Remove old comments that include the old arch/i386 directory.
Signed-off-by: WANG Cong <xiyou.wangcong@gmail.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
ramdisk is reserved via reserve_early in x86_64_start_kernel,
later early_res_to_bootmem() will convert to reservation in bootmem.
so don't need to reserve that again.
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make x86 EFI code works when EFI_PAGE_SHIFT != PAGE_SHIFT. The
memrage_efi_to_native() provided in this patch can be used on other
EFI platform such as IA64 too.
This patch has been tested on Intel x86_64 platform with EFI 64/32
firmware.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
TF_MASK is no longer defined, use X86_EFLAGS_TF.
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kgdb core fixes:
- Check to see that mm->mmap_cache is not null before calling
flush_cache_range(), else on arch=ARM it will cause a fatal
fault.
- Breakpoints should only be restored if they are in the BP_ACTIVE
state.
- Fix a typo in comments to "kgdb_register_io_module"
x86 kgdb fixes:
- Fix the x86 arch handler such that on a kill or detach that the
appropriate cleanup on the single stepping flags gets run.
- Add in the DIE_NMIWATCHDOG call for x86_64
- Touch the nmi watchdog before returning the system to normal
operation after performing any kind of kgdb operation, else
the possibility exists to trigger the watchdog.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add HW breakpoints into the arch specific portion of x86 kgdb. In the
current x86 kernel.org kernels HW breakpoints are changed out in lazy
fashion because there is no infrastructure around changing them when
changing to a kernel task or entering the kernel mode via a system
call. This lazy approach means that if a user process uses HW
breakpoints the kgdb will loose out. This is an acceptable trade off
because the developer debugging the kernel is assumed to know what is
going on system wide and would be aware of this trade off.
There is a minor bug fix to the kgdb core so as to correctly call the
hw breakpoint functions with a valid value from the enum.
There is also a minor change to the x86_64 startup code when using
early HW breakpoints. When the debugger is connected, the cpu startup
code must not zero out the HW breakpoint registers or you cannot hit
the breakpoints you are interested in, in the first place.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch fixes the hang regression with kgdb when the NMI interrupt
comes in while the master core is returning from an exception.
Adjust the NMI logic such that KGDB will not stop NMI exceptions from
occurring by in general returning NOTIFY_DONE. It is not possible to
distinguish the debug NMI sync vs the normal NMI apic interrupt so
kgdb needs to catch the unknown NMI if it the debugger was previously
active on one of the cpus.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
simplified and streamlined kgdb support on x86, both 32-bit and 64-bit,
based on patch from:
Subject: kgdb: core-lite
From: Jason Wessel <jason.wessel@windriver.com>
[ and countless other authors - see the patch for details. ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Jan Kiszka <jan.kiszka@web.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Move wakeup code to .c, so that video mode setting code can be shared
between boot and wakeup. Remove nasty assembly code in 64-bit case by
re-using trampoline code. Stack setup was fixed to clear high 16bits
of %esp, maybe that fixes some machines.
.c code sharing and morse code was done H. Peter Anvin, Sam Ravnborg
reviewed kbuild related stuff, and it seems okay to him. Rafael did
some cleanups.
[rjw:
* Made the patch stop breaking compilation on x86-32
* Added arch/x86/kernel/acpi/sleep.h
* Got rid of compiler warnings in arch/x86/kernel/acpi/sleep.c
* Fixed 32-bit compilation on x86-64 systems
* Added include/asm-x86/trampoline.h and fixed the non-SMP
compilation on 64-bit x86
* Removed arch/x86/kernel/acpi/sleep_32.c which was not used
* Fixed some breakage caused by the integration of smpboot.c done
under us in the meantime]
Signed-off-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
this patch fixes section mismatch warnings (on x86_64 host) in setup_trampoline(),
which was referencing __initdata variables trampoline_data and trampoline_end.
Warning messages:
WARNING: arch/x86/kernel/built-in.o(.cpuinit.text+0x2b6a): Section mismatch in reference from the function setup_trampoline()
to the variable .init.data:trampoline_data
The function __cpuinit setup_trampoline() references
a variable __initdata trampoline_data.
If trampoline_data is only used by setup_trampoline then
annotate trampoline_data with a matching annotation.
WARNING: arch/x86/kernel/built-in.o(.cpuinit.text+0x2b71): Section mismatch in reference from the function setup_trampoline()
to the variable .init.data:trampoline_end
The function __cpuinit setup_trampoline() references
a variable __initdata trampoline_end.
If trampoline_end is only used by setup_trampoline then
annotate trampoline_end with a matching annotation.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch fixes mismatch warnings in smp_checks() (in arch/x86/kernel/smpboot.c):
WARNING: arch/x86/kernel/built-in.o(.text+0x11922): Section mismatch in reference from the function smp_checks()
to the variable .cpuinit.data:smp_b_stepping
The function smp_checks() references
the variable __cpuinitdata smp_b_stepping.
This is often because smp_checks lacks a __cpuinitdata
annotation or the annotation of smp_b_stepping is wrong.
Signed-off-by: Jacek Luczak <luczak.jacek@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
> > Make sure that we clear the "shutdown status flag" in the CMOS
> > register after each CPU is brought up. This fixes a problem where the
> > "shutdown status flag" may remain set when a CPU is brought up after
> > booting.
>
> btw., what problem does this result in, exactly?
The shutdown status flag set to "0xA", corresponds to "JMP double word
request without INT init".
This JMP at reboot time is at an unintended location. And results in
Triple faults in our case.
Though this error at reboot can be safely ignored in a VM environment,
am not sure what the effect would be on a physical system. May be it
will result in a triple fault and an eventual hardware reset thus
masking this BUG in the kernel.
This fix just makes sure that we reset that status flag after
initialization is done.
Fix paranoia about using BIOS quickboot mechanism.
Make sure that we clear the "shutdown status flag" in the CMOS register
after each CPU is brought up. This fixes a problem where the "shutdown
status flag" may remain set when a CPU is brought up after booting.
Signed-off-by: Alok N Kataria <akataria@vmware.com>
Signed-off-by: Dan Arai <arai@vmware.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use cpumask_of_cpu() rather than the pair of cpus_clear() and cpu_set().
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
No need to clear the memory allocated by alloc_bootmem().
It is already filled with zero.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove duplicate code by using ioapic_read_entry() and ioapic_write_entry()
in io_apic_{32,64}.c
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If one can find an ack pending pin, there is no need to check
the rest of them.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We should call for kfree if only we really need it.
Though it's safe to call kfree with NULL pointer passed
in this code we've already tested the pointer and can
eliminate the call
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Yinghai Lu pointed out a bug in the previous patches,
fix double-shift of apicid.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cleanup references to the early cpu maps for the non-SMP configuration
and remove some functions called for SMP configurations only.
Cc: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
UV supports really big systems. So big, in fact, that the APICID register
does not contain enough bits to contain an APICID that is unique across all
cpus.
The UV BIOS supports 3 APICID modes:
- legacy mode. This mode uses the old APIC mode where
APICID is in bits [31:24] of the APICID register.
- x2apic mode. This mode is whitebox-compatible. APICIDs
are unique across all cpus. Standard x2apic APIC operations
(Intel-defined) can be used for IPIs. The node identifier
fits within the Intel-defined portion of the APICID register.
- x2apic-uv mode. In this mode, the APICIDs on each node have
unique IDs, but IDs on different node are not unique. For example,
if each mode has 32 cpus, the APICIDs on each node might be
0 - 31. Every node has the same set of IDs.
The UV hub is used to route IPIs/interrupts to the correct node.
Traditional APIC operations WILL NOT WORK.
In x2apic-uv mode, the ACPI tables all contain a full unique ID (note:
exact bit layout still changing but the following is close):
nnnnnnnnnnlc0cch
n = unique node number
l = socket number on board
c = core
h = hyperthread
Only the "lc0cch" bits are written to the APICID register. The remaining bits are
supplied by having the get_apic_id() function "OR" the extra bits into the value
read from the APICID register. (Hmmm.. why not keep the ENTIRE APICID register
in per-cpu data....)
The x2apic-uv mode is recognized by the MADT table containing:
oem_id = "SGI"
oem_table_id = "UV-X"
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add kernel support for new ACPI "sapic" tables that contain 16-bit APICIDs.
This patch simply adds parsing of an optional SAPIC table if present.
Otherwise, the traditional local APIC table is used.
Note: the SAPIC table is not a new ACPI table - it exists on other architectures
but is not currently recognized by x86_64.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Increase the number of bits in an apicid from 8 to 32.
By default, MP_processor_info() gets the APICID from the
mpc_config_processor structure. However, this structure limits
the size of APICID to 8 bits. This patch allows the caller of
MP_processor_info() to optionally pass a larger APICID that will
be used instead of the one in the mpc_config_processor struct.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add functions that can be used to determine if an x86_64
system is a SGI "UV" system. UV systems come in 3 types and
are identified by the OEM ID in the MADT.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce a function to read the local APIC_ID.
This change is in preparation for additional changes to
the APICID functions that will come in a later patch.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch renames VM_MASK to X86_VM_MASK (which
in turn defined as alias to X86_EFLAGS_VM) to better
distinguish from virtual memory flags. We can't just
use X86_EFLAGS_VM instead because it is also used
for conditional compilation
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The memory resource is also used for main memory, and we need it to
allocate physical addresses for memory hotplug. Knobbling io space is
enough to get the job done anyway.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Report when microcode was successfully updated. It used to be there but
now with DEBUG unset it becomes very silent. Also some cosmetic fixes.
Signed-off-by: Ben Castricum <lk08@bencastricum.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Upcoming 64 bit processors from Centaur can use sysenter.
Signed-off-by: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Jesse Ahrens <jahrens@centtech.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
By including processor-flags.h we are allowed to use predefined
macroses instead of keeping own ones
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On AMD SMM protected memory is part of the address map, but handled
internally like an MTRR. That leads to large pages getting split
internally which has some performance implications. Check for the
AMD TSEG MSR and split the large page mapping on that area
explicitely if it is part of the direct mapping.
There is also SMM ASEG, but it is in the first 1MB and already covered by
the earlier split first page patch.
Idea for this came from an earlier patch by Andreas Herrmann
On a RevF dual Socket Opteron system kernbench shows a clear
improvement from this:
(together with the earlier patches in this series, especially the
split first 2MB patch)
[lower is better]
no split stddev split stddev delta
Elapsed Time 87.146 (0.727516) 84.296 (1.09098) -3.2%
User Time 274.537 (4.05226) 273.692 (3.34344) -0.3%
System Time 34.907 (0.42492) 34.508 (0.26832) -1.1%
Percent CPU 322.5 (38.3007) 326.5 (44.5128) +1.2%
=> About 3.2% improvement in elapsed time for kernbench.
With GB pages on AMD Fam1h the impact of splitting is much higher of course,
since it would split two full GB pages (together with the first
1MB split patch) instead of two 2MB pages. I could not benchmark
a clear difference in kernbench on gbpages, so I kept it disabled
for that case
That was only limited benchmarking of course, so if someone
was interested in running more tests for the gbpages case
that could be revisited (contributions welcome)
I didn't bother implementing this for 32bit because it is very
unlikely the 32bit lowmem mapping overlaps into the TSEG near 4GB
and the 2MB low split is already handled for both.
[ mingo@elte.hu: do it on gbpages kernels too, there's no clear reason
why it shouldnt help there. ]
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: andreas.herrmann3@amd.com
Cc: mingo@elte.hu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>