Parsing generic pgtable.h in assembler is simply crazy. None of this file is
needed in assembler code, and C inline functions and structures routine break
one or more different compiles.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If we move a mapping from one virtual address to another,
and this changes the virtual color of the mapping to those
pages, we can see corrupt data due to D-cache aliasing.
Check for and deal with this by overriding the move_pte()
macro. Set things up so that other platforms can cleanly
override the move_pte() macro too.
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix more include file problems that surfaced since I submitted the previous
fix-missing-includes.patch. This should now allow not to include sched.h
from module.h, which is done by a followup patch.
Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Updated several references to page_table_lock in common code comments.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move the ZERO_PAGE remapping complexity to the move_pte macro in
asm-generic, have it conditionally depend on
__HAVE_ARCH_MULTIPLE_ZERO_PAGE, which gets defined for MIPS.
For architectures without __HAVE_ARCH_MULTIPLE_ZERO_PAGE, move_pte becomes
a noop.
From: Hugh Dickins <hugh@veritas.com>
Fix nasty little bug we've missed in Nick's mremap move ZERO_PAGE patch.
The "pte" at that point may be a swap entry or a pte_file entry: we must
check pte_present before perhaps corrupting such an entry.
Patch below against 2.6.14-rc2-mm1, but the same bug is in 2.6.14-rc2's
mm/mremap.c, and more dangerous there since it's affecting all arches: I
think the safest course is to send Nick's patch and Yoichi's build fix and
this fix (build tested) on to Linus - so only MIPS can be affected.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a new accessor for PTEs, which passes the full hint from the mmu_gather
struct; this allows architectures with hardware pagetables to optimize away
atomic PTE operations when destroying an address space. Removing the
locked operation should allow better pipelining of memory access in this
loop. I measured an average savings of 30-35 cycles per zap_pte_range on
the first 500 destructions on Pentium-M, but I believe the optimization
would win more on older processors which still assert the bus lock on xchg
for an exclusive cacheline.
Update: I made some new measurements, and this saves exactly 26 cycles over
ptep_get_and_clear on Pentium M. On P4, with a PAE kernel, this saves 180
cycles per ptep_get_and_clear, for a whopping 92160 cycles savings for a
full address space destruction.
pte_clear_full is not yet used, but is provided for future optimizations
(in particular, when running inside of a hypervisor that queues page table
updates, the full hint allows us to avoid queueing unnecessary page table
update for an address space in the process of being destroyed.
This is not a huge win, but it does help a bit, and sets the stage for
further hypervisor optimization of the mm layer on all architectures.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Cc: Christoph Lameter <christoph@lameter.com>
Cc: <linux-mm@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It's common practice to msync a large address range regularly, in which
often only a few ptes have actually been dirtied since the previous pass.
sync_pte_range then goes much faster if it tests whether pte is dirty
before locating and accessing each struct page cacheline; and it is hardly
slowed by ptep_clear_flush_dirty repeating that test in the opposite case,
when every pte actually is dirty.
But beware, s390's pte_dirty always says false, since its dirty bit is kept
in the storage key, located via the struct page address. So skip this
optimization in its case: use a pte_maybe_dirty macro which just says true
if page_test_and_clear_dirty is implemented.
Signed-off-by: Abhijit Karmarkar <abhijitk@veritas.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
ia64 and sparc64 hurriedly had to introduce their own variants of
pgd_addr_end, to leapfrog over the holes in their virtual address spaces which
the final clear_page_range suddenly presented when converted from pgd_index to
pgd_addr_end. But now that free_pgtables respects the vma list, those holes
are never presented, and the arch variants can go.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!