Commit graph

10 commits

Author SHA1 Message Date
David S. Miller
777a447529 [SPARC64]: Unify timer interrupt handler.
Things were scattered all over the place, split between
SMP and non-SMP.

Unify it all so that dyntick support is easier to add.

Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26 01:54:11 -07:00
David S. Miller
10e267234c [SPARC64]: Add irqtrace/stacktrace/lockdep support.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-12-10 02:39:09 -08:00
David Woodhouse
62c4f0a2d5 Don't include linux/config.h from anywhere else in include/
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-04-26 12:56:16 +01:00
David S. Miller
8b23427441 [SPARC64]: More TLB/TSB handling fixes.
The SUN4V convention with non-shared TSBs is that the context
bit of the TAG is clear.  So we have to choose an "invalid"
bit and initialize new TSBs appropriately.  Otherwise a zero
TAG looks "valid".

Make sure, for the window fixup cases, that we use the right
global registers and that we don't potentially trample on
the live global registers in etrap/rtrap handling (%g2 and
%g6) and that we put the missing virtual address properly
in %g5.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:13:34 -08:00
David S. Miller
459b6e621e [SPARC64]: Fix some SUN4V TLB miss bugs.
Code patching did not sign extend negative branch
offsets correctly.

Kernel TLB miss path needs patching and %g4 register
preservation in order to handle SUN4V correctly.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:12:23 -08:00
David S. Miller
12eaa328f9 [SPARC64]: Use ASI_SCRATCHPAD address 0x0 properly.
This is where the virtual address of the fault status
area belongs.

To set it up we don't make a hypervisor call, instead
we call OBP's SUNW,set-trap-table with the real address
of the fault status area as the second argument.  And
right before that call we write the virtual address into
ASI_SCRATCHPAD vaddr 0x0.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:12:15 -08:00
David S. Miller
aa9143b971 [SPARC64]: Implement sun4v TSB miss handlers.
When we register a TSB with the hypervisor, so that it or hardware can
handle TLB misses and do the TSB walk for us, the hypervisor traps
down to these trap when it incurs a TSB miss.

Processing is simple, we load the missing virtual address and context,
and do a full page table walk.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:12:05 -08:00
David S. Miller
314ef68597 [SPARC64]: Refine register window trap handling.
When saving and restoing trap state, do the window spill/fill
handling inline so that we never trap deeper than 2 trap levels.
This is important for chips like Niagara.

The window fixup code is massively simplified, and many more
improvements are now possible.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:11:36 -08:00
David S. Miller
56fb4df6da [SPARC64]: Elminate all usage of hard-coded trap globals.
UltraSPARC has special sets of global registers which are switched to
for certain trap types.  There is one set for MMU related traps, one
set of Interrupt Vector processing, and another set (called the
Alternate globals) for all other trap types.

For what seems like forever we've hard coded the values in some of
these trap registers.  Some examples include:

1) Interrupt Vector global %g6 holds current processors interrupt
   work struct where received interrupts are managed for IRQ handler
   dispatch.

2) MMU global %g7 holds the base of the page tables of the currently
   active address space.

3) Alternate global %g6 held the current_thread_info() value.

Such hardcoding has resulted in some serious issues in many areas.
There are some code sequences where having another register available
would help clean up the implementation.  Taking traps such as
cross-calls from the OBP firmware requires some trick code sequences
wherein we have to save away and restore all of the special sets of
global registers when we enter/exit OBP.

We were also using the IMMU TSB register on SMP to hold the per-cpu
area base address, which doesn't work any longer now that we actually
use the TSB facility of the cpu.

The implementation is pretty straight forward.  One tricky bit is
getting the current processor ID as that is different on different cpu
variants.  We use a stub with a fancy calling convention which we
patch at boot time.  The calling convention is that the stub is
branched to and the (PC - 4) to return to is in register %g1.  The cpu
number is left in %g6.  This stub can be invoked by using the
__GET_CPUID macro.

We use an array of per-cpu trap state to store the current thread and
physical address of the current address space's page tables.  The
TRAP_LOAD_THREAD_REG loads %g6 with the current thread from this
table, it uses __GET_CPUID and also clobbers %g1.

TRAP_LOAD_IRQ_WORK is used by the interrupt vector processing to load
the current processor's IRQ software state into %g6.  It also uses
__GET_CPUID and clobbers %g1.

Finally, TRAP_LOAD_PGD_PHYS loads the physical address base of the
current address space's page tables into %g7, it clobbers %g1 and uses
__GET_CPUID.

Many refinements are possible, as well as some tuning, with this stuff
in place.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:11:16 -08:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00