We have a chek in there to make sure that the name won't overflow
task_struct.comm[], but it's triggering for scsi with lots of HBAs, only
scsi is using single-threaded workqueues which don't append the "/%d"
anyway.
All too hard. Just kill the BUG_ON.
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
[ kthread_create() uses vsnprintf() and limits the thing, so no
actual overflow can actually happen regardless ]
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix possible cpuset_sem ABBA deadlock if 'notify_on_release' set.
For a particular usage pattern, creating and destroying cpusets fairly
frequently using notify_on_release, on a very large system, this deadlock
can be seen every few days. If you are not using the cpuset
notify_on_release feature, you will never see this deadlock.
The existing code, on task exit (or cpuset deletion) did:
get cpuset_sem
if cpuset marked notify_on_release and is ready to release:
compute cpuset path relative to /dev/cpuset mount point
call_usermodehelper() forks /sbin/cpuset_release_agent with path
drop cpuset_sem
Unfortunately, the fork in call_usermodehelper can allocate memory, and
allocating memory can require cpuset_sem, if the mems_generation values
changed in the interim. This results in an ABBA deadlock, trying to obtain
cpuset_sem when it is already held by the current task.
To fix this, I put the cpuset path (which must be computed while holding
cpuset_sem) in a temporary buffer, to be used in the call_usermodehelper
call of /sbin/cpuset_release_agent only _after_ dropping cpuset_sem.
So the new logic is:
get cpuset_sem
if cpuset marked notify_on_release and is ready to release:
compute cpuset path relative to /dev/cpuset mount point
stash path in kmalloc'd buffer
drop cpuset_sem
call_usermodehelper() forks /sbin/cpuset_release_agent with path
free path
The sharp eyed reader might notice that this patch does not contain any
calls to kmalloc. The existing code in the check_for_release() routine was
already kmalloc'ing a buffer to hold the cpuset path. In the old code, it
just held the buffer for a few lines, over the cpuset_release_agent() call
that in turn invoked call_usermodehelper(). In the new code, with the
application of this patch, it returns that buffer via the new char
**ppathbuf parameter, for later use and freeing in cpuset_release_agent(),
which is called after cpuset_sem is dropped. Whereas the old code has just
one call to cpuset_release_agent(), right in the check_for_release()
routine, the new code has three calls to cpuset_release_agent(), from the
various places that a cpuset can be released.
This patch has been build and booted on SN2, and passed a stress test that
previously hit the deadlock within a few seconds.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Revert this June 17 patch: it broke persistence of timers across execve().
Cc: Roland McGrath <roland@redhat.com>
Cc: george anzinger <george@mvista.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This removes the calls to device_suspend() from the shutdown path that
were added sometime during 2.6.13-rc*. They aren't working properly on
a number of configs (I got reports from both ppc powerbook users and x86
users) causing the system to not shutdown anymore.
I think it isn't the right approach at the moment anyway. We have
already a shutdown() callback for the drivers that actually care about
shutdown and the suspend() code isn't yet in a good enough shape to be
so much generalized. Also, the semantics of suspend and shutdown are
slightly different on a number of setups and the way this was patched in
provides little way for drivers to cleanly differenciate. It should
have been at least a different message.
For 2.6.13, I think we should revert to 2.6.12 behaviour and have a
working suspend back.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The module code assumes noone will ever ask for a per-cpu area more than
SMP_CACHE_BYTES aligned. However, as these cases show, gcc asks sometimes
asks for 32-byte alignment for the per-cpu section on a module, and if
CONFIG_X86_L1_CACHE_SHIFT is 4, we hit that BUG_ON(). This is obviously an
unusual combination, as there have been few reports, but better to warn
than die.
See:
http://www.ussg.iu.edu/hypermail/linux/kernel/0409.0/0768.html
And more recently:
http://bugs.gentoo.org/show_bug.cgi?id=97006
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This removes sys_set_zone_reclaim() for now. While i'm sure Martin is
trying to solve a real problem, we must not hard-code an incomplete and
insufficient approach into a syscall, because syscalls are pretty much
for eternity. I am quite strongly convinced that this syscall must not
hit v2.6.13 in its current form.
Firstly, the syscall lacks basic syscall design: e.g. it allows the
global setting of VM policy for unprivileged users. (!) [ Imagine an
Oracle installation and a SAP installation on the same NUMA box fighting
over the 'optimal' setting for this flag. What will they do? Will they
try to set the flag to their own preferred value every second or so? ]
Secondly, it was added based on a single datapoint from Martin:
http://marc.theaimsgroup.com/?l=linux-mm&m=111763597218177&w=2
where Martin characterizes the numbers the following way:
' Run-to-run variability for "make -j" is huge, so these numbers aren't
terribly useful except to see that with reclaim the benchmark still
finishes in a reasonable amount of time. '
in other words: the fundamental problem has likely not been solved, only
a tendential move into the right direction has been observed, and a
handful of numbers were picked out of a set of hugely variable results,
without showing the variability data. How much variance is there
run-to-run?
I'd really suggest to first walk the walk and see what's needed to get
stable & predictable kernel compilation numbers on that NUMA box, before
adding random syscalls to tune a particular aspect of the VM ... which
approach might not even matter once the whole picture has been analyzed
and understood!
The third, most important point is that the syscall exposes VM tuning
internals in a completely unstructured way. What sense does it make to
have a _GLOBAL_ per-node setting for 'should we go to another node for
reclaim'? If then it might make sense to do this per-app, via numalib or
so.
The change is minimalistic in that it doesnt remove the syscall and the
underlying infrastructure changes, only the user-visible changes. We
could perhaps add a CAP_SYS_ADMIN-only sysctl for this hack, a'ka
/proc/sys/vm/swappiness, but even that looks quite counterproductive
when the generic approach is that we are trying to reduce the number of
external factors in the VM balance picture.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This snuck in with an x86_64 change. Thanks to Richard Purdie
<rpurdie@rpsys.net> for spotting it.
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If device_suspend(PMSG_FREEZE) is not ready to be called in
kernel_restart it is definitely not ready to be called in the even more
fickle kernel_kexec.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
(We found this (after a customer complained) and it is in the kernel.org
kernel. Seems that for CLOCK_MONOTONIC absolute timers and clock_nanosleep
calls both the request time and wall_to_monotonic are subtracted prior to
the normalize resulting in an overflow in the existing normalize test.
This causes the result to be shifted ~4 seconds ahead instead of ~2 seconds
back in time.)
The normalize code in posix-timers.c fails when the tv_nsec member is ~1.2
seconds negative. This can happen on absolute timers (and
clock_nanosleeps) requested on CLOCK_MONOTONIC (both the request time and
wall_to_monotonic are subtracted resulting in the possibility of a number
close to -2 seconds.)
This fix uses the set_normalized_timespec() (which does not have an
overflow problem) to fix the problem and as a side effect makes the code
cleaner.
Signed-off-by: George Anzinger <george@mvista.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This avoids some potential stack overflows with very deep softirq callchains.
i386 does this too.
TOADD CFI annotation
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
My fairly ordinary x86 test box gets stuck during reboot on the
wait_for_completion() in ide_do_drive_cmd():
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
`gcc -W' likes to complain if the static keyword is not at the beginning of
the declaration. This patch fixes all remaining occurrences of "inline
static" up with "static inline" in the entire kernel tree (140 occurrences in
47 files).
While making this change I came across a few lines with trailing whitespace
that I also fixed up, I have also added or removed a blank line or two here
and there, but there are no functional changes in the patch.
Signed-off-by: Jesper Juhl <juhl-lkml@dif.dk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add kerneldoc to kernel/cpuset.c
Fix cpuset typos in init/Kconfig
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Acked-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Split spin lock and r/w lock implementation into a single try which is done
inline and an out of line function that repeatedly tries to get the lock
before doing the cpu_relax(). Add a system control to set the number of
retries before a cpu is yielded.
The reason for the spin lock retry is that the diagnose 0x44 that is used to
give up the virtual cpu is quite expensive. For spin locks that are held only
for a short period of time the costs of the diagnoses outweights the savings
for spin locks that are held for a longer timer. The default retry count is
1000.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix the recent off-by-one fix in the itimer code:
1. The repeating timer is figured using the requested time
(not +1 as we know where we are in the jiffie).
2. The tests for interval too large are left to the time_val to jiffie code.
Signed-off-by: George Anzinger <george@mvista.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch fixes a warning in the disable_nonboot_cpus call in
kernel/power/smp.c.
Signed-off by: Nigel Cunningham <nigel@suspend2.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Here's the patch again to fix the code to handle if the values between
MAX_USER_RT_PRIO and MAX_RT_PRIO are different.
Without this patch, an SMP system will crash if the values are
different.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Dean Nelson <dcn@sgi.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
RLIMIT_RTPRIO is supposed to grant non privileged users the right to use
SCHED_FIFO/SCHED_RR scheduling policies with priorites bounded by the
RLIMIT_RTPRIO value via sched_setscheduler(). This is usually used by
audio users.
Unfortunately this is broken in 2.6.13rc3 as you can see in the excerpt
from sched_setscheduler below:
/*
* Allow unprivileged RT tasks to decrease priority:
*/
if (!capable(CAP_SYS_NICE)) {
/* can't change policy */
if (policy != p->policy)
return -EPERM;
After the above unconditional test which causes sched_setscheduler to
fail with no regard to the RLIMIT_RTPRIO value the following check is made:
/* can't increase priority */
if (policy != SCHED_NORMAL &&
param->sched_priority > p->rt_priority &&
param->sched_priority >
p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
return -EPERM;
Thus I do believe that the RLIMIT_RTPRIO value must be taken into
account for the policy check, especially as the RLIMIT_RTPRIO limit is
of no use without this change.
The attached patch fixes this problem.
Signed-off-by: Andreas Steinmetz <ast@domdv.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The suspend to disk code was a poor copy of the code in
sys_reboot now that we have kernel_power_off, kernel_restart
and kernel_halt use them instead of poorly duplicating them inline.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We know the system is in trouble so there is no question if this
is an emergecy :)
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We already do all of the gymnastics to run from process context
to call the power off code so call into the power off code cleanly.
This especially helps acpi as part of it's shutdown logic should
run acpi_shutdown called from device_shutdown which was not
being called from here.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When the kernel is working well and we want to restart cleanly
kernel_restart is the function to use. But in many instances
the kernel wants to reboot when thing are expected to be working
very badly such as from panic or a software watchdog handler.
This patch adds the function emergency_restart() so that
callers can be clear what semantics they expect when calling
restart. emergency_restart() is expected to be callable
from interrupt context and possibly reliable in even more
trying circumstances.
This is an initial generic implementation for all architectures.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It is obvious we wanted to call kernel_restart here
but since we don't have it the code was expanded inline and hasn't
been correct since sometime in 2.4.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Because the factors of sys_reboot don't exist people calling
into the reboot path duplicate the code badly, leading to
inconsistent expectations of code in the reboot path.
This patch should is just code motion.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In the recent addition of device_suspend calls into
sys_reboot two code paths were missed.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This moves the inotify sysctl knobs to "/proc/sys/fs/inotify" from
"/proc/sys/fs". Also some related cleanup.
Signed-off-by: Robert Love <rml@novell.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
inotify is intended to correct the deficiencies of dnotify, particularly
its inability to scale and its terrible user interface:
* dnotify requires the opening of one fd per each directory
that you intend to watch. This quickly results in too many
open files and pins removable media, preventing unmount.
* dnotify is directory-based. You only learn about changes to
directories. Sure, a change to a file in a directory affects
the directory, but you are then forced to keep a cache of
stat structures.
* dnotify's interface to user-space is awful. Signals?
inotify provides a more usable, simple, powerful solution to file change
notification:
* inotify's interface is a system call that returns a fd, not SIGIO.
You get a single fd, which is select()-able.
* inotify has an event that says "the filesystem that the item
you were watching is on was unmounted."
* inotify can watch directories or files.
Inotify is currently used by Beagle (a desktop search infrastructure),
Gamin (a FAM replacement), and other projects.
See Documentation/filesystems/inotify.txt.
Signed-off-by: Robert Love <rml@novell.com>
Cc: John McCutchan <ttb@tentacle.dhs.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
dup_mmap of a VM_DONTCOPY vma forgot to lower the child's total_vm. (But
no way does this account for the recent report of total_vm seen too low.)
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
kernel/power/disk.c needs a declaration of name_to_dev_t() in scope. mount.h
seems like an appropriate choice.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Free some RAM before entering S3 so that upon
resume we can be sure early allocations will succeed.
http://bugzilla.kernel.org/show_bug.cgi?id=3469
Signed-off-by: David Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Register an "acpi" system device to be notified of shutdown preparation.
This depends on CONFIG_PM
http://bugzilla.kernel.org/show_bug.cgi?id=4041
Signed-off-by: Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Len Brown <len.brown@intel.com>
The BKS might be reacquired before we have dropped PREEMPT_ACTIVE, which
could trigger a second could trigger a second cond_resched() call. Bug
found by Hirofumi Ogawa.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a new section called ".data.read_mostly" for data items that are read
frequently and rarely written to like cpumaps etc.
If these maps are placed in the .data section then these frequenly read
items may end up in cachelines with data is is frequently updated. In that
case all processors in an SMP system must needlessly reload the cachelines
again and again containing elements of those frequently used variables.
The ability to share these cachelines will allow each cpu in an SMP system
to keep local copies of those shared cachelines thereby optimizing
performance.
Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com>
Signed-off-by: Christoph Lameter <christoph@scalex86.org>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
freezeable() already tests for TRACED/STOPPED processes, no need to do it
twice.
Signed-off-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix error handling and whitespace in swsusp.c. swsusp_free() was called when
there was nothing allocating, leading to oops.
Signed-off-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move device name resolution code around so that it is not called from
resume-from-initrd. name_to_dev_t may be unavailable at that point.
Signed-off-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The following renames arch_init, a kprobes function for performing any
architecture specific initialization, to arch_init_kprobes in order to
cleanup the namespace.
Also, this patch adds arch_init_kprobes to sparc64 to fix the sparc64 kprobes
build from the last return probe patch.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Anyone reporting a stuck IRQ should try these options. Its effectiveness
varies we've found in the Fedora case. Quite a few systems with misdescribed
IRQ routing just work when you use irqpoll. It also fixes up the VIA systems
although thats now fixed with the VIA quirk (which we could just make default
as its what Redmond OS does but Linus didn't like it historically).
A small number of systems have jammed IRQ sources or misdescribes that cause
an IRQ that we have no handler registered anywhere for. In those cases it
doesn't help.
Signed-off-by: Alan Cox <number6@the-village.bc.nu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As Steven Rostedt pointed out, there are 2 problems with ITIMER_REAL
timers.
1. do_setitimer() does not call del_timer_sync() in case
when the timer is not pending (it_real_value() returns 0).
This is wrong, the timer may still be running, and it can
rearm itself.
2. It calls del_timer_sync() with tsk->sighand->siglock held.
This is deadlockable, because timer's handler needs this
lock too.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use msleep() in a few places.
Signed-off-by: Luca Falavigna <dktrkranz@gmail.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch tweaks idle thread setup semantics a bit: instead of setting
NEED_RESCHED in init_idle(), we do an explicit schedule() before calling
into cpu_idle().
This patch, while having no negative side-effects, enables wider use of
cond_resched()s. (which might happen in the stock kernel too, but it's
particulary important for voluntary-preempt)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The following is the second version of the function return probe patches
I sent out earlier this week. Changes since my last submission include:
* Fix in ppc64 code removing an unneeded call to re-enable preemption
* Fix a build problem in ia64 when kprobes was turned off
* Added another BUG_ON check to each of the architecture trampoline
handlers
My initial patch description ==>
From my experiences with adding return probes to x86_64 and ia64, and the
feedback on LKML to those patches, I think we can simplify the design
for return probes.
The following patch tweaks the original design such that:
* Instead of storing the stack address in the return probe instance, the
task pointer is stored. This gives us all we need in order to:
- find the correct return probe instance when we enter the trampoline
(even if we are recursing)
- find all left-over return probe instances when the task is going away
This has the side effect of simplifying the implementation since more
work can be done in kernel/kprobes.c since architecture specific knowledge
of the stack layout is no longer required. Specifically, we no longer have:
- arch_get_kprobe_task()
- arch_kprobe_flush_task()
- get_rp_inst_tsk()
- get_rp_inst()
- trampoline_post_handler() <see next bullet>
* Instead of splitting the return probe handling and cleanup logic across
the pre and post trampoline handlers, all the work is pushed into the
pre function (trampoline_probe_handler), and then we skip single stepping
the original function. In this case the original instruction to be single
stepped was just a NOP, and we can do without the extra interruption.
The new flow of events to having a return probe handler execute when a target
function exits is:
* At system initialization time, a kprobe is inserted at the beginning of
kretprobe_trampoline. kernel/kprobes.c use to handle this on it's own,
but ia64 needed to do this a little differently (i.e. a function pointer
is really a pointer to a structure containing the instruction pointer and
a global pointer), so I added the notion of arch_init(), so that
kernel/kprobes.c:init_kprobes() now allows architecture specific
initialization by calling arch_init() before exiting. Each architecture
now registers a kprobe on it's own trampoline function.
* register_kretprobe() will insert a kprobe at the beginning of the targeted
function with the kprobe pre_handler set to arch_prepare_kretprobe
(still no change)
* When the target function is entered, the kprobe is fired, calling
arch_prepare_kretprobe (still no change)
* In arch_prepare_kretprobe() we try to get a free instance and if one is
available then we fill out the instance with a pointer to the return probe,
the original return address, and a pointer to the task structure (instead
of the stack address.) Just like before we change the return address
to the trampoline function and mark the instance as used.
If multiple return probes are registered for a given target function,
then arch_prepare_kretprobe() will get called multiple times for the same
task (since our kprobe implementation is able to handle multiple kprobes
at the same address.) Past the first call to arch_prepare_kretprobe,
we end up with the original address stored in the return probe instance
pointing to our trampoline function. (This is a significant difference
from the original arch_prepare_kretprobe design.)
* Target function executes like normal and then returns to kretprobe_trampoline.
* kprobe inserted on the first instruction of kretprobe_trampoline is fired
and calls trampoline_probe_handler() (no change here)
* trampoline_probe_handler() consumes each of the instances associated with
the current task by calling the registered handler function and marking
the instance as unused until an instance is found that has a return address
different then the trampoline function.
(change similar to my previous ia64 RFC)
* If the task is killed with some left-over return probe instances (meaning
that a target function was entered, but never returned), then we just
free any instances associated with the task. (Not much different other
then we can handle this without calling architecture specific functions.)
There is a known problem that this patch does not yet solve where
registering a return probe flush_old_exec or flush_thread will put us
in a bad state. Most likely the best way to handle this is to not allow
registering return probes on these two functions.
(Significant change)
This patch series applies to the 2.6.12-rc6-mm1 kernel, and provides:
* kernel/kprobes.c changes
* i386 patch of existing return probes implementation
* x86_64 patch of existing return probe implementation
* ia64 implementation
* ppc64 implementation (provided by Ananth)
This patch implements the architecture independant changes for a reworking
of the kprobes based function return probes design. Changes include:
* Removing functions for querying a return probe instance off a stack address
* Removing the stack_addr field from the kretprobe_instance definition,
and adding a task pointer
* Adding architecture specific initialization via arch_init()
* Removing extern definitions for the architecture trampoline functions
(this isn't needed anymore since the architecture handles the
initialization of the kprobe in the return probe trampoline function.)
Signed-off-by: Rusty Lynch <rusty.lynch@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Now that PPC64 has no-execute support, here is a second try to fix the
single step out of line during kprobe execution. Kprobes on x86_64 already
solved this problem by allocating an executable page and using it as the
scratch area for stepping out of line. Reuse that.
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This updates the CFQ io scheduler to the new time sliced design (cfq
v3). It provides full process fairness, while giving excellent
aggregate system throughput even for many competing processes. It
supports io priorities, either inherited from the cpu nice value or set
directly with the ioprio_get/set syscalls. The latter closely mimic
set/getpriority.
This import is based on my latest from -mm.
Signed-off-by: Jens Axboe <axboe@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>