab reclaim at some point which will make that easier.
The default for the min_slab_ratio is 5%
Also remove the slab option from /proc/sys/vm/zone_reclaim_mode.
[akpm@osdl.org: cleanups]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a notifer chain to the out of memory killer. If one of the registered
callbacks could release some memory, do not kill the process but return and
retry the allocation that forced the oom killer to run.
The purpose of the notifier is to add a safety net in the presence of
memory ballooners. If the resource manager inflated the balloon to a size
where memory allocations can not be satisfied anymore, it is better to
deflate the balloon a bit instead of killing processes.
The implementation for the s390 ballooner is included.
[akpm@osdl.org: cleanups]
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move totalhigh_pages and nr_free_highpages() into highmem.c/.h
Move the totalhigh_pages definition into highmem.c/.h. Move the
nr_free_highpages function into highmem.c
[yoichi_yuasa@tripeaks.co.jp: build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It turns out that it is advantageous to leave a small portion of unmapped file
backed pages if all of a zone's pages (or almost all pages) are allocated and
so the page allocator has to go off-node.
This allows recently used file I/O buffers to stay on the node and
reduces the times that zone reclaim is invoked if file I/O occurs
when we run out of memory in a zone.
The problem is that zone reclaim runs too frequently when the page cache is
used for file I/O (read write and therefore unmapped pages!) alone and we have
almost all pages of the zone allocated. Zone reclaim may remove 32 unmapped
pages. File I/O will use these pages for the next read/write requests and the
unmapped pages increase. After the zone has filled up again zone reclaim will
remove it again after only 32 pages. This cycle is too inefficient and there
are potentially too many zone reclaim cycles.
With the 1% boundary we may still remove all unmapped pages for file I/O in
zone reclaim pass. However. it will take a large number of read and writes
to get back to 1% again where we trigger zone reclaim again.
The zone reclaim 2.6.16/17 does not show this behavior because we have a 30
second timeout.
[akpm@osdl.org: rename the /proc file and the variable]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The zone_reclaim_interval was necessary because we were not able to determine
how many unmapped pages exist in a zone. Therefore we had to scan in
intervals to figure out if any pages were unmapped.
With the zoned counters and NR_ANON_PAGES we now know the number of pagecache
pages and the number of mapped pages in a zone. So we can simply skip the
reclaim if there is an insufficient number of unmapped pages. We use
SWAP_CLUSTER_MAX as the boundary.
Drop all support for /proc/sys/vm/zone_reclaim_interval.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When node is hot-added, kswapd for the node should start. This export kswapd
start function as kswapd_run() to use at add_memory().
[akpm@osdl.org: daemonize() isn't needed when using the kthread API]
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: "Brown, Len" <len.brown@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initialise total_memory earlier in boot. Because if for some reason we run
page reclaim early in boot, we don't want total_memory to be zero when we use
it as a divisor.
And rename total_memory to vm_total_pages to avoid naming clashes with
architectures.
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Martin Bligh <mbligh@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If CONFIG_SWAP is not defined we get:
mm/vmscan.c: In function âremove_mappingâ:
mm/vmscan.c:387: warning: unused variable âswapâ
Convert defines in swap.h into blank inline functions to fix this warning
and be consistent.
Signed-off-by: Con Kolivas <kernel@kolivas.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This implements the use of migration entries to preserve ptes of file backed
pages during migration. Processes can therefore be migrated back and forth
without loosing their connection to pagecache pages.
Note that we implement the migration entries only for linear mappings.
Nonlinear mappings still require the unmapping of the ptes for migration.
And another writepage() ugliness shows up. writepage() can drop the page
lock. Therefore we have to remove migration ptes before calling writepages()
in order to avoid having migration entries point to unlocked pages.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Implement read/write migration ptes
We take the upper two swapfiles for the two types of migration ptes and define
a series of macros in swapops.h.
The VM is modified to handle the migration entries. migration entries can
only be encountered when the page they are pointing to is locked. This limits
the number of places one has to fix. We also check in copy_pte_range and in
mprotect_pte_range() for migration ptes.
We check for migration ptes in do_swap_cache and call a function that will
then wait on the page lock. This allows us to effectively stop all accesses
to apge.
Migration entries are created by try_to_unmap if called for migration and
removed by local functions in migrate.c
From: Hugh Dickins <hugh@veritas.com>
Several times while testing swapless page migration (I've no NUMA, just
hacking it up to migrate recklessly while running load), I've hit the
BUG_ON(!PageLocked(p)) in migration_entry_to_page.
This comes from an orphaned migration entry, unrelated to the current
correctly locked migration, but hit by remove_anon_migration_ptes as it
checks an address in each vma of the anon_vma list.
Such an orphan may be left behind if an earlier migration raced with fork:
copy_one_pte can duplicate a migration entry from parent to child, after
remove_anon_migration_ptes has checked the child vma, but before it has
removed it from the parent vma. (If the process were later to fault on this
orphaned entry, it would hit the same BUG from migration_entry_wait.)
This could be fixed by locking anon_vma in copy_one_pte, but we'd rather
not. There's no such problem with file pages, because vma_prio_tree_add
adds child vma after parent vma, and the page table locking at each end is
enough to serialize. Follow that example with anon_vma: add new vmas to the
tail instead of the head.
(There's no corresponding problem when inserting migration entries,
because a missed pte will leave the page count and mapcount high, which is
allowed for. And there's no corresponding problem when migrating via swap,
because a leftover swap entry will be correctly faulted. But the swapless
method has no refcounting of its entries.)
From: Ingo Molnar <mingo@elte.hu>
pte_unmap_unlock() takes the pte pointer as an argument.
From: Hugh Dickins <hugh@veritas.com>
Several times while testing swapless page migration, gcc has tried to exec
a pointer instead of a string: smells like COW mappings are not being
properly write-protected on fork.
The protection in copy_one_pte looks very convincing, until at last you
realize that the second arg to make_migration_entry is a boolean "write",
and SWP_MIGRATION_READ is 30.
Anyway, it's better done like in change_pte_range, using
is_write_migration_entry and make_migration_entry_read.
From: Hugh Dickins <hugh@veritas.com>
Remove unnecessary obfuscation from sys_swapon's range check on swap type,
which blew up causing memory corruption once swapless migration made
MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
From: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Reserve space in the swap disk header for a LABEL and UUID to be specified.
This has been possible with util-linux-2.12b (via e2fsprogs 1.36
libblkid), and is used by at least FC3 and later. The kernel doesn't
really care about this, but the space shouldn't accidentally be used by
something else either.
Also make the on-disk structures be fixed-size types, instead of "int",
though I don't know of any architecture in use where an "int" isn't the
same size as a "__u32" (all current kernel arches have it as "unsigned
int").
Signed-off-by: Andreas Dilger <adilger@shaw.ca>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
can_share_swap_page() is used to check if the page has the last reference.
This avoids allocating a new page for COW if it's the last page.
However, if CONFIG_SWAP is not set, can_share_swap_page() is defined as 0,
thus always causes a copy for the last COW page. The below simple patch
fixes it.
Signed-off-by: Hua Zhong <hzhong@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These patches are an enhancement of OVERCOMMIT_GUESS algorithm in
__vm_enough_memory().
- why the kernel needed patching
When the kernel can't allocate anonymous pages in practice, currnet
OVERCOMMIT_GUESS could return success. This implementation might be
the cause of oom kill in memory pressure situation.
If the Linux runs with page reservation features like
/proc/sys/vm/lowmem_reserve_ratio and without swap region, I think
the oom kill occurs easily.
- the overall design approach in the patch
When the OVERCOMMET_GUESS algorithm calculates number of free pages,
the reserved free pages are regarded as non-free pages.
This change helps to avoid the pitfall that the number of free pages
become less than the number which the kernel tries to keep free.
- testing results
I tested the patches using my test kernel module.
If the patches aren't applied to the kernel, __vm_enough_memory()
returns success in the situation but autual page allocation is
failed.
On the other hand, if the patches are applied to the kernel, memory
allocation failure is avoided since __vm_enough_memory() returns
failure in the situation.
I checked that on i386 SMP 16GB memory machine. I haven't tested on
nommu environment currently.
This patch adds totalreserve_pages for __vm_enough_memory().
Calculate_totalreserve_pages() checks maximum lowmem_reserve pages and
pages_high in each zone. Finally, the function stores the sum of each
zone to totalreserve_pages.
The totalreserve_pages is calculated when the VM is initilized.
And the variable is updated when /proc/sys/vm/lowmem_reserve_raito
or /proc/sys/vm/min_free_kbytes are changed.
Signed-off-by: Hideo Aoki <haoki@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Introduce the low level interface that can be used for handling the
snapshot of the system memory by the in-kernel swap-writing/reading code of
swsusp and the userland interface code (to be introduced shortly).
Also change the way in which swsusp records the allocated swap pages and,
consequently, simplifies the in-kernel swap-writing/reading code (this is
necessary for the userland interface too). To this end, it introduces two
helper functions in mm/swapfile.c, so that the swsusp code does not refer
directly to the swap internals.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Centralize the page migration functions in anticipation of additional
tinkering. Creates a new file mm/migrate.c
1. Extract buffer_migrate_page() from fs/buffer.c
2. Extract central migration code from vmscan.c
3. Extract some components from mempolicy.c
4. Export pageout() and remove_from_swap() from vmscan.c
5. Make it possible to configure NUMA systems without page migration
and non-NUMA systems with page migration.
I had to so some #ifdeffing in mempolicy.c that may need a cleanup.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Turn basically everything in vmscan.c into `unsigned long'. This is to avoid
the possibility that some piece of code in there might decide to operate upon
more than 4G (or even 2G) of pages in one hit.
This might be silly, but we'll need it one day.
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Some allocations are restricted to a limited set of nodes (due to memory
policies or cpuset constraints). If the page allocator is not able to find
enough memory then that does not mean that overall system memory is low.
In particular going postal and more or less randomly shooting at processes
is not likely going to help the situation but may just lead to suicide (the
whole system coming down).
It is better to signal to the process that no memory exists given the
constraints that the process (or the configuration of the process) has
placed on the allocation behavior. The process may be killed but then the
sysadmin or developer can investigate the situation. The solution is
similar to what we do when running out of hugepages.
This patch adds a check before we kill processes. At that point
performance considerations do not matter much so we just scan the zonelist
and reconstruct a list of nodes. If the list of nodes does not contain all
online nodes then this is a constrained allocation and we should kill the
current process.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Migrate a page with buffers without requiring writeback
This introduces a new address space operation migratepage() that may be used
by a filesystem to implement its own version of page migration.
A version is provided that migrates buffers attached to pages. Some
filesystems (ext2, ext3, xfs) are modified to utilize this feature.
The swapper address space operation are modified so that a regular
migrate_page() will occur for anonymous pages without writeback (migrate_pages
forces every anonymous page to have a swap entry).
Signed-off-by: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add remove_from_swap
remove_from_swap() allows the restoration of the pte entries that existed
before page migration occurred for anonymous pages by walking the reverse
maps. This reduces swap use and establishes regular pte's without the need
for page faults.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add direct migration support with fall back to swap.
Direct migration support on top of the swap based page migration facility.
This allows the direct migration of anonymous pages and the migration of file
backed pages by dropping the associated buffers (requires writeout).
Fall back to swap out if necessary.
The patch is based on lots of patches from the hotplug project but the code
was restructured, documented and simplified as much as possible.
Note that an additional patch that defines the migrate_page() method for
filesystems is necessary in order to avoid writeback for anonymous and file
backed pages.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently the zone_reclaim code has a fixed window of 30 seconds of off node
allocations should a local zone have no unused pagecache pages left. Reclaim
will be attempted again after this timeout period to avoid repeated useless
scans for memory. This is also useful to established sufficiently large off
node allocation chunks to relieve the local node.
It may be beneficial to adjust that time period for some special situations.
For example if memory use was exceeding node capacity one may want to give up
for longer periods of time. If memory spikes intermittendly then one may want
to shorten the time period to reduce the number of off node allocations.
This patch allows just that....
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Some bits for zone reclaim exists in 2.6.15 but they are not usable. This
patch fixes them up, removes unused code and makes zone reclaim usable.
Zone reclaim allows the reclaiming of pages from a zone if the number of
free pages falls below the watermarks even if other zones still have enough
pages available. Zone reclaim is of particular importance for NUMA
machines. It can be more beneficial to reclaim a page than taking the
performance penalties that come with allocating a page on a remote zone.
Zone reclaim is enabled if the maximum distance to another node is higher
than RECLAIM_DISTANCE, which may be defined by an arch. By default
RECLAIM_DISTANCE is 20. 20 is the distance to another node in the same
component (enclosure or motherboard) on IA64. The meaning of the NUMA
distance information seems to vary by arch.
If zone reclaim is not successful then no further reclaim attempts will
occur for a certain time period (ZONE_RECLAIM_INTERVAL).
This patch was discussed before. See
http://marc.theaimsgroup.com/?l=linux-kernel&m=113519961504207&w=2http://marc.theaimsgroup.com/?l=linux-kernel&m=113408418232531&w=2http://marc.theaimsgroup.com/?l=linux-kernel&m=113389027420032&w=2http://marc.theaimsgroup.com/?l=linux-kernel&m=113380938612205&w=2
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Migration code currently does not take a reference to target page
properly, so between unlocking the pte and trying to take a new
reference to the page with isolate_lru_page, anything could happen to
it.
Fix this by holding the pte lock until we get a chance to elevate the
refcount.
Other small cleanups while we're here.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Some people apparently run CONFIG_NUMA without CONFIG_SWAP. The migration
code currently depends on swap. This patch provides a set of inline
fallback functions so that the kernel properly compiles. However, calls to
migration functions will fail.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Extend the parameters of migrate_pages() to allow the caller control over the
fate of successfully migrated or impossible to migrate pages.
Swap migration and direct migration will have the same interface after this
patch so that patches can be independently applied to the policy layer and the
core migration code.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add gfp_mask to add_to_swap
add_to_swap does allocations with GFP_ATOMIC in order not to interfere with
swapping. During migration we may have use add_to_swap extensively which may
lead to out of memory errors.
This patch makes add_to_swap take a parameter that specifies the gfp mask.
The page migration code can then make add_to_swap use GFP_KERNEL.
Signed-off-by: Hirokazu Takahashi <taka@valinux.co.jp>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>