To ensure the NFS client displays IPv6 addresses properly, replace
address family-specific NIPQUAD() invocations with a call to the RPC
client to get a formatted string representing the remote peer's
address.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: Aurelien Charbon <aurelien.charbon@ext.bull.net>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Reduce the time spent locking the rpc_sequence structure by queuing the
nfs_seqid only when we are ready to take the lock (when calling
nfs_wait_on_sequence).
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Sharing the open sequence queue causes a deadlock when we try to take
both a lock sequence id and and open sequence id.
This fixes the regression reported by Dimitri Puzin and Jeff Garzik: See
http://bugzilla.kernel.org/show_bug.cgi?id=9712
for details.
Reported-and-tested-by: Dimitri Puzin <bugs@psycast.de>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Tested-by: Jeff Garzik <jgarzik@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Otherwise, we do end up breaking close-to-open semantics. We also end up
breaking some of the silly-rename tests in Connectathon on some setups.
Please refer to the bug-report at
http://bugzilla.linux-nfs.org/show_bug.cgi?id=150
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
We don't really need to clear &state->inode_states inside
nfs4_set_mode_locked, and doing so without holding the inode->i_lock would
in any case be a bug...
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Consider the case where the user has mounted the remote filesystem
server:/foo on the two local directories /bar and /baz using the
nosharedcache mount option. The files /bar/file and /baz/file are
represented by different inodes in the local namespace, but refer to the
same file /foo/file on the server.
Consider the case where a process opens both /bar/file and /baz/file, then
closes /bar/file: because the nfs4_state is not shared between /bar/file
and /baz/file, the kernel will see that the nfs4_state for /bar/file is no
longer referenced, so it will send off a CLOSE rpc call. Unless the
open_owners differ, then that CLOSE call will invalidate the open state on
/baz/file too.
Conclusion: we cannot share open state owners between two different
non-shared mount instances of the same filesystem.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The test for state->state == 0 does not tell you that the stateid is in the
process of being freed. It really tells you that the stateid is not yet
initialised...
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
nfs4_do_close() does not currently have any way to ensure that the user
won't attempt to unmount the partition while the asynchronous RPC call
is completing. This again may cause Oopses in nfs_update_inode().
Add a vfsmount argument to nfs4_close_state to ensure that the partition
remains mounted while we're closing the file.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
- fs/nfs/dir.c:610:8: warning: symbol 'nfs_llseek_dir' was not declared.
Should it be static?
- fs/nfs/dir.c:636:5: warning: symbol 'nfs_fsync_dir' was not declared.
Should it be static?
- fs/nfs/write.c:925:19: warning: symbol 'req' shadows an earlier one
- fs/nfs/write.c:61:6: warning: symbol 'nfs_commit_rcu_free' was not
declared. Should it be static?
- fs/nfs/nfs4proc.c:793:5: warning: symbol 'nfs4_recover_expired_lease'
was not declared. Should it be static?
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Generalise the nfs_client structure by:
(1) Moving nfs_client to a more general place (nfs_fs_sb.h).
(2) Renaming its maintenance routines to be non-NFS4 specific.
(3) Move those maintenance routines to a new non-NFS4 specific file (client.c)
and move the declarations to internal.h.
(4) Make nfs_find/get_client() take a full sockaddr_in to include the port
number (will be required for NFS2/3).
(5) Make nfs_find/get_client() take the NFS protocol version (again will be
required to differentiate NFS2, 3 & 4 client records).
Also:
(6) Make nfs_client construction proceed akin to inodes, marking them as under
construction and providing a function to indicate completion.
(7) Make nfs_get_client() wait interruptibly if it finds a client that it can
share, but that client is currently being constructed.
(8) Make nfs4_create_client() use (6) and (7) instead of locking cl_sem.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Rename nfs_server::nfs4_state to nfs_client as it will be used to represent the
client state for NFS2 and NFS3 also.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Rename struct nfs4_client to struct nfs_client so that it can become the basis
for a general client record for NFS2 and NFS3 in addition to NFS4.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
In RFC3530, the RENEW operation is allowed to use either
the same principal, RPC security flavour and (if RPCSEC_GSS), the same
mechanism and service that was used for SETCLIENTID_CONFIRM
OR
Any principal, RPC security flavour and service combination that
currently has an OPEN file on the server.
Choose the latter since that doesn't require us to keep credentials for
the same principal for the entire duration of the mount.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Convert private implementations in NFSv4 state recovery and delegation
code to use kthreads.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
A closer reading of RFC3530 reveals that OPEN_DOWNGRADE must always
specify a access modes that have been the argument of a previous OPEN
operation.
IOW: doing OPEN(O_RDWR) and then OPEN_DOWNGRADE(O_WRONLY) is forbidden
unless the user called OPEN(O_WRONLY)
In order to fix that, we really need to track the three possible open
states separately.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
This is the fs/ part of the big kfree cleanup patch.
Remove pointless checks for NULL prior to calling kfree() in fs/.
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
RFC 3530 states that for OPEN_DOWNGRADE "The share_access and share_deny
bits specified must be exactly equal to the union of the share_access and
share_deny bits specified for some subset of the OPENs in effect for
current openowner on the current file.
Setattr is currently violating the NFSv4 rules for OPEN_DOWNGRADE in that
it may cause a downgrade from OPEN4_SHARE_ACCESS_BOTH to
OPEN4_SHARE_ACCESS_WRITE despite the fact that there exists no open file
with O_WRONLY access mode.
Fix the problem by replacing nfs4_find_state() with a modified version of
nfs_find_open_context().
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
We must not remove the nfs4_state structure from the inode open lists
before we are in sequence lock.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Storing a pointer to the struct rpc_task in the nfs_seqid is broken
since the nfs_seqid may be freed well after the task has been destroyed.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
We no longer need to worry about collisions between close() and the state
recovery code, since the new close will automatically recheck the
file state once it is done waiting on its sequence slot.
Ditto for the nfs4_proc_locku() procedure.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Once the state_owner and lock_owner semaphores get removed, it will be
possible for other OPEN requests to reopen the same file if they have
lower sequence ids than our CLOSE call.
This patch ensures that we recheck the file state once
nfs_wait_on_sequence() has completed waiting.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Currently we return -ENOMEM for every single failure to create a new auth.
This is actually accurate for auth_null and auth_unix, but for auth_gss it's a
bit confusing.
Allow rpcauth_create (and the ->create methods) to return errors. With this
patch, the user may sometimes see an EINVAL instead. Whee.
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!