/* pci_sun4v.c: SUN4V specific PCI controller support. * * Copyright (C) 2006 David S. Miller (davem@davemloft.net) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pci_impl.h" #include "iommu_common.h" #include "pci_sun4v.h" #define PGLIST_NENTS 2048 struct sun4v_pglist { u64 pglist[PGLIST_NENTS]; }; static DEFINE_PER_CPU(struct sun4v_pglist, iommu_pglists); static long pci_arena_alloc(struct pci_iommu_arena *arena, unsigned long npages) { unsigned long n, i, start, end, limit; int pass; limit = arena->limit; start = arena->hint; pass = 0; again: n = find_next_zero_bit(arena->map, limit, start); end = n + npages; if (unlikely(end >= limit)) { if (likely(pass < 1)) { limit = start; start = 0; pass++; goto again; } else { /* Scanned the whole thing, give up. */ return -1; } } for (i = n; i < end; i++) { if (test_bit(i, arena->map)) { start = i + 1; goto again; } } for (i = n; i < end; i++) __set_bit(i, arena->map); arena->hint = end; return n; } static void pci_arena_free(struct pci_iommu_arena *arena, unsigned long base, unsigned long npages) { unsigned long i; for (i = base; i < (base + npages); i++) __clear_bit(i, arena->map); } static void *pci_4v_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; unsigned long devhandle, flags, order, first_page, npages, n; void *ret; long entry; u64 *pglist; int cpu; size = IO_PAGE_ALIGN(size); order = get_order(size); if (order >= MAX_ORDER) return NULL; npages = size >> IO_PAGE_SHIFT; if (npages > PGLIST_NENTS) return NULL; first_page = __get_free_pages(GFP_ATOMIC, order); if (first_page == 0UL) return NULL; memset((char *)first_page, 0, PAGE_SIZE << order); pcp = pdev->sysdata; devhandle = pcp->pbm->devhandle; iommu = pcp->pbm->iommu; spin_lock_irqsave(&iommu->lock, flags); entry = pci_arena_alloc(&iommu->arena, npages); spin_unlock_irqrestore(&iommu->lock, flags); if (unlikely(entry < 0L)) { free_pages(first_page, order); return NULL; } *dma_addrp = (iommu->page_table_map_base + (entry << IO_PAGE_SHIFT)); ret = (void *) first_page; first_page = __pa(first_page); cpu = get_cpu(); pglist = &__get_cpu_var(iommu_pglists).pglist[0]; for (n = 0; n < npages; n++) pglist[n] = first_page + (n * PAGE_SIZE); do { unsigned long num; num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry), npages, (HV_PCI_MAP_ATTR_READ | HV_PCI_MAP_ATTR_WRITE), __pa(pglist)); entry += num; npages -= num; pglist += num; } while (npages != 0); put_cpu(); return ret; } static void pci_4v_free_consistent(struct pci_dev *pdev, size_t size, void *cpu, dma_addr_t dvma) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; unsigned long flags, order, npages, entry, devhandle; npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT; pcp = pdev->sysdata; iommu = pcp->pbm->iommu; devhandle = pcp->pbm->devhandle; entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT); spin_lock_irqsave(&iommu->lock, flags); pci_arena_free(&iommu->arena, entry, npages); do { unsigned long num; num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry), npages); entry += num; npages -= num; } while (npages != 0); spin_unlock_irqrestore(&iommu->lock, flags); order = get_order(size); if (order < 10) free_pages((unsigned long)cpu, order); } static dma_addr_t pci_4v_map_single(struct pci_dev *pdev, void *ptr, size_t sz, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; unsigned long flags, npages, oaddr; unsigned long i, base_paddr, devhandle; u32 bus_addr, ret; unsigned long prot; long entry; u64 *pglist; int cpu; pcp = pdev->sysdata; iommu = pcp->pbm->iommu; devhandle = pcp->pbm->devhandle; if (unlikely(direction == PCI_DMA_NONE)) goto bad; oaddr = (unsigned long)ptr; npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; if (unlikely(npages > PGLIST_NENTS)) goto bad; spin_lock_irqsave(&iommu->lock, flags); entry = pci_arena_alloc(&iommu->arena, npages); spin_unlock_irqrestore(&iommu->lock, flags); if (unlikely(entry < 0L)) goto bad; bus_addr = (iommu->page_table_map_base + (entry << IO_PAGE_SHIFT)); ret = bus_addr | (oaddr & ~IO_PAGE_MASK); base_paddr = __pa(oaddr & IO_PAGE_MASK); prot = HV_PCI_MAP_ATTR_READ; if (direction != PCI_DMA_TODEVICE) prot |= HV_PCI_MAP_ATTR_WRITE; cpu = get_cpu(); pglist = &__get_cpu_var(iommu_pglists).pglist[0]; for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) pglist[i] = base_paddr; do { unsigned long num; num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry), npages, prot, __pa(pglist)); entry += num; npages -= num; pglist += num; } while (npages != 0); put_cpu(); return ret; bad: if (printk_ratelimit()) WARN_ON(1); return PCI_DMA_ERROR_CODE; } static void pci_4v_unmap_single(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; unsigned long flags, npages, devhandle; long entry; if (unlikely(direction == PCI_DMA_NONE)) { if (printk_ratelimit()) WARN_ON(1); return; } pcp = pdev->sysdata; iommu = pcp->pbm->iommu; devhandle = pcp->pbm->devhandle; npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; bus_addr &= IO_PAGE_MASK; spin_lock_irqsave(&iommu->lock, flags); entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT; pci_arena_free(&iommu->arena, entry, npages); do { unsigned long num; num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry), npages); entry += num; npages -= num; } while (npages != 0); spin_unlock_irqrestore(&iommu->lock, flags); } #define SG_ENT_PHYS_ADDRESS(SG) \ (__pa(page_address((SG)->page)) + (SG)->offset) static inline void fill_sg(long entry, unsigned long devhandle, struct scatterlist *sg, int nused, int nelems, unsigned long prot) { struct scatterlist *dma_sg = sg; struct scatterlist *sg_end = sg + nelems; int i, cpu, pglist_ent; u64 *pglist; cpu = get_cpu(); pglist = &__get_cpu_var(iommu_pglists).pglist[0]; pglist_ent = 0; for (i = 0; i < nused; i++) { unsigned long pteval = ~0UL; u32 dma_npages; dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) + dma_sg->dma_length + ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT; do { unsigned long offset; signed int len; /* If we are here, we know we have at least one * more page to map. So walk forward until we * hit a page crossing, and begin creating new * mappings from that spot. */ for (;;) { unsigned long tmp; tmp = SG_ENT_PHYS_ADDRESS(sg); len = sg->length; if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) { pteval = tmp & IO_PAGE_MASK; offset = tmp & (IO_PAGE_SIZE - 1UL); break; } if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) { pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK; offset = 0UL; len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL))); break; } sg++; } pteval = (pteval & IOPTE_PAGE); while (len > 0) { pglist[pglist_ent++] = pteval; pteval += IO_PAGE_SIZE; len -= (IO_PAGE_SIZE - offset); offset = 0; dma_npages--; } pteval = (pteval & IOPTE_PAGE) + len; sg++; /* Skip over any tail mappings we've fully mapped, * adjusting pteval along the way. Stop when we * detect a page crossing event. */ while (sg < sg_end && (pteval << (64 - IO_PAGE_SHIFT)) != 0UL && (pteval == SG_ENT_PHYS_ADDRESS(sg)) && ((pteval ^ (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) { pteval += sg->length; sg++; } if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL) pteval = ~0UL; } while (dma_npages != 0); dma_sg++; } BUG_ON(pglist_ent == 0); do { unsigned long num; num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry), pglist_ent); entry += num; pglist_ent -= num; } while (pglist_ent != 0); put_cpu(); } static int pci_4v_map_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; unsigned long flags, npages, prot, devhandle; u32 dma_base; struct scatterlist *sgtmp; long entry; int used; /* Fast path single entry scatterlists. */ if (nelems == 1) { sglist->dma_address = pci_4v_map_single(pdev, (page_address(sglist->page) + sglist->offset), sglist->length, direction); if (unlikely(sglist->dma_address == PCI_DMA_ERROR_CODE)) return 0; sglist->dma_length = sglist->length; return 1; } pcp = pdev->sysdata; iommu = pcp->pbm->iommu; devhandle = pcp->pbm->devhandle; if (unlikely(direction == PCI_DMA_NONE)) goto bad; /* Step 1: Prepare scatter list. */ npages = prepare_sg(sglist, nelems); if (unlikely(npages > PGLIST_NENTS)) goto bad; /* Step 2: Allocate a cluster and context, if necessary. */ spin_lock_irqsave(&iommu->lock, flags); entry = pci_arena_alloc(&iommu->arena, npages); spin_unlock_irqrestore(&iommu->lock, flags); if (unlikely(entry < 0L)) goto bad; dma_base = iommu->page_table_map_base + (entry << IO_PAGE_SHIFT); /* Step 3: Normalize DMA addresses. */ used = nelems; sgtmp = sglist; while (used && sgtmp->dma_length) { sgtmp->dma_address += dma_base; sgtmp++; used--; } used = nelems - used; /* Step 4: Create the mappings. */ prot = HV_PCI_MAP_ATTR_READ; if (direction != PCI_DMA_TODEVICE) prot |= HV_PCI_MAP_ATTR_WRITE; fill_sg(entry, devhandle, sglist, used, nelems, prot); return used; bad: if (printk_ratelimit()) WARN_ON(1); return 0; } static void pci_4v_unmap_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; unsigned long flags, i, npages, devhandle; long entry; u32 bus_addr; if (unlikely(direction == PCI_DMA_NONE)) { if (printk_ratelimit()) WARN_ON(1); } pcp = pdev->sysdata; iommu = pcp->pbm->iommu; devhandle = pcp->pbm->devhandle; bus_addr = sglist->dma_address & IO_PAGE_MASK; for (i = 1; i < nelems; i++) if (sglist[i].dma_length == 0) break; i--; npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT; entry = ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); spin_lock_irqsave(&iommu->lock, flags); pci_arena_free(&iommu->arena, entry, npages); do { unsigned long num; num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry), npages); entry += num; npages -= num; } while (npages != 0); spin_unlock_irqrestore(&iommu->lock, flags); } static void pci_4v_dma_sync_single_for_cpu(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction) { /* Nothing to do... */ } static void pci_4v_dma_sync_sg_for_cpu(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction) { /* Nothing to do... */ } struct pci_iommu_ops pci_sun4v_iommu_ops = { .alloc_consistent = pci_4v_alloc_consistent, .free_consistent = pci_4v_free_consistent, .map_single = pci_4v_map_single, .unmap_single = pci_4v_unmap_single, .map_sg = pci_4v_map_sg, .unmap_sg = pci_4v_unmap_sg, .dma_sync_single_for_cpu = pci_4v_dma_sync_single_for_cpu, .dma_sync_sg_for_cpu = pci_4v_dma_sync_sg_for_cpu, }; /* SUN4V PCI configuration space accessors. */ static int pci_sun4v_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, int where, int size, u32 *value) { struct pci_pbm_info *pbm = bus_dev->sysdata; unsigned long devhandle = pbm->devhandle; unsigned int bus = bus_dev->number; unsigned int device = PCI_SLOT(devfn); unsigned int func = PCI_FUNC(devfn); unsigned long ret; ret = pci_sun4v_config_get(devhandle, HV_PCI_DEVICE_BUILD(bus, device, func), where, size); switch (size) { case 1: *value = ret & 0xff; break; case 2: *value = ret & 0xffff; break; case 4: *value = ret & 0xffffffff; break; }; return PCIBIOS_SUCCESSFUL; } static int pci_sun4v_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, int where, int size, u32 value) { struct pci_pbm_info *pbm = bus_dev->sysdata; unsigned long devhandle = pbm->devhandle; unsigned int bus = bus_dev->number; unsigned int device = PCI_SLOT(devfn); unsigned int func = PCI_FUNC(devfn); unsigned long ret; ret = pci_sun4v_config_put(devhandle, HV_PCI_DEVICE_BUILD(bus, device, func), where, size, value); return PCIBIOS_SUCCESSFUL; } static struct pci_ops pci_sun4v_ops = { .read = pci_sun4v_read_pci_cfg, .write = pci_sun4v_write_pci_cfg, }; static void pbm_scan_bus(struct pci_controller_info *p, struct pci_pbm_info *pbm) { struct pcidev_cookie *cookie = kmalloc(sizeof(*cookie), GFP_KERNEL); if (!cookie) { prom_printf("%s: Critical allocation failure.\n", pbm->name); prom_halt(); } /* All we care about is the PBM. */ memset(cookie, 0, sizeof(*cookie)); cookie->pbm = pbm; pbm->pci_bus = pci_scan_bus(pbm->pci_first_busno, p->pci_ops, pbm); pci_fixup_host_bridge_self(pbm->pci_bus); pbm->pci_bus->self->sysdata = cookie; pci_fill_in_pbm_cookies(pbm->pci_bus, pbm, pbm->prom_node); pci_record_assignments(pbm, pbm->pci_bus); pci_assign_unassigned(pbm, pbm->pci_bus); pci_fixup_irq(pbm, pbm->pci_bus); pci_determine_66mhz_disposition(pbm, pbm->pci_bus); pci_setup_busmastering(pbm, pbm->pci_bus); } static void pci_sun4v_scan_bus(struct pci_controller_info *p) { if (p->pbm_A.prom_node) { p->pbm_A.is_66mhz_capable = prom_getbool(p->pbm_A.prom_node, "66mhz-capable"); pbm_scan_bus(p, &p->pbm_A); } if (p->pbm_B.prom_node) { p->pbm_B.is_66mhz_capable = prom_getbool(p->pbm_B.prom_node, "66mhz-capable"); pbm_scan_bus(p, &p->pbm_B); } /* XXX register error interrupt handlers XXX */ } static unsigned int pci_sun4v_irq_build(struct pci_pbm_info *pbm, struct pci_dev *pdev, unsigned int ino) { /* XXX Implement me! XXX */ return 0; } static void pci_sun4v_base_address_update(struct pci_dev *pdev, int resource) { struct pcidev_cookie *pcp = pdev->sysdata; struct pci_pbm_info *pbm = pcp->pbm; struct resource *res, *root; u32 reg; int where, size, is_64bit; res = &pdev->resource[resource]; if (resource < 6) { where = PCI_BASE_ADDRESS_0 + (resource * 4); } else if (resource == PCI_ROM_RESOURCE) { where = pdev->rom_base_reg; } else { /* Somebody might have asked allocation of a non-standard resource */ return; } /* XXX 64-bit MEM handling is not %100 correct... XXX */ is_64bit = 0; if (res->flags & IORESOURCE_IO) root = &pbm->io_space; else { root = &pbm->mem_space; if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) == PCI_BASE_ADDRESS_MEM_TYPE_64) is_64bit = 1; } size = res->end - res->start; pci_read_config_dword(pdev, where, ®); reg = ((reg & size) | (((u32)(res->start - root->start)) & ~size)); if (resource == PCI_ROM_RESOURCE) { reg |= PCI_ROM_ADDRESS_ENABLE; res->flags |= IORESOURCE_ROM_ENABLE; } pci_write_config_dword(pdev, where, reg); /* This knows that the upper 32-bits of the address * must be zero. Our PCI common layer enforces this. */ if (is_64bit) pci_write_config_dword(pdev, where + 4, 0); } static void pci_sun4v_resource_adjust(struct pci_dev *pdev, struct resource *res, struct resource *root) { res->start += root->start; res->end += root->start; } /* Use ranges property to determine where PCI MEM, I/O, and Config * space are for this PCI bus module. */ static void pci_sun4v_determine_mem_io_space(struct pci_pbm_info *pbm) { int i, saw_mem, saw_io; saw_mem = saw_io = 0; for (i = 0; i < pbm->num_pbm_ranges; i++) { struct linux_prom_pci_ranges *pr = &pbm->pbm_ranges[i]; unsigned long a; int type; type = (pr->child_phys_hi >> 24) & 0x3; a = (((unsigned long)pr->parent_phys_hi << 32UL) | ((unsigned long)pr->parent_phys_lo << 0UL)); switch (type) { case 1: /* 16-bit IO space, 16MB */ pbm->io_space.start = a; pbm->io_space.end = a + ((16UL*1024UL*1024UL) - 1UL); pbm->io_space.flags = IORESOURCE_IO; saw_io = 1; break; case 2: /* 32-bit MEM space, 2GB */ pbm->mem_space.start = a; pbm->mem_space.end = a + (0x80000000UL - 1UL); pbm->mem_space.flags = IORESOURCE_MEM; saw_mem = 1; break; case 3: /* XXX 64-bit MEM handling XXX */ default: break; }; } if (!saw_io || !saw_mem) { prom_printf("%s: Fatal error, missing %s PBM range.\n", pbm->name, (!saw_io ? "IO" : "MEM")); prom_halt(); } printk("%s: PCI IO[%lx] MEM[%lx]\n", pbm->name, pbm->io_space.start, pbm->mem_space.start); } static void pbm_register_toplevel_resources(struct pci_controller_info *p, struct pci_pbm_info *pbm) { pbm->io_space.name = pbm->mem_space.name = pbm->name; request_resource(&ioport_resource, &pbm->io_space); request_resource(&iomem_resource, &pbm->mem_space); pci_register_legacy_regions(&pbm->io_space, &pbm->mem_space); } static void probe_existing_entries(struct pci_pbm_info *pbm, struct pci_iommu *iommu) { struct pci_iommu_arena *arena = &iommu->arena; unsigned long i, devhandle; devhandle = pbm->devhandle; for (i = 0; i < arena->limit; i++) { unsigned long ret, io_attrs, ra; ret = pci_sun4v_iommu_getmap(devhandle, HV_PCI_TSBID(0, i), &io_attrs, &ra); if (ret == HV_EOK) __set_bit(i, arena->map); } } static void pci_sun4v_iommu_init(struct pci_pbm_info *pbm) { struct pci_iommu *iommu = pbm->iommu; unsigned long num_tsb_entries, sz; u32 vdma[2], dma_mask, dma_offset; int err, tsbsize; err = prom_getproperty(pbm->prom_node, "virtual-dma", (char *)&vdma[0], sizeof(vdma)); if (err == 0 || err == -1) { /* No property, use default values. */ vdma[0] = 0x80000000; vdma[1] = 0x80000000; } dma_mask = vdma[0]; switch (vdma[1]) { case 0x20000000: dma_mask |= 0x1fffffff; tsbsize = 64; break; case 0x40000000: dma_mask |= 0x3fffffff; tsbsize = 128; break; case 0x80000000: dma_mask |= 0x7fffffff; tsbsize = 128; break; default: prom_printf("PCI-SUN4V: strange virtual-dma size.\n"); prom_halt(); }; num_tsb_entries = tsbsize / sizeof(iopte_t); dma_offset = vdma[0]; /* Setup initial software IOMMU state. */ spin_lock_init(&iommu->lock); iommu->ctx_lowest_free = 1; iommu->page_table_map_base = dma_offset; iommu->dma_addr_mask = dma_mask; /* Allocate and initialize the free area map. */ sz = num_tsb_entries / 8; sz = (sz + 7UL) & ~7UL; iommu->arena.map = kmalloc(sz, GFP_KERNEL); if (!iommu->arena.map) { prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n"); prom_halt(); } memset(iommu->arena.map, 0, sz); iommu->arena.limit = num_tsb_entries; probe_existing_entries(pbm, iommu); } static void pci_sun4v_pbm_init(struct pci_controller_info *p, int prom_node, unsigned int devhandle) { struct pci_pbm_info *pbm; unsigned int busrange[2]; int err, i; if (devhandle & 0x40) pbm = &p->pbm_B; else pbm = &p->pbm_A; pbm->parent = p; pbm->prom_node = prom_node; pbm->pci_first_slot = 1; pbm->devhandle = devhandle; sprintf(pbm->name, "SUN4V-PCI%d PBM%c", p->index, (pbm == &p->pbm_A ? 'A' : 'B')); printk("%s: devhandle[%x]\n", pbm->name, pbm->devhandle); prom_getstring(prom_node, "name", pbm->prom_name, sizeof(pbm->prom_name)); err = prom_getproperty(prom_node, "ranges", (char *) pbm->pbm_ranges, sizeof(pbm->pbm_ranges)); if (err == 0 || err == -1) { prom_printf("%s: Fatal error, no ranges property.\n", pbm->name); prom_halt(); } pbm->num_pbm_ranges = (err / sizeof(struct linux_prom_pci_ranges)); /* Mask out the top 8 bits of the ranges, leaving the real * physical address. */ for (i = 0; i < pbm->num_pbm_ranges; i++) pbm->pbm_ranges[i].parent_phys_hi &= 0x0fffffff; pci_sun4v_determine_mem_io_space(pbm); pbm_register_toplevel_resources(p, pbm); err = prom_getproperty(prom_node, "interrupt-map", (char *)pbm->pbm_intmap, sizeof(pbm->pbm_intmap)); if (err != -1) { pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap)); err = prom_getproperty(prom_node, "interrupt-map-mask", (char *)&pbm->pbm_intmask, sizeof(pbm->pbm_intmask)); if (err == -1) { prom_printf("%s: Fatal error, no " "interrupt-map-mask.\n", pbm->name); prom_halt(); } } else { pbm->num_pbm_intmap = 0; memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask)); } err = prom_getproperty(prom_node, "bus-range", (char *)&busrange[0], sizeof(busrange)); if (err == 0 || err == -1) { prom_printf("%s: Fatal error, no bus-range.\n", pbm->name); prom_halt(); } pbm->pci_first_busno = busrange[0]; pbm->pci_last_busno = busrange[1]; pci_sun4v_iommu_init(pbm); } void sun4v_pci_init(int node, char *model_name) { struct pci_controller_info *p; struct pci_iommu *iommu; struct linux_prom64_registers regs; unsigned int devhandle; prom_getproperty(node, "reg", (char *)®s, sizeof(regs)); devhandle = (regs.phys_addr >> 32UL) & 0x0fffffff;; for (p = pci_controller_root; p; p = p->next) { struct pci_pbm_info *pbm; if (p->pbm_A.prom_node && p->pbm_B.prom_node) continue; pbm = (p->pbm_A.prom_node ? &p->pbm_A : &p->pbm_B); if (pbm->devhandle == (devhandle ^ 0x40)) { pci_sun4v_pbm_init(p, node, devhandle); return; } } p = kmalloc(sizeof(struct pci_controller_info), GFP_ATOMIC); if (!p) { prom_printf("SUN4V_PCI: Fatal memory allocation error.\n"); prom_halt(); } memset(p, 0, sizeof(*p)); iommu = kmalloc(sizeof(struct pci_iommu), GFP_ATOMIC); if (!iommu) { prom_printf("SCHIZO: Fatal memory allocation error.\n"); prom_halt(); } memset(iommu, 0, sizeof(*iommu)); p->pbm_A.iommu = iommu; iommu = kmalloc(sizeof(struct pci_iommu), GFP_ATOMIC); if (!iommu) { prom_printf("SCHIZO: Fatal memory allocation error.\n"); prom_halt(); } memset(iommu, 0, sizeof(*iommu)); p->pbm_B.iommu = iommu; p->next = pci_controller_root; pci_controller_root = p; p->index = pci_num_controllers++; p->pbms_same_domain = 0; p->scan_bus = pci_sun4v_scan_bus; p->irq_build = pci_sun4v_irq_build; p->base_address_update = pci_sun4v_base_address_update; p->resource_adjust = pci_sun4v_resource_adjust; p->pci_ops = &pci_sun4v_ops; /* Like PSYCHO and SCHIZO we have a 2GB aligned area * for memory space. */ pci_memspace_mask = 0x7fffffffUL; pci_sun4v_pbm_init(p, node, devhandle); }