1) When we allocated last fragment in ufs_truncate, we read page, check
if block mapped to address, and if not trying to allocate it. This is
wrong behaviour, fragment may be NOT allocated, but mapped, this
happened because of "block map" function not checked allocated fragment
or not, it just take address of the first fragment in the block, add
offset of fragment and return result, this is correct behaviour in
almost all situation except call from ufs_truncate.
2) Almost all implementation of UFS, which I can investigate have such
"defect": if you have full disk, and try truncate file, for example 3GB
to 2MB, and have hole in this region, truncate return -ENOSPC. I tried
evade from this problem, but "block allocation" algorithm is tied to
right value of i_lastfrag, and fix of this corner case may slow down of
ordinaries scenarios, so this patch makes behavior of "truncate"
operations similar to what other UFS implementations do.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
On UFS, this scenario:
open(O_TRUNC)
lseek(1024 * 1024 * 80)
write("A")
lseek(1024 * 2)
write("A")
may cause access to invalid address.
This happened because of "goal" is calculated in wrong way in block
allocation path, as I see this problem exists also in 2.4.
We use construction like this i_data[lastfrag], i_data array of pointers to
direct blocks, indirect and so on, it has ceratain size ~20 elements, and
lastfrag may have value for example 40000.
Also this patch fixes related to handling such scenario issues, wrong
zeroing metadata, in case of block(not fragment) allocation, and wrong goal
calculation, when we allocate block
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
ufs_get_locked_page is called twice in ufs code, one time in ufs_truncate
path(we allocated last block), and another time when fragments are
reallocated. In ideal world in the second case on allocation/free block
layer we should not know that things like `truncate' exists, but now with
such crutch like ufs_get_locked_page we can (or should?) skip truncated
pages.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As discussed earlier:
http://lkml.org/lkml/2006/6/28/136
this patch fixes such issue:
`ufs_get_locked_page' takes page from cache
after that `vmtruncate' takes page and deletes it from cache
`ufs_get_locked_page' locks page, and reports about EIO error.
Also because of find_lock_page always return valid page or NULL, we have no
need to check it if page not NULL.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
ufs_symlink, in one of its error paths, calls unlock_kernel without ever
having called lock_kernel(); fix this by creating and jumping to a new
label out_notlocked rather than the out label used after calling
lock_kernel().
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The quota code plays interesting games with the lock ordering; to quote Jan:
| i_mutex of inode containing quota file is acquired after all other
| quota locks. i_mutex of all other inodes is acquired before quota
| locks. Quota code makes sure (by resetting inode operations and
| setting special flag on inode) that noone tries to enter quota code
| while holding i_mutex on a quota file...
The good news is that all of this special case i_mutex grabbing happens in the
(per filesystem) low level quota write function. For this special case we
need a new I_MUTEX_* nesting level, since this just entirely outside any of
the regular VFS locking rules for i_mutex. I trust Jan on his blue eyes that
this is not ever going to deadlock; and based on that the patch below is what
it takes to inform lockdep of these very interesting new locking rules.
The new locking rule for the I_MUTEX_QUOTA nesting level is that this is the
deepest possible level of nesting for i_mutex, and that this only should be
used in quota write (and possibly read) function of filesystems. This makes
the lock ordering of the I_MUTEX_* levels:
I_MUTEX_PARENT -> I_MUTEX_CHILD -> I_MUTEX_NORMAL -> I_MUTEX_QUOTA
Has no effect on non-lockdep kernels.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kara <jack@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch fixes buggy behaviour of UFS
in such kind of scenario:
open(, O_TRUNC...)
ftruncate(, 1024)
ftruncate(, 0)
Such a scenario causes ufs_panic and remount read-only. This happen
because of according to specification UFS should always allocate block for
last byte, and many parts of our implementation rely on this, but
`ufs_truncate' doesn't care about this.
To make possible return error code and to know about old size, this patch
removes `truncate' from ufs inode_operations and uses `setattr' method to
call ufs_truncate.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
fs/ufs/inode.c: In function `ufs_frag_map':
fs/ufs/inode.c:101: warning: long long unsigned int format, u64 arg (arg 4)
fs/ufs/inode.c: In function `ufs_getfrag_block':
fs/ufs/inode.c:432: warning: long long unsigned int format, u64 arg (arg 2)
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Same as with already do with the file operations: keep them in .rodata and
prevents people from doing runtime patching.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Steven French <sfrench@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add missed ufsi->i_dir_start_lookup initialization in ufs_read_inode in
UFS2 case. Also it cleans ufs_read_inode function to prevent such kind of
situation in the future: it move depend on UFS type parts of code into
separate functions and leaves in ufs_read_inode only generic code. It
cleans code and avoids duplication.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make two needlessly global functions static.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In ufs code there is function: ubh_ll_rw_block, it has parameter how many
ufs_buffer_head it should handle, but it always called with "1" on the place
of this parameter. This patch removes unused parameter of "ubh_ll_wr_block".
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
ufs super block contains some statistic about file systems, like amount of
directories, free blocks, inodes and so on.
UFS1 hold this information in one location and uses 32bit integers for such
information, UFS2 hold statistic in another location and uses 64bit integers.
There is transition variant, if UFS1 has type 44BSD and flags field in super
block has some special value this mean that we work with statistic like UFS2
does. and this also means that nobody care about old(UFS1) statistic.
So if start fsck against such file system, after usage linux ufs driver, it
found error: at now only UFS1 like statistic is updated.
This patch should fix this. Also it contains some minor cleanup: CodingSytle
and remove unused variables.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Presently ufs doesn't support "fsync", this make some applications unhappy,
for example vim. This patch fixes this situation.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Super block of UFS usually has size >512, because of fragment size may be 512,
this cause some problems.
Currently, there are two methods to work with ufs super block:
1) split structure which describes ufs super blocks into structures with
size <=512
2) use one structure which describes ufs super block, and hope that array
of "buffer_head" which holds "super block", has such construction:
bh[n]->b_data + bh[n]->b_size == bh[n + 1]->b_data
The second variant may cause some problems in the future, and usage of two
variants cause unnecessary code duplication.
This patch remove the second variant. Also patch contains some CodingStyle
fixes.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch fixes two bugs, which introduced by previous patches:
1) Missed "brelse"
2) Sometimes "baseblk" may be wrongly calculated, if i_size is equal to
zero, which lead infinite cycle in "mpage_writepages".
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
fs/ufs/super.c: In function `ufs_print_super_stuff':
fs/ufs/super.c:103: warning: unsigned int format, different type arg (arg 2) fs/ufs/super.c: In function `ufs2_print_super_stuff': fs/ufs/super.c:147: warning: unsigned int format, different type arg (arg 2) fs/ufs/super.c: In function `ufs_print_cylinder_stuff':
fs/ufs/super.c:175: warning: unsigned int format, different type arg (arg 2)
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Presently if we allocate several "metadata" blocks (pointers to indirect
blocks for example), we fill with zeroes only the first block. This cause
some problems in "truncate" function. Also this patch remove some unused
arguments from several functions and add comments.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
ufs_free_blocks function looks now in so way:
if (err)
goto failed;
lock_super();
failed:
unlock_super();
So if error happen we'll unlock not locked super.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
At now UFS code uses DQUOT_* mechanism, but it also update inode->i_blocks
manually, this cause wrong i_blocks value.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch make little optimization of ufs_find_entry like "ext2" does. Save
number of page and reuse it again in the next call.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently to turn on debug mode "user" has to edit ~10 files, to turn off he
has to do it again.
This patch introduce such changes:
1)turn on(off) debug messages via ".config"
2)remove unnecessary duplication of code
3)make "UFSD" macros more similar to function
4)fix some compiler warnings
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The writing to UFS file system with block/fragment!=8 may cause bogus
behaviour. The problem in "ufs_bitmap_search" function, which doesn't work
correctly in "block/fragment!=8" case. The idea is stolen from BSD code.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There are two ugly macros in ufs code:
#define UCPI_UBH ((struct ufs_buffer_head *)ucpi)
#define USPI_UBH ((struct ufs_buffer_head *)uspi)
when uspi looks like
struct {
struct ufs_buffer_head ;
}
and USPI_UBH has some sence,
ucpi looks like
struct {
struct not_ufs_buffer_head;
}
To prevent bugs in future, this patch convert macros to inline function and
fix "ucpi" structure.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Change function in fs/ufs/dir.c and fs/ufs/namei.c to work with pages
instead of straight work with blocks. It fixed such bugs:
* for i in `seq 1 1000`; do touch $i; done - crash system
* mkdir create directory without "." and ".." entries
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This series of patches finished "bugs fixing" mentioned
here http://lkml.org/lkml/2006/1/31/275 .
The main bugs:
* for i in `seq 1 1000`; do touch $i; done - crash system
* mkdir create directory without "." and ".." entries
The suggested solution is work with page cache instead of straight work
with blocks. Such solution has following advantages
* reduce code size and its complexity
* some global locks go away
* fix bugs
The most part of code is stolen from ext2, because of it has similar
directory structure.
Patches testes with UFS1 and UFS2 file systems.
This patch installs i_mapping->a_ops for directory inodes and removes some
duplicated code.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
First of all some necessary notes about UFS by it self: To avoid waste of disk
space the tail of file consists not from blocks (which is ordinary big enough,
16K usually), it consists from fragments(which is ordinary 2K). When file is
growing its tail occupy 1 fragment, 2 fragments... At some stage decision to
allocate whole block is made and all fragments are moved to one block.
How this situation was handled before:
ufs_prepare_write
->block_prepare_write
->ufs_getfrag_block
->...
->ufs_new_fragments:
bh = sb_bread
bh->b_blocknr = result + i;
mark_buffer_dirty (bh);
This is wrong solution, because:
- it didn't take into consideration that there is another cache: "inode page
cache"
- because of sb_getblk uses not b_blocknr, (it uses page->index) to find
certain block, this breaks sb_getblk.
How this situation is handled now: we go though all "page inode cache", if
there are no such page in cache we load it into cache, and change b_blocknr.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* After block allocation, we map it on the same "address" as 8 others
blocks
* We nullify block several times: once in ufs/block.c and once in
block_*write_full_page, and use different "caches" for this.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently, ufs write support have two sets of problems: work with files and
work with directories.
This series of patches should solve the first problem.
This patch is similar to http://lkml.org/lkml/2006/1/17/61 this patch
complements it.
The situation the same: in ufs_trunc_(not direct), we read block, check if
count of links to it is equal to one, if so we finish cycle, if not
continue. Because of "count of links" always >=2 this operation cause
infinite cycle and hang up the kernel.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Give the statfs superblock operation a dentry pointer rather than a superblock
pointer.
This complements the get_sb() patch. That reduced the significance of
sb->s_root, allowing NFS to place a fake root there. However, NFS does
require a dentry to use as a target for the statfs operation. This permits
the root in the vfsmount to be used instead.
linux/mount.h has been added where necessary to make allyesconfig build
successfully.
Interest has also been expressed for use with the FUSE and XFS filesystems.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is a conversion to make the various file_operations structs in fs/
const. Basically a regexp job, with a few manual fixups
The goal is both to increase correctness (harder to accidentally write to
shared datastructures) and reducing the false sharing of cachelines with
things that get dirty in .data (while .rodata is nicely read only and thus
cache clean)
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rewrap the overly long source code lines resulting from the previous
patch's addition of the slab cache flag SLAB_MEM_SPREAD. This patch
contains only formatting changes, and no function change.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Mark file system inode and similar slab caches subject to SLAB_MEM_SPREAD
memory spreading.
If a slab cache is marked SLAB_MEM_SPREAD, then anytime that a task that's
in a cpuset with the 'memory_spread_slab' option enabled goes to allocate
from such a slab cache, the allocations are spread evenly over all the
memory nodes (task->mems_allowed) allowed to that task, instead of favoring
allocation on the node local to the current cpu.
The following inode and similar caches are marked SLAB_MEM_SPREAD:
file cache
==== =====
fs/adfs/super.c adfs_inode_cache
fs/affs/super.c affs_inode_cache
fs/befs/linuxvfs.c befs_inode_cache
fs/bfs/inode.c bfs_inode_cache
fs/block_dev.c bdev_cache
fs/cifs/cifsfs.c cifs_inode_cache
fs/coda/inode.c coda_inode_cache
fs/dquot.c dquot
fs/efs/super.c efs_inode_cache
fs/ext2/super.c ext2_inode_cache
fs/ext2/xattr.c (fs/mbcache.c) ext2_xattr
fs/ext3/super.c ext3_inode_cache
fs/ext3/xattr.c (fs/mbcache.c) ext3_xattr
fs/fat/cache.c fat_cache
fs/fat/inode.c fat_inode_cache
fs/freevxfs/vxfs_super.c vxfs_inode
fs/hpfs/super.c hpfs_inode_cache
fs/isofs/inode.c isofs_inode_cache
fs/jffs/inode-v23.c jffs_fm
fs/jffs2/super.c jffs2_i
fs/jfs/super.c jfs_ip
fs/minix/inode.c minix_inode_cache
fs/ncpfs/inode.c ncp_inode_cache
fs/nfs/direct.c nfs_direct_cache
fs/nfs/inode.c nfs_inode_cache
fs/ntfs/super.c ntfs_big_inode_cache_name
fs/ntfs/super.c ntfs_inode_cache
fs/ocfs2/dlm/dlmfs.c dlmfs_inode_cache
fs/ocfs2/super.c ocfs2_inode_cache
fs/proc/inode.c proc_inode_cache
fs/qnx4/inode.c qnx4_inode_cache
fs/reiserfs/super.c reiser_inode_cache
fs/romfs/inode.c romfs_inode_cache
fs/smbfs/inode.c smb_inode_cache
fs/sysv/inode.c sysv_inode_cache
fs/udf/super.c udf_inode_cache
fs/ufs/super.c ufs_inode_cache
net/socket.c sock_inode_cache
net/sunrpc/rpc_pipe.c rpc_inode_cache
The choice of which slab caches to so mark was quite simple. I marked
those already marked SLAB_RECLAIM_ACCOUNT, except for fs/xfs, dentry_cache,
inode_cache, and buffer_head, which were marked in a previous patch. Even
though SLAB_RECLAIM_ACCOUNT is for a different purpose, it marks the same
potentially large file system i/o related slab caches as we need for memory
spreading.
Given that the rule now becomes "wherever you would have used a
SLAB_RECLAIM_ACCOUNT slab cache flag before (usually the inode cache), use
the SLAB_MEM_SPREAD flag too", this should be easy enough to maintain.
Future file system writers will just copy one of the existing file system
slab cache setups and tend to get it right without thinking.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This fixes the code like this:
bh = sb_find_get_block (sb, tmp + j);
if ((bh && DATA_BUFFER_USED(bh)) || tmp != fs32_to_cpu(sb, *p)) {
retry = 1;
brelse (bh);
goto next1;
}
bforget (bh);
sb_find_get_block() ordinarily returns a buffer_head with b_count>=2, and
this code assume that in case if "b_count>1" buffer is used, so this caused
infinite loop.
(akpm: that is-the-buffer-busy code is incomprehensible. Good riddance. Use
of block_truncate_page() seems sane).
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
"rm" command, on file system with "ufs1" type cause system hang up. This
is, in fact, not so bad as it seems to be, because of after that in "kernel
control path" there are 3-4 places which may cause "oops".
So the first patch fix oopses, and the second patch fix "kernel hang up".
"oops" appears because of reading of group's summary info partly wrong, and
access to not first group's summary info cause "oops".
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Here is update of ufs cleanup patch, brought on by the recently fixed
ubh_get_usb_second() bug that made some ugly code rather painfully
obvious. It also includes
- fix compilation warnings which appears if debug mode turn on
- remove unnecessary duplication of code to support UFS2
I tested it on ufs1 and ufs2 file-systems.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There's a lack of parenthesis in fs/ufs/utils.h, so instead of the 512th
byte of buffer, the usb2 pointer will point to the nth structure of type
ufs_super_block_second.
This can cause a mount-time oops if you're unlucky (especially with
DEBUG_PAGEALLOC, which is how Alexey Dobriyan saw this problem)
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Acked-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
fs: Use <linux/capability.h> where capable() is used.
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Acked-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch converts the inode semaphore to a mutex. I have tested it on
XFS and compiled as much as one can consider on an ia64. Anyway your
luck with it might be different.
Modified-by: Ingo Molnar <mingo@elte.hu>
(finished the conversion)
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch should fix compilation failure of fs/ufs/dir.c with defined UFS_DIR_DEBUG
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is the fs/ part of the big kfree cleanup patch.
Remove pointless checks for NULL prior to calling kfree() in fs/.
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Update the file systems in fs/ implementing a delete_inode() callback to
call truncate_inode_pages(). One implementation note: In developing this
patch I put the calls to truncate_inode_pages() at the very top of those
filesystems delete_inode() callbacks in order to retain the previous
behavior. I'm guessing that some of those could probably be optimized.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We need to be sure that current data are sent to disk. Hence we call
ll_rw_block() with SWRITE.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>