/* * linux/fs/nfsd/nfs4state.c * * Copyright (c) 2001 The Regents of the University of Michigan. * All rights reserved. * * Kendrick Smith * Andy Adamson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NFSDDBG_FACILITY NFSDDBG_PROC /* Globals */ static time_t lease_time = 90; /* default lease time */ static time_t user_lease_time = 90; static time_t boot_time; static int in_grace = 1; static u32 current_clientid = 1; static u32 current_ownerid = 1; static u32 current_fileid = 1; static u32 current_delegid = 1; static u32 nfs4_init; static stateid_t zerostateid; /* bits all 0 */ static stateid_t onestateid; /* bits all 1 */ #define ZERO_STATEID(stateid) (!memcmp((stateid), &zerostateid, sizeof(stateid_t))) #define ONE_STATEID(stateid) (!memcmp((stateid), &onestateid, sizeof(stateid_t))) /* forward declarations */ static struct nfs4_stateid * find_stateid(stateid_t *stid, int flags); static struct nfs4_delegation * find_delegation_stateid(struct inode *ino, stateid_t *stid); static void release_stateid_lockowners(struct nfs4_stateid *open_stp); static char user_recovery_dirname[PATH_MAX] = "/var/lib/nfs/v4recovery"; static void nfs4_set_recdir(char *recdir); /* Locking: * * client_sema: * protects clientid_hashtbl[], clientstr_hashtbl[], * unconfstr_hashtbl[], uncofid_hashtbl[]. */ static DECLARE_MUTEX(client_sema); static kmem_cache_t *stateowner_slab = NULL; static kmem_cache_t *file_slab = NULL; static kmem_cache_t *stateid_slab = NULL; static kmem_cache_t *deleg_slab = NULL; void nfs4_lock_state(void) { down(&client_sema); } void nfs4_unlock_state(void) { up(&client_sema); } static inline u32 opaque_hashval(const void *ptr, int nbytes) { unsigned char *cptr = (unsigned char *) ptr; u32 x = 0; while (nbytes--) { x *= 37; x += *cptr++; } return x; } /* forward declarations */ static void release_stateowner(struct nfs4_stateowner *sop); static void release_stateid(struct nfs4_stateid *stp, int flags); /* * Delegation state */ /* recall_lock protects the del_recall_lru */ static spinlock_t recall_lock = SPIN_LOCK_UNLOCKED; static struct list_head del_recall_lru; static void free_nfs4_file(struct kref *kref) { struct nfs4_file *fp = container_of(kref, struct nfs4_file, fi_ref); list_del(&fp->fi_hash); iput(fp->fi_inode); kmem_cache_free(file_slab, fp); } static inline void put_nfs4_file(struct nfs4_file *fi) { kref_put(&fi->fi_ref, free_nfs4_file); } static inline void get_nfs4_file(struct nfs4_file *fi) { kref_get(&fi->fi_ref); } static struct nfs4_delegation * alloc_init_deleg(struct nfs4_client *clp, struct nfs4_stateid *stp, struct svc_fh *current_fh, u32 type) { struct nfs4_delegation *dp; struct nfs4_file *fp = stp->st_file; struct nfs4_callback *cb = &stp->st_stateowner->so_client->cl_callback; dprintk("NFSD alloc_init_deleg\n"); dp = kmem_cache_alloc(deleg_slab, GFP_KERNEL); if (dp == NULL) return dp; INIT_LIST_HEAD(&dp->dl_perfile); INIT_LIST_HEAD(&dp->dl_perclnt); INIT_LIST_HEAD(&dp->dl_recall_lru); dp->dl_client = clp; get_nfs4_file(fp); dp->dl_file = fp; dp->dl_flock = NULL; get_file(stp->st_vfs_file); dp->dl_vfs_file = stp->st_vfs_file; dp->dl_type = type; dp->dl_recall.cbr_dp = NULL; dp->dl_recall.cbr_ident = cb->cb_ident; dp->dl_recall.cbr_trunc = 0; dp->dl_stateid.si_boot = boot_time; dp->dl_stateid.si_stateownerid = current_delegid++; dp->dl_stateid.si_fileid = 0; dp->dl_stateid.si_generation = 0; dp->dl_fhlen = current_fh->fh_handle.fh_size; memcpy(dp->dl_fhval, ¤t_fh->fh_handle.fh_base, current_fh->fh_handle.fh_size); dp->dl_time = 0; atomic_set(&dp->dl_count, 1); list_add(&dp->dl_perfile, &fp->fi_delegations); list_add(&dp->dl_perclnt, &clp->cl_delegations); return dp; } void nfs4_put_delegation(struct nfs4_delegation *dp) { if (atomic_dec_and_test(&dp->dl_count)) { dprintk("NFSD: freeing dp %p\n",dp); put_nfs4_file(dp->dl_file); kmem_cache_free(deleg_slab, dp); } } /* Remove the associated file_lock first, then remove the delegation. * lease_modify() is called to remove the FS_LEASE file_lock from * the i_flock list, eventually calling nfsd's lock_manager * fl_release_callback. */ static void nfs4_close_delegation(struct nfs4_delegation *dp) { struct file *filp = dp->dl_vfs_file; dprintk("NFSD: close_delegation dp %p\n",dp); dp->dl_vfs_file = NULL; /* The following nfsd_close may not actually close the file, * but we want to remove the lease in any case. */ if (dp->dl_flock) setlease(filp, F_UNLCK, &dp->dl_flock); nfsd_close(filp); } /* Called under the state lock. */ static void unhash_delegation(struct nfs4_delegation *dp) { list_del_init(&dp->dl_perfile); list_del_init(&dp->dl_perclnt); spin_lock(&recall_lock); list_del_init(&dp->dl_recall_lru); spin_unlock(&recall_lock); nfs4_close_delegation(dp); nfs4_put_delegation(dp); } /* * SETCLIENTID state */ /* Hash tables for nfs4_clientid state */ #define CLIENT_HASH_BITS 4 #define CLIENT_HASH_SIZE (1 << CLIENT_HASH_BITS) #define CLIENT_HASH_MASK (CLIENT_HASH_SIZE - 1) #define clientid_hashval(id) \ ((id) & CLIENT_HASH_MASK) #define clientstr_hashval(name) \ (opaque_hashval((name), 8) & CLIENT_HASH_MASK) /* * reclaim_str_hashtbl[] holds known client info from previous reset/reboot * used in reboot/reset lease grace period processing * * conf_id_hashtbl[], and conf_str_hashtbl[] hold confirmed * setclientid_confirmed info. * * unconf_str_hastbl[] and unconf_id_hashtbl[] hold unconfirmed * setclientid info. * * client_lru holds client queue ordered by nfs4_client.cl_time * for lease renewal. * * close_lru holds (open) stateowner queue ordered by nfs4_stateowner.so_time * for last close replay. */ static struct list_head reclaim_str_hashtbl[CLIENT_HASH_SIZE]; static int reclaim_str_hashtbl_size = 0; static struct list_head conf_id_hashtbl[CLIENT_HASH_SIZE]; static struct list_head conf_str_hashtbl[CLIENT_HASH_SIZE]; static struct list_head unconf_str_hashtbl[CLIENT_HASH_SIZE]; static struct list_head unconf_id_hashtbl[CLIENT_HASH_SIZE]; static struct list_head client_lru; static struct list_head close_lru; static inline void renew_client(struct nfs4_client *clp) { /* * Move client to the end to the LRU list. */ dprintk("renewing client (clientid %08x/%08x)\n", clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); list_move_tail(&clp->cl_lru, &client_lru); clp->cl_time = get_seconds(); } /* SETCLIENTID and SETCLIENTID_CONFIRM Helper functions */ static int STALE_CLIENTID(clientid_t *clid) { if (clid->cl_boot == boot_time) return 0; dprintk("NFSD stale clientid (%08x/%08x)\n", clid->cl_boot, clid->cl_id); return 1; } /* * XXX Should we use a slab cache ? * This type of memory management is somewhat inefficient, but we use it * anyway since SETCLIENTID is not a common operation. */ static inline struct nfs4_client * alloc_client(struct xdr_netobj name) { struct nfs4_client *clp; if ((clp = kmalloc(sizeof(struct nfs4_client), GFP_KERNEL))!= NULL) { memset(clp, 0, sizeof(*clp)); if ((clp->cl_name.data = kmalloc(name.len, GFP_KERNEL)) != NULL) { memcpy(clp->cl_name.data, name.data, name.len); clp->cl_name.len = name.len; } else { kfree(clp); clp = NULL; } } return clp; } static inline void free_client(struct nfs4_client *clp) { if (clp->cl_cred.cr_group_info) put_group_info(clp->cl_cred.cr_group_info); kfree(clp->cl_name.data); kfree(clp); } void put_nfs4_client(struct nfs4_client *clp) { if (atomic_dec_and_test(&clp->cl_count)) free_client(clp); } static void expire_client(struct nfs4_client *clp) { struct nfs4_stateowner *sop; struct nfs4_delegation *dp; struct nfs4_callback *cb = &clp->cl_callback; struct rpc_clnt *clnt = clp->cl_callback.cb_client; struct list_head reaplist; dprintk("NFSD: expire_client cl_count %d\n", atomic_read(&clp->cl_count)); /* shutdown rpc client, ending any outstanding recall rpcs */ if (atomic_read(&cb->cb_set) == 1 && clnt) { rpc_shutdown_client(clnt); clnt = clp->cl_callback.cb_client = NULL; } INIT_LIST_HEAD(&reaplist); spin_lock(&recall_lock); while (!list_empty(&clp->cl_delegations)) { dp = list_entry(clp->cl_delegations.next, struct nfs4_delegation, dl_perclnt); dprintk("NFSD: expire client. dp %p, fp %p\n", dp, dp->dl_flock); list_del_init(&dp->dl_perclnt); list_move(&dp->dl_recall_lru, &reaplist); } spin_unlock(&recall_lock); while (!list_empty(&reaplist)) { dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); unhash_delegation(dp); } list_del(&clp->cl_idhash); list_del(&clp->cl_strhash); list_del(&clp->cl_lru); while (!list_empty(&clp->cl_openowners)) { sop = list_entry(clp->cl_openowners.next, struct nfs4_stateowner, so_perclient); release_stateowner(sop); } put_nfs4_client(clp); } static struct nfs4_client * create_client(struct xdr_netobj name, char *recdir) { struct nfs4_client *clp; if (!(clp = alloc_client(name))) goto out; memcpy(clp->cl_recdir, recdir, HEXDIR_LEN); atomic_set(&clp->cl_count, 1); atomic_set(&clp->cl_callback.cb_set, 0); INIT_LIST_HEAD(&clp->cl_idhash); INIT_LIST_HEAD(&clp->cl_strhash); INIT_LIST_HEAD(&clp->cl_openowners); INIT_LIST_HEAD(&clp->cl_delegations); INIT_LIST_HEAD(&clp->cl_lru); out: return clp; } static void copy_verf(struct nfs4_client *target, nfs4_verifier *source) { memcpy(target->cl_verifier.data, source->data, sizeof(target->cl_verifier.data)); } static void copy_clid(struct nfs4_client *target, struct nfs4_client *source) { target->cl_clientid.cl_boot = source->cl_clientid.cl_boot; target->cl_clientid.cl_id = source->cl_clientid.cl_id; } static void copy_cred(struct svc_cred *target, struct svc_cred *source) { target->cr_uid = source->cr_uid; target->cr_gid = source->cr_gid; target->cr_group_info = source->cr_group_info; get_group_info(target->cr_group_info); } static inline int same_name(const char *n1, const char *n2) { return 0 == memcmp(n1, n2, HEXDIR_LEN); } static int cmp_verf(nfs4_verifier *v1, nfs4_verifier *v2) { return(!memcmp(v1->data,v2->data,sizeof(v1->data))); } static int cmp_clid(clientid_t * cl1, clientid_t * cl2) { return((cl1->cl_boot == cl2->cl_boot) && (cl1->cl_id == cl2->cl_id)); } /* XXX what about NGROUP */ static int cmp_creds(struct svc_cred *cr1, struct svc_cred *cr2){ return(cr1->cr_uid == cr2->cr_uid); } static void gen_clid(struct nfs4_client *clp) { clp->cl_clientid.cl_boot = boot_time; clp->cl_clientid.cl_id = current_clientid++; } static void gen_confirm(struct nfs4_client *clp) { struct timespec tv; u32 * p; tv = CURRENT_TIME; p = (u32 *)clp->cl_confirm.data; *p++ = tv.tv_sec; *p++ = tv.tv_nsec; } static int check_name(struct xdr_netobj name) { if (name.len == 0) return 0; if (name.len > NFS4_OPAQUE_LIMIT) { printk("NFSD: check_name: name too long(%d)!\n", name.len); return 0; } return 1; } static void add_to_unconfirmed(struct nfs4_client *clp, unsigned int strhashval) { unsigned int idhashval; list_add(&clp->cl_strhash, &unconf_str_hashtbl[strhashval]); idhashval = clientid_hashval(clp->cl_clientid.cl_id); list_add(&clp->cl_idhash, &unconf_id_hashtbl[idhashval]); list_add_tail(&clp->cl_lru, &client_lru); clp->cl_time = get_seconds(); } static void move_to_confirmed(struct nfs4_client *clp) { unsigned int idhashval = clientid_hashval(clp->cl_clientid.cl_id); unsigned int strhashval; dprintk("NFSD: move_to_confirm nfs4_client %p\n", clp); list_del_init(&clp->cl_strhash); list_del_init(&clp->cl_idhash); list_add(&clp->cl_idhash, &conf_id_hashtbl[idhashval]); strhashval = clientstr_hashval(clp->cl_recdir); list_add(&clp->cl_strhash, &conf_str_hashtbl[strhashval]); renew_client(clp); } static struct nfs4_client * find_confirmed_client(clientid_t *clid) { struct nfs4_client *clp; unsigned int idhashval = clientid_hashval(clid->cl_id); list_for_each_entry(clp, &conf_id_hashtbl[idhashval], cl_idhash) { if (cmp_clid(&clp->cl_clientid, clid)) return clp; } return NULL; } static struct nfs4_client * find_unconfirmed_client(clientid_t *clid) { struct nfs4_client *clp; unsigned int idhashval = clientid_hashval(clid->cl_id); list_for_each_entry(clp, &unconf_id_hashtbl[idhashval], cl_idhash) { if (cmp_clid(&clp->cl_clientid, clid)) return clp; } return NULL; } static struct nfs4_client * find_confirmed_client_by_str(const char *dname, unsigned int hashval) { struct nfs4_client *clp; list_for_each_entry(clp, &conf_str_hashtbl[hashval], cl_strhash) { if (same_name(clp->cl_recdir, dname)) return clp; } return NULL; } static struct nfs4_client * find_unconfirmed_client_by_str(const char *dname, unsigned int hashval) { struct nfs4_client *clp; list_for_each_entry(clp, &unconf_str_hashtbl[hashval], cl_strhash) { if (same_name(clp->cl_recdir, dname)) return clp; } return NULL; } /* a helper function for parse_callback */ static int parse_octet(unsigned int *lenp, char **addrp) { unsigned int len = *lenp; char *p = *addrp; int n = -1; char c; for (;;) { if (!len) break; len--; c = *p++; if (c == '.') break; if ((c < '0') || (c > '9')) { n = -1; break; } if (n < 0) n = 0; n = (n * 10) + (c - '0'); if (n > 255) { n = -1; break; } } *lenp = len; *addrp = p; return n; } /* parse and set the setclientid ipv4 callback address */ static int parse_ipv4(unsigned int addr_len, char *addr_val, unsigned int *cbaddrp, unsigned short *cbportp) { int temp = 0; u32 cbaddr = 0; u16 cbport = 0; u32 addrlen = addr_len; char *addr = addr_val; int i, shift; /* ipaddress */ shift = 24; for(i = 4; i > 0 ; i--) { if ((temp = parse_octet(&addrlen, &addr)) < 0) { return 0; } cbaddr |= (temp << shift); if (shift > 0) shift -= 8; } *cbaddrp = cbaddr; /* port */ shift = 8; for(i = 2; i > 0 ; i--) { if ((temp = parse_octet(&addrlen, &addr)) < 0) { return 0; } cbport |= (temp << shift); if (shift > 0) shift -= 8; } *cbportp = cbport; return 1; } static void gen_callback(struct nfs4_client *clp, struct nfsd4_setclientid *se) { struct nfs4_callback *cb = &clp->cl_callback; /* Currently, we only support tcp for the callback channel */ if ((se->se_callback_netid_len != 3) || memcmp((char *)se->se_callback_netid_val, "tcp", 3)) goto out_err; if ( !(parse_ipv4(se->se_callback_addr_len, se->se_callback_addr_val, &cb->cb_addr, &cb->cb_port))) goto out_err; cb->cb_prog = se->se_callback_prog; cb->cb_ident = se->se_callback_ident; return; out_err: dprintk(KERN_INFO "NFSD: this client (clientid %08x/%08x) " "will not receive delegations\n", clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); return; } /* * RFC 3010 has a complex implmentation description of processing a * SETCLIENTID request consisting of 5 bullets, labeled as * CASE0 - CASE4 below. * * NOTES: * callback information will be processed in a future patch * * an unconfirmed record is added when: * NORMAL (part of CASE 4): there is no confirmed nor unconfirmed record. * CASE 1: confirmed record found with matching name, principal, * verifier, and clientid. * CASE 2: confirmed record found with matching name, principal, * and there is no unconfirmed record with matching * name and principal * * an unconfirmed record is replaced when: * CASE 3: confirmed record found with matching name, principal, * and an unconfirmed record is found with matching * name, principal, and with clientid and * confirm that does not match the confirmed record. * CASE 4: there is no confirmed record with matching name and * principal. there is an unconfirmed record with * matching name, principal. * * an unconfirmed record is deleted when: * CASE 1: an unconfirmed record that matches input name, verifier, * and confirmed clientid. * CASE 4: any unconfirmed records with matching name and principal * that exist after an unconfirmed record has been replaced * as described above. * */ int nfsd4_setclientid(struct svc_rqst *rqstp, struct nfsd4_setclientid *setclid) { u32 ip_addr = rqstp->rq_addr.sin_addr.s_addr; struct xdr_netobj clname = { .len = setclid->se_namelen, .data = setclid->se_name, }; nfs4_verifier clverifier = setclid->se_verf; unsigned int strhashval; struct nfs4_client *conf, *unconf, *new; int status; char dname[HEXDIR_LEN]; if (!check_name(clname)) return nfserr_inval; status = nfs4_make_rec_clidname(dname, &clname); if (status) return status; /* * XXX The Duplicate Request Cache (DRC) has been checked (??) * We get here on a DRC miss. */ strhashval = clientstr_hashval(dname); nfs4_lock_state(); conf = find_confirmed_client_by_str(dname, strhashval); if (conf) { /* * CASE 0: * clname match, confirmed, different principal * or different ip_address */ status = nfserr_clid_inuse; if (!cmp_creds(&conf->cl_cred, &rqstp->rq_cred) || conf->cl_addr != ip_addr) { printk("NFSD: setclientid: string in use by client" "(clientid %08x/%08x)\n", conf->cl_clientid.cl_boot, conf->cl_clientid.cl_id); goto out; } } unconf = find_unconfirmed_client_by_str(dname, strhashval); status = nfserr_resource; if (!conf) { /* * CASE 4: * placed first, because it is the normal case. */ if (unconf) expire_client(unconf); new = create_client(clname, dname); if (new == NULL) goto out; copy_verf(new, &clverifier); new->cl_addr = ip_addr; copy_cred(&new->cl_cred,&rqstp->rq_cred); gen_clid(new); gen_confirm(new); gen_callback(new, setclid); add_to_unconfirmed(new, strhashval); } else if (cmp_verf(&conf->cl_verifier, &clverifier)) { /* * CASE 1: * cl_name match, confirmed, principal match * verifier match: probable callback update * * remove any unconfirmed nfs4_client with * matching cl_name, cl_verifier, and cl_clientid * * create and insert an unconfirmed nfs4_client with same * cl_name, cl_verifier, and cl_clientid as existing * nfs4_client, but with the new callback info and a * new cl_confirm */ if (unconf) { /* Note this is removing unconfirmed {*x***}, * which is stronger than RFC recommended {vxc**}. * This has the advantage that there is at most * one {*x***} in either list at any time. */ expire_client(unconf); } new = create_client(clname, dname); if (new == NULL) goto out; copy_verf(new,&conf->cl_verifier); new->cl_addr = ip_addr; copy_cred(&new->cl_cred,&rqstp->rq_cred); copy_clid(new, conf); gen_confirm(new); gen_callback(new, setclid); add_to_unconfirmed(new,strhashval); } else if (!unconf) { /* * CASE 2: * clname match, confirmed, principal match * verfier does not match * no unconfirmed. create a new unconfirmed nfs4_client * using input clverifier, clname, and callback info * and generate a new cl_clientid and cl_confirm. */ new = create_client(clname, dname); if (new == NULL) goto out; copy_verf(new,&clverifier); new->cl_addr = ip_addr; copy_cred(&new->cl_cred,&rqstp->rq_cred); gen_clid(new); gen_confirm(new); gen_callback(new, setclid); add_to_unconfirmed(new, strhashval); } else if (!cmp_verf(&conf->cl_confirm, &unconf->cl_confirm)) { /* * CASE3: * confirmed found (name, principal match) * confirmed verifier does not match input clverifier * * unconfirmed found (name match) * confirmed->cl_confirm != unconfirmed->cl_confirm * * remove unconfirmed. * * create an unconfirmed nfs4_client * with same cl_name as existing confirmed nfs4_client, * but with new callback info, new cl_clientid, * new cl_verifier and a new cl_confirm */ expire_client(unconf); new = create_client(clname, dname); if (new == NULL) goto out; copy_verf(new,&clverifier); new->cl_addr = ip_addr; copy_cred(&new->cl_cred,&rqstp->rq_cred); gen_clid(new); gen_confirm(new); gen_callback(new, setclid); add_to_unconfirmed(new, strhashval); } else { /* No cases hit !!! */ status = nfserr_inval; goto out; } setclid->se_clientid.cl_boot = new->cl_clientid.cl_boot; setclid->se_clientid.cl_id = new->cl_clientid.cl_id; memcpy(setclid->se_confirm.data, new->cl_confirm.data, sizeof(setclid->se_confirm.data)); status = nfs_ok; out: nfs4_unlock_state(); return status; } /* * RFC 3010 has a complex implmentation description of processing a * SETCLIENTID_CONFIRM request consisting of 4 bullets describing * processing on a DRC miss, labeled as CASE1 - CASE4 below. * * NOTE: callback information will be processed here in a future patch */ int nfsd4_setclientid_confirm(struct svc_rqst *rqstp, struct nfsd4_setclientid_confirm *setclientid_confirm) { u32 ip_addr = rqstp->rq_addr.sin_addr.s_addr; struct nfs4_client *conf, *unconf; nfs4_verifier confirm = setclientid_confirm->sc_confirm; clientid_t * clid = &setclientid_confirm->sc_clientid; int status; if (STALE_CLIENTID(clid)) return nfserr_stale_clientid; /* * XXX The Duplicate Request Cache (DRC) has been checked (??) * We get here on a DRC miss. */ nfs4_lock_state(); conf = find_confirmed_client(clid); unconf = find_unconfirmed_client(clid); status = nfserr_clid_inuse; if (conf && conf->cl_addr != ip_addr) goto out; if (unconf && unconf->cl_addr != ip_addr) goto out; if ((conf && unconf) && (cmp_verf(&unconf->cl_confirm, &confirm)) && (cmp_verf(&conf->cl_verifier, &unconf->cl_verifier)) && (same_name(conf->cl_recdir,unconf->cl_recdir)) && (!cmp_verf(&conf->cl_confirm, &unconf->cl_confirm))) { /* CASE 1: * unconf record that matches input clientid and input confirm. * conf record that matches input clientid. * conf and unconf records match names, verifiers */ if (!cmp_creds(&conf->cl_cred, &unconf->cl_cred)) status = nfserr_clid_inuse; else { /* XXX: We just turn off callbacks until we can handle * change request correctly. */ atomic_set(&conf->cl_callback.cb_set, 0); gen_confirm(conf); nfsd4_remove_clid_dir(unconf); expire_client(unconf); status = nfs_ok; } } else if ((conf && !unconf) || ((conf && unconf) && (!cmp_verf(&conf->cl_verifier, &unconf->cl_verifier) || !same_name(conf->cl_recdir, unconf->cl_recdir)))) { /* CASE 2: * conf record that matches input clientid. * if unconf record matches input clientid, then * unconf->cl_name or unconf->cl_verifier don't match the * conf record. */ if (!cmp_creds(&conf->cl_cred,&rqstp->rq_cred)) status = nfserr_clid_inuse; else status = nfs_ok; } else if (!conf && unconf && cmp_verf(&unconf->cl_confirm, &confirm)) { /* CASE 3: * conf record not found. * unconf record found. * unconf->cl_confirm matches input confirm */ if (!cmp_creds(&unconf->cl_cred, &rqstp->rq_cred)) { status = nfserr_clid_inuse; } else { unsigned int hash = clientstr_hashval(unconf->cl_recdir); conf = find_confirmed_client_by_str(unconf->cl_recdir, hash); if (conf) { nfsd4_remove_clid_dir(conf); expire_client(conf); } move_to_confirmed(unconf); conf = unconf; status = nfs_ok; } } else if ((!conf || (conf && !cmp_verf(&conf->cl_confirm, &confirm))) && (!unconf || (unconf && !cmp_verf(&unconf->cl_confirm, &confirm)))) { /* CASE 4: * conf record not found, or if conf, conf->cl_confirm does not * match input confirm. * unconf record not found, or if unconf, unconf->cl_confirm * does not match input confirm. */ status = nfserr_stale_clientid; } else { /* check that we have hit one of the cases...*/ status = nfserr_clid_inuse; } out: if (!status) nfsd4_probe_callback(conf); nfs4_unlock_state(); return status; } /* * Open owner state (share locks) */ /* hash tables for nfs4_stateowner */ #define OWNER_HASH_BITS 8 #define OWNER_HASH_SIZE (1 << OWNER_HASH_BITS) #define OWNER_HASH_MASK (OWNER_HASH_SIZE - 1) #define ownerid_hashval(id) \ ((id) & OWNER_HASH_MASK) #define ownerstr_hashval(clientid, ownername) \ (((clientid) + opaque_hashval((ownername.data), (ownername.len))) & OWNER_HASH_MASK) static struct list_head ownerid_hashtbl[OWNER_HASH_SIZE]; static struct list_head ownerstr_hashtbl[OWNER_HASH_SIZE]; /* hash table for nfs4_file */ #define FILE_HASH_BITS 8 #define FILE_HASH_SIZE (1 << FILE_HASH_BITS) #define FILE_HASH_MASK (FILE_HASH_SIZE - 1) /* hash table for (open)nfs4_stateid */ #define STATEID_HASH_BITS 10 #define STATEID_HASH_SIZE (1 << STATEID_HASH_BITS) #define STATEID_HASH_MASK (STATEID_HASH_SIZE - 1) #define file_hashval(x) \ hash_ptr(x, FILE_HASH_BITS) #define stateid_hashval(owner_id, file_id) \ (((owner_id) + (file_id)) & STATEID_HASH_MASK) static struct list_head file_hashtbl[FILE_HASH_SIZE]; static struct list_head stateid_hashtbl[STATEID_HASH_SIZE]; /* OPEN Share state helper functions */ static inline struct nfs4_file * alloc_init_file(struct inode *ino) { struct nfs4_file *fp; unsigned int hashval = file_hashval(ino); fp = kmem_cache_alloc(file_slab, GFP_KERNEL); if (fp) { kref_init(&fp->fi_ref); INIT_LIST_HEAD(&fp->fi_hash); INIT_LIST_HEAD(&fp->fi_stateids); INIT_LIST_HEAD(&fp->fi_delegations); list_add(&fp->fi_hash, &file_hashtbl[hashval]); fp->fi_inode = igrab(ino); fp->fi_id = current_fileid++; return fp; } return NULL; } static void nfsd4_free_slab(kmem_cache_t **slab) { int status; if (*slab == NULL) return; status = kmem_cache_destroy(*slab); *slab = NULL; WARN_ON(status); } static void nfsd4_free_slabs(void) { nfsd4_free_slab(&stateowner_slab); nfsd4_free_slab(&file_slab); nfsd4_free_slab(&stateid_slab); nfsd4_free_slab(&deleg_slab); } static int nfsd4_init_slabs(void) { stateowner_slab = kmem_cache_create("nfsd4_stateowners", sizeof(struct nfs4_stateowner), 0, 0, NULL, NULL); if (stateowner_slab == NULL) goto out_nomem; file_slab = kmem_cache_create("nfsd4_files", sizeof(struct nfs4_file), 0, 0, NULL, NULL); if (file_slab == NULL) goto out_nomem; stateid_slab = kmem_cache_create("nfsd4_stateids", sizeof(struct nfs4_stateid), 0, 0, NULL, NULL); if (stateid_slab == NULL) goto out_nomem; deleg_slab = kmem_cache_create("nfsd4_delegations", sizeof(struct nfs4_delegation), 0, 0, NULL, NULL); if (deleg_slab == NULL) goto out_nomem; return 0; out_nomem: nfsd4_free_slabs(); dprintk("nfsd4: out of memory while initializing nfsv4\n"); return -ENOMEM; } void nfs4_free_stateowner(struct kref *kref) { struct nfs4_stateowner *sop = container_of(kref, struct nfs4_stateowner, so_ref); kfree(sop->so_owner.data); kmem_cache_free(stateowner_slab, sop); } static inline struct nfs4_stateowner * alloc_stateowner(struct xdr_netobj *owner) { struct nfs4_stateowner *sop; if ((sop = kmem_cache_alloc(stateowner_slab, GFP_KERNEL))) { if ((sop->so_owner.data = kmalloc(owner->len, GFP_KERNEL))) { memcpy(sop->so_owner.data, owner->data, owner->len); sop->so_owner.len = owner->len; kref_init(&sop->so_ref); return sop; } kmem_cache_free(stateowner_slab, sop); } return NULL; } static struct nfs4_stateowner * alloc_init_open_stateowner(unsigned int strhashval, struct nfs4_client *clp, struct nfsd4_open *open) { struct nfs4_stateowner *sop; struct nfs4_replay *rp; unsigned int idhashval; if (!(sop = alloc_stateowner(&open->op_owner))) return NULL; idhashval = ownerid_hashval(current_ownerid); INIT_LIST_HEAD(&sop->so_idhash); INIT_LIST_HEAD(&sop->so_strhash); INIT_LIST_HEAD(&sop->so_perclient); INIT_LIST_HEAD(&sop->so_stateids); INIT_LIST_HEAD(&sop->so_perstateid); /* not used */ INIT_LIST_HEAD(&sop->so_close_lru); sop->so_time = 0; list_add(&sop->so_idhash, &ownerid_hashtbl[idhashval]); list_add(&sop->so_strhash, &ownerstr_hashtbl[strhashval]); list_add(&sop->so_perclient, &clp->cl_openowners); sop->so_is_open_owner = 1; sop->so_id = current_ownerid++; sop->so_client = clp; sop->so_seqid = open->op_seqid; sop->so_confirmed = 0; rp = &sop->so_replay; rp->rp_status = NFSERR_SERVERFAULT; rp->rp_buflen = 0; rp->rp_buf = rp->rp_ibuf; return sop; } static void release_stateid_lockowners(struct nfs4_stateid *open_stp) { struct nfs4_stateowner *lock_sop; while (!list_empty(&open_stp->st_lockowners)) { lock_sop = list_entry(open_stp->st_lockowners.next, struct nfs4_stateowner, so_perstateid); /* list_del(&open_stp->st_lockowners); */ BUG_ON(lock_sop->so_is_open_owner); release_stateowner(lock_sop); } } static void unhash_stateowner(struct nfs4_stateowner *sop) { struct nfs4_stateid *stp; list_del(&sop->so_idhash); list_del(&sop->so_strhash); if (sop->so_is_open_owner) list_del(&sop->so_perclient); list_del(&sop->so_perstateid); while (!list_empty(&sop->so_stateids)) { stp = list_entry(sop->so_stateids.next, struct nfs4_stateid, st_perstateowner); if (sop->so_is_open_owner) release_stateid(stp, OPEN_STATE); else release_stateid(stp, LOCK_STATE); } } static void release_stateowner(struct nfs4_stateowner *sop) { unhash_stateowner(sop); list_del(&sop->so_close_lru); nfs4_put_stateowner(sop); } static inline void init_stateid(struct nfs4_stateid *stp, struct nfs4_file *fp, struct nfsd4_open *open) { struct nfs4_stateowner *sop = open->op_stateowner; unsigned int hashval = stateid_hashval(sop->so_id, fp->fi_id); INIT_LIST_HEAD(&stp->st_hash); INIT_LIST_HEAD(&stp->st_perstateowner); INIT_LIST_HEAD(&stp->st_lockowners); INIT_LIST_HEAD(&stp->st_perfile); list_add(&stp->st_hash, &stateid_hashtbl[hashval]); list_add(&stp->st_perstateowner, &sop->so_stateids); list_add(&stp->st_perfile, &fp->fi_stateids); stp->st_stateowner = sop; get_nfs4_file(fp); stp->st_file = fp; stp->st_stateid.si_boot = boot_time; stp->st_stateid.si_stateownerid = sop->so_id; stp->st_stateid.si_fileid = fp->fi_id; stp->st_stateid.si_generation = 0; stp->st_access_bmap = 0; stp->st_deny_bmap = 0; __set_bit(open->op_share_access, &stp->st_access_bmap); __set_bit(open->op_share_deny, &stp->st_deny_bmap); stp->st_openstp = NULL; } static void release_stateid(struct nfs4_stateid *stp, int flags) { struct file *filp = stp->st_vfs_file; list_del(&stp->st_hash); list_del(&stp->st_perfile); list_del(&stp->st_perstateowner); if (flags & OPEN_STATE) { release_stateid_lockowners(stp); stp->st_vfs_file = NULL; nfsd_close(filp); } else if (flags & LOCK_STATE) locks_remove_posix(filp, (fl_owner_t) stp->st_stateowner); put_nfs4_file(stp->st_file); kmem_cache_free(stateid_slab, stp); } static void move_to_close_lru(struct nfs4_stateowner *sop) { dprintk("NFSD: move_to_close_lru nfs4_stateowner %p\n", sop); unhash_stateowner(sop); list_add_tail(&sop->so_close_lru, &close_lru); sop->so_time = get_seconds(); } static int cmp_owner_str(struct nfs4_stateowner *sop, struct xdr_netobj *owner, clientid_t *clid) { return ((sop->so_owner.len == owner->len) && !memcmp(sop->so_owner.data, owner->data, owner->len) && (sop->so_client->cl_clientid.cl_id == clid->cl_id)); } static struct nfs4_stateowner * find_openstateowner_str(unsigned int hashval, struct nfsd4_open *open) { struct nfs4_stateowner *so = NULL; list_for_each_entry(so, &ownerstr_hashtbl[hashval], so_strhash) { if (cmp_owner_str(so, &open->op_owner, &open->op_clientid)) return so; } return NULL; } /* search file_hashtbl[] for file */ static struct nfs4_file * find_file(struct inode *ino) { unsigned int hashval = file_hashval(ino); struct nfs4_file *fp; list_for_each_entry(fp, &file_hashtbl[hashval], fi_hash) { if (fp->fi_inode == ino) { get_nfs4_file(fp); return fp; } } return NULL; } #define TEST_ACCESS(x) ((x > 0 || x < 4)?1:0) #define TEST_DENY(x) ((x >= 0 || x < 5)?1:0) static void set_access(unsigned int *access, unsigned long bmap) { int i; *access = 0; for (i = 1; i < 4; i++) { if (test_bit(i, &bmap)) *access |= i; } } static void set_deny(unsigned int *deny, unsigned long bmap) { int i; *deny = 0; for (i = 0; i < 4; i++) { if (test_bit(i, &bmap)) *deny |= i ; } } static int test_share(struct nfs4_stateid *stp, struct nfsd4_open *open) { unsigned int access, deny; set_access(&access, stp->st_access_bmap); set_deny(&deny, stp->st_deny_bmap); if ((access & open->op_share_deny) || (deny & open->op_share_access)) return 0; return 1; } /* * Called to check deny when READ with all zero stateid or * WRITE with all zero or all one stateid */ static int nfs4_share_conflict(struct svc_fh *current_fh, unsigned int deny_type) { struct inode *ino = current_fh->fh_dentry->d_inode; struct nfs4_file *fp; struct nfs4_stateid *stp; int ret; dprintk("NFSD: nfs4_share_conflict\n"); fp = find_file(ino); if (!fp) return nfs_ok; ret = nfserr_locked; /* Search for conflicting share reservations */ list_for_each_entry(stp, &fp->fi_stateids, st_perfile) { if (test_bit(deny_type, &stp->st_deny_bmap) || test_bit(NFS4_SHARE_DENY_BOTH, &stp->st_deny_bmap)) goto out; } ret = nfs_ok; out: put_nfs4_file(fp); return ret; } static inline void nfs4_file_downgrade(struct file *filp, unsigned int share_access) { if (share_access & NFS4_SHARE_ACCESS_WRITE) { put_write_access(filp->f_dentry->d_inode); filp->f_mode = (filp->f_mode | FMODE_READ) & ~FMODE_WRITE; } } /* * Recall a delegation */ static int do_recall(void *__dp) { struct nfs4_delegation *dp = __dp; daemonize("nfsv4-recall"); nfsd4_cb_recall(dp); return 0; } /* * Spawn a thread to perform a recall on the delegation represented * by the lease (file_lock) * * Called from break_lease() with lock_kernel() held. * Note: we assume break_lease will only call this *once* for any given * lease. */ static void nfsd_break_deleg_cb(struct file_lock *fl) { struct nfs4_delegation *dp= (struct nfs4_delegation *)fl->fl_owner; struct task_struct *t; dprintk("NFSD nfsd_break_deleg_cb: dp %p fl %p\n",dp,fl); if (!dp) return; /* We're assuming the state code never drops its reference * without first removing the lease. Since we're in this lease * callback (and since the lease code is serialized by the kernel * lock) we know the server hasn't removed the lease yet, we know * it's safe to take a reference: */ atomic_inc(&dp->dl_count); spin_lock(&recall_lock); list_add_tail(&dp->dl_recall_lru, &del_recall_lru); spin_unlock(&recall_lock); /* only place dl_time is set. protected by lock_kernel*/ dp->dl_time = get_seconds(); /* XXX need to merge NFSD_LEASE_TIME with fs/locks.c:lease_break_time */ fl->fl_break_time = jiffies + NFSD_LEASE_TIME * HZ; t = kthread_run(do_recall, dp, "%s", "nfs4_cb_recall"); if (IS_ERR(t)) { struct nfs4_client *clp = dp->dl_client; printk(KERN_INFO "NFSD: Callback thread failed for " "for client (clientid %08x/%08x)\n", clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); nfs4_put_delegation(dp); } } /* * The file_lock is being reapd. * * Called by locks_free_lock() with lock_kernel() held. */ static void nfsd_release_deleg_cb(struct file_lock *fl) { struct nfs4_delegation *dp = (struct nfs4_delegation *)fl->fl_owner; dprintk("NFSD nfsd_release_deleg_cb: fl %p dp %p dl_count %d\n", fl,dp, atomic_read(&dp->dl_count)); if (!(fl->fl_flags & FL_LEASE) || !dp) return; dp->dl_flock = NULL; } /* * Set the delegation file_lock back pointer. * * Called from __setlease() with lock_kernel() held. */ static void nfsd_copy_lock_deleg_cb(struct file_lock *new, struct file_lock *fl) { struct nfs4_delegation *dp = (struct nfs4_delegation *)new->fl_owner; dprintk("NFSD: nfsd_copy_lock_deleg_cb: new fl %p dp %p\n", new, dp); if (!dp) return; dp->dl_flock = new; } /* * Called from __setlease() with lock_kernel() held */ static int nfsd_same_client_deleg_cb(struct file_lock *onlist, struct file_lock *try) { struct nfs4_delegation *onlistd = (struct nfs4_delegation *)onlist->fl_owner; struct nfs4_delegation *tryd = (struct nfs4_delegation *)try->fl_owner; if (onlist->fl_lmops != try->fl_lmops) return 0; return onlistd->dl_client == tryd->dl_client; } static int nfsd_change_deleg_cb(struct file_lock **onlist, int arg) { if (arg & F_UNLCK) return lease_modify(onlist, arg); else return -EAGAIN; } static struct lock_manager_operations nfsd_lease_mng_ops = { .fl_break = nfsd_break_deleg_cb, .fl_release_private = nfsd_release_deleg_cb, .fl_copy_lock = nfsd_copy_lock_deleg_cb, .fl_mylease = nfsd_same_client_deleg_cb, .fl_change = nfsd_change_deleg_cb, }; int nfsd4_process_open1(struct nfsd4_open *open) { clientid_t *clientid = &open->op_clientid; struct nfs4_client *clp = NULL; unsigned int strhashval; struct nfs4_stateowner *sop = NULL; if (!check_name(open->op_owner)) return nfserr_inval; if (STALE_CLIENTID(&open->op_clientid)) return nfserr_stale_clientid; strhashval = ownerstr_hashval(clientid->cl_id, open->op_owner); sop = find_openstateowner_str(strhashval, open); open->op_stateowner = sop; if (!sop) { /* Make sure the client's lease hasn't expired. */ clp = find_confirmed_client(clientid); if (clp == NULL) return nfserr_expired; goto renew; } if (!sop->so_confirmed) { /* Replace unconfirmed owners without checking for replay. */ clp = sop->so_client; release_stateowner(sop); open->op_stateowner = NULL; goto renew; } if (open->op_seqid == sop->so_seqid - 1) { if (sop->so_replay.rp_buflen) return NFSERR_REPLAY_ME; /* The original OPEN failed so spectacularly * that we don't even have replay data saved! * Therefore, we have no choice but to continue * processing this OPEN; presumably, we'll * fail again for the same reason. */ dprintk("nfsd4_process_open1: replay with no replay cache\n"); goto renew; } if (open->op_seqid != sop->so_seqid) return nfserr_bad_seqid; renew: if (open->op_stateowner == NULL) { sop = alloc_init_open_stateowner(strhashval, clp, open); if (sop == NULL) return nfserr_resource; open->op_stateowner = sop; } list_del_init(&sop->so_close_lru); renew_client(sop->so_client); return nfs_ok; } static inline int nfs4_check_delegmode(struct nfs4_delegation *dp, int flags) { if ((flags & WR_STATE) && (dp->dl_type == NFS4_OPEN_DELEGATE_READ)) return nfserr_openmode; else return nfs_ok; } static struct nfs4_delegation * find_delegation_file(struct nfs4_file *fp, stateid_t *stid) { struct nfs4_delegation *dp; list_for_each_entry(dp, &fp->fi_delegations, dl_perfile) { if (dp->dl_stateid.si_stateownerid == stid->si_stateownerid) return dp; } return NULL; } static int nfs4_check_deleg(struct nfs4_file *fp, struct nfsd4_open *open, struct nfs4_delegation **dp) { int flags; int status = nfserr_bad_stateid; *dp = find_delegation_file(fp, &open->op_delegate_stateid); if (*dp == NULL) goto out; flags = open->op_share_access == NFS4_SHARE_ACCESS_READ ? RD_STATE : WR_STATE; status = nfs4_check_delegmode(*dp, flags); if (status) *dp = NULL; out: if (open->op_claim_type != NFS4_OPEN_CLAIM_DELEGATE_CUR) return nfs_ok; if (status) return status; open->op_stateowner->so_confirmed = 1; return nfs_ok; } static int nfs4_check_open(struct nfs4_file *fp, struct nfsd4_open *open, struct nfs4_stateid **stpp) { struct nfs4_stateid *local; int status = nfserr_share_denied; struct nfs4_stateowner *sop = open->op_stateowner; list_for_each_entry(local, &fp->fi_stateids, st_perfile) { /* ignore lock owners */ if (local->st_stateowner->so_is_open_owner == 0) continue; /* remember if we have seen this open owner */ if (local->st_stateowner == sop) *stpp = local; /* check for conflicting share reservations */ if (!test_share(local, open)) goto out; } status = 0; out: return status; } static inline struct nfs4_stateid * nfs4_alloc_stateid(void) { return kmem_cache_alloc(stateid_slab, GFP_KERNEL); } static int nfs4_new_open(struct svc_rqst *rqstp, struct nfs4_stateid **stpp, struct nfs4_delegation *dp, struct svc_fh *cur_fh, int flags) { struct nfs4_stateid *stp; stp = nfs4_alloc_stateid(); if (stp == NULL) return nfserr_resource; if (dp) { get_file(dp->dl_vfs_file); stp->st_vfs_file = dp->dl_vfs_file; } else { int status; status = nfsd_open(rqstp, cur_fh, S_IFREG, flags, &stp->st_vfs_file); if (status) { if (status == nfserr_dropit) status = nfserr_jukebox; kmem_cache_free(stateid_slab, stp); return status; } } *stpp = stp; return 0; } static inline int nfsd4_truncate(struct svc_rqst *rqstp, struct svc_fh *fh, struct nfsd4_open *open) { struct iattr iattr = { .ia_valid = ATTR_SIZE, .ia_size = 0, }; if (!open->op_truncate) return 0; if (!(open->op_share_access & NFS4_SHARE_ACCESS_WRITE)) return -EINVAL; return nfsd_setattr(rqstp, fh, &iattr, 0, (time_t)0); } static int nfs4_upgrade_open(struct svc_rqst *rqstp, struct svc_fh *cur_fh, struct nfs4_stateid *stp, struct nfsd4_open *open) { struct file *filp = stp->st_vfs_file; struct inode *inode = filp->f_dentry->d_inode; unsigned int share_access; int status; set_access(&share_access, stp->st_access_bmap); share_access = ~share_access; share_access &= open->op_share_access; if (!(share_access & NFS4_SHARE_ACCESS_WRITE)) return nfsd4_truncate(rqstp, cur_fh, open); status = get_write_access(inode); if (status) return nfserrno(status); status = nfsd4_truncate(rqstp, cur_fh, open); if (status) { put_write_access(inode); return status; } /* remember the open */ filp->f_mode = (filp->f_mode | FMODE_WRITE) & ~FMODE_READ; set_bit(open->op_share_access, &stp->st_access_bmap); set_bit(open->op_share_deny, &stp->st_deny_bmap); return nfs_ok; } static void nfs4_set_claim_prev(struct nfsd4_open *open) { open->op_stateowner->so_confirmed = 1; open->op_stateowner->so_client->cl_firststate = 1; } /* * Attempt to hand out a delegation. */ static void nfs4_open_delegation(struct svc_fh *fh, struct nfsd4_open *open, struct nfs4_stateid *stp) { struct nfs4_delegation *dp; struct nfs4_stateowner *sop = stp->st_stateowner; struct nfs4_callback *cb = &sop->so_client->cl_callback; struct file_lock fl, *flp = &fl; int status, flag = 0; flag = NFS4_OPEN_DELEGATE_NONE; open->op_recall = 0; switch (open->op_claim_type) { case NFS4_OPEN_CLAIM_PREVIOUS: if (!atomic_read(&cb->cb_set)) open->op_recall = 1; flag = open->op_delegate_type; if (flag == NFS4_OPEN_DELEGATE_NONE) goto out; break; case NFS4_OPEN_CLAIM_NULL: /* Let's not give out any delegations till everyone's * had the chance to reclaim theirs.... */ if (nfs4_in_grace()) goto out; if (!atomic_read(&cb->cb_set) || !sop->so_confirmed) goto out; if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE) flag = NFS4_OPEN_DELEGATE_WRITE; else flag = NFS4_OPEN_DELEGATE_READ; break; default: goto out; } dp = alloc_init_deleg(sop->so_client, stp, fh, flag); if (dp == NULL) { flag = NFS4_OPEN_DELEGATE_NONE; goto out; } locks_init_lock(&fl); fl.fl_lmops = &nfsd_lease_mng_ops; fl.fl_flags = FL_LEASE; fl.fl_end = OFFSET_MAX; fl.fl_owner = (fl_owner_t)dp; fl.fl_file = stp->st_vfs_file; fl.fl_pid = current->tgid; /* setlease checks to see if delegation should be handed out. * the lock_manager callbacks fl_mylease and fl_change are used */ if ((status = setlease(stp->st_vfs_file, flag == NFS4_OPEN_DELEGATE_READ? F_RDLCK: F_WRLCK, &flp))) { dprintk("NFSD: setlease failed [%d], no delegation\n", status); unhash_delegation(dp); flag = NFS4_OPEN_DELEGATE_NONE; goto out; } memcpy(&open->op_delegate_stateid, &dp->dl_stateid, sizeof(dp->dl_stateid)); dprintk("NFSD: delegation stateid=(%08x/%08x/%08x/%08x)\n\n", dp->dl_stateid.si_boot, dp->dl_stateid.si_stateownerid, dp->dl_stateid.si_fileid, dp->dl_stateid.si_generation); out: if (open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS && flag == NFS4_OPEN_DELEGATE_NONE && open->op_delegate_type != NFS4_OPEN_DELEGATE_NONE) printk("NFSD: WARNING: refusing delegation reclaim\n"); open->op_delegate_type = flag; } /* * called with nfs4_lock_state() held. */ int nfsd4_process_open2(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open *open) { struct nfs4_file *fp = NULL; struct inode *ino = current_fh->fh_dentry->d_inode; struct nfs4_stateid *stp = NULL; struct nfs4_delegation *dp = NULL; int status; if (nfs4_in_grace() && open->op_claim_type != NFS4_OPEN_CLAIM_PREVIOUS) return nfserr_grace; if (!nfs4_in_grace() && open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS) return nfserr_no_grace; status = nfserr_inval; if (!TEST_ACCESS(open->op_share_access) || !TEST_DENY(open->op_share_deny)) goto out; /* * Lookup file; if found, lookup stateid and check open request, * and check for delegations in the process of being recalled. * If not found, create the nfs4_file struct */ fp = find_file(ino); if (fp) { if ((status = nfs4_check_open(fp, open, &stp))) goto out; status = nfs4_check_deleg(fp, open, &dp); if (status) goto out; } else { status = nfserr_bad_stateid; if (open->op_claim_type == NFS4_OPEN_CLAIM_DELEGATE_CUR) goto out; status = nfserr_resource; fp = alloc_init_file(ino); if (fp == NULL) goto out; } /* * OPEN the file, or upgrade an existing OPEN. * If truncate fails, the OPEN fails. */ if (stp) { /* Stateid was found, this is an OPEN upgrade */ status = nfs4_upgrade_open(rqstp, current_fh, stp, open); if (status) goto out; update_stateid(&stp->st_stateid); } else { /* Stateid was not found, this is a new OPEN */ int flags = 0; if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE) flags = MAY_WRITE; else flags = MAY_READ; status = nfs4_new_open(rqstp, &stp, dp, current_fh, flags); if (status) goto out; init_stateid(stp, fp, open); status = nfsd4_truncate(rqstp, current_fh, open); if (status) { release_stateid(stp, OPEN_STATE); goto out; } } memcpy(&open->op_stateid, &stp->st_stateid, sizeof(stateid_t)); /* * Attempt to hand out a delegation. No error return, because the * OPEN succeeds even if we fail. */ nfs4_open_delegation(current_fh, open, stp); status = nfs_ok; dprintk("nfs4_process_open2: stateid=(%08x/%08x/%08x/%08x)\n", stp->st_stateid.si_boot, stp->st_stateid.si_stateownerid, stp->st_stateid.si_fileid, stp->st_stateid.si_generation); out: if (fp) put_nfs4_file(fp); if (status == 0 && open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS) nfs4_set_claim_prev(open); /* * To finish the open response, we just need to set the rflags. */ open->op_rflags = NFS4_OPEN_RESULT_LOCKTYPE_POSIX; if (!open->op_stateowner->so_confirmed) open->op_rflags |= NFS4_OPEN_RESULT_CONFIRM; return status; } static struct workqueue_struct *laundry_wq; static struct work_struct laundromat_work; static void laundromat_main(void *); static DECLARE_WORK(laundromat_work, laundromat_main, NULL); int nfsd4_renew(clientid_t *clid) { struct nfs4_client *clp; int status; nfs4_lock_state(); dprintk("process_renew(%08x/%08x): starting\n", clid->cl_boot, clid->cl_id); status = nfserr_stale_clientid; if (STALE_CLIENTID(clid)) goto out; clp = find_confirmed_client(clid); status = nfserr_expired; if (clp == NULL) { /* We assume the client took too long to RENEW. */ dprintk("nfsd4_renew: clientid not found!\n"); goto out; } renew_client(clp); status = nfserr_cb_path_down; if (!list_empty(&clp->cl_delegations) && !atomic_read(&clp->cl_callback.cb_set)) goto out; status = nfs_ok; out: nfs4_unlock_state(); return status; } static void end_grace(void) { dprintk("NFSD: end of grace period\n"); nfsd4_recdir_purge_old(); in_grace = 0; } static time_t nfs4_laundromat(void) { struct nfs4_client *clp; struct nfs4_stateowner *sop; struct nfs4_delegation *dp; struct list_head *pos, *next, reaplist; time_t cutoff = get_seconds() - NFSD_LEASE_TIME; time_t t, clientid_val = NFSD_LEASE_TIME; time_t u, test_val = NFSD_LEASE_TIME; nfs4_lock_state(); dprintk("NFSD: laundromat service - starting\n"); if (in_grace) end_grace(); list_for_each_safe(pos, next, &client_lru) { clp = list_entry(pos, struct nfs4_client, cl_lru); if (time_after((unsigned long)clp->cl_time, (unsigned long)cutoff)) { t = clp->cl_time - cutoff; if (clientid_val > t) clientid_val = t; break; } dprintk("NFSD: purging unused client (clientid %08x)\n", clp->cl_clientid.cl_id); nfsd4_remove_clid_dir(clp); expire_client(clp); } INIT_LIST_HEAD(&reaplist); spin_lock(&recall_lock); list_for_each_safe(pos, next, &del_recall_lru) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); if (time_after((unsigned long)dp->dl_time, (unsigned long)cutoff)) { u = dp->dl_time - cutoff; if (test_val > u) test_val = u; break; } dprintk("NFSD: purging unused delegation dp %p, fp %p\n", dp, dp->dl_flock); list_move(&dp->dl_recall_lru, &reaplist); } spin_unlock(&recall_lock); list_for_each_safe(pos, next, &reaplist) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); unhash_delegation(dp); } test_val = NFSD_LEASE_TIME; list_for_each_safe(pos, next, &close_lru) { sop = list_entry(pos, struct nfs4_stateowner, so_close_lru); if (time_after((unsigned long)sop->so_time, (unsigned long)cutoff)) { u = sop->so_time - cutoff; if (test_val > u) test_val = u; break; } dprintk("NFSD: purging unused open stateowner (so_id %d)\n", sop->so_id); list_del(&sop->so_close_lru); nfs4_put_stateowner(sop); } if (clientid_val < NFSD_LAUNDROMAT_MINTIMEOUT) clientid_val = NFSD_LAUNDROMAT_MINTIMEOUT; nfs4_unlock_state(); return clientid_val; } void laundromat_main(void *not_used) { time_t t; t = nfs4_laundromat(); dprintk("NFSD: laundromat_main - sleeping for %ld seconds\n", t); queue_delayed_work(laundry_wq, &laundromat_work, t*HZ); } static struct nfs4_stateowner * search_close_lru(u32 st_id, int flags) { struct nfs4_stateowner *local = NULL; if (flags & CLOSE_STATE) { list_for_each_entry(local, &close_lru, so_close_lru) { if (local->so_id == st_id) return local; } } return NULL; } static inline int nfs4_check_fh(struct svc_fh *fhp, struct nfs4_stateid *stp) { return fhp->fh_dentry->d_inode != stp->st_vfs_file->f_dentry->d_inode; } static int STALE_STATEID(stateid_t *stateid) { if (stateid->si_boot == boot_time) return 0; dprintk("NFSD: stale stateid (%08x/%08x/%08x/%08x)!\n", stateid->si_boot, stateid->si_stateownerid, stateid->si_fileid, stateid->si_generation); return 1; } static inline int access_permit_read(unsigned long access_bmap) { return test_bit(NFS4_SHARE_ACCESS_READ, &access_bmap) || test_bit(NFS4_SHARE_ACCESS_BOTH, &access_bmap) || test_bit(NFS4_SHARE_ACCESS_WRITE, &access_bmap); } static inline int access_permit_write(unsigned long access_bmap) { return test_bit(NFS4_SHARE_ACCESS_WRITE, &access_bmap) || test_bit(NFS4_SHARE_ACCESS_BOTH, &access_bmap); } static int nfs4_check_openmode(struct nfs4_stateid *stp, int flags) { int status = nfserr_openmode; if ((flags & WR_STATE) && (!access_permit_write(stp->st_access_bmap))) goto out; if ((flags & RD_STATE) && (!access_permit_read(stp->st_access_bmap))) goto out; status = nfs_ok; out: return status; } static inline int check_special_stateids(svc_fh *current_fh, stateid_t *stateid, int flags) { /* Trying to call delegreturn with a special stateid? Yuch: */ if (!(flags & (RD_STATE | WR_STATE))) return nfserr_bad_stateid; else if (ONE_STATEID(stateid) && (flags & RD_STATE)) return nfs_ok; else if (nfs4_in_grace()) { /* Answer in remaining cases depends on existance of * conflicting state; so we must wait out the grace period. */ return nfserr_grace; } else if (flags & WR_STATE) return nfs4_share_conflict(current_fh, NFS4_SHARE_DENY_WRITE); else /* (flags & RD_STATE) && ZERO_STATEID(stateid) */ return nfs4_share_conflict(current_fh, NFS4_SHARE_DENY_READ); } /* * Allow READ/WRITE during grace period on recovered state only for files * that are not able to provide mandatory locking. */ static inline int io_during_grace_disallowed(struct inode *inode, int flags) { return nfs4_in_grace() && (flags & (RD_STATE | WR_STATE)) && MANDATORY_LOCK(inode); } /* * Checks for stateid operations */ int nfs4_preprocess_stateid_op(struct svc_fh *current_fh, stateid_t *stateid, int flags, struct file **filpp) { struct nfs4_stateid *stp = NULL; struct nfs4_delegation *dp = NULL; stateid_t *stidp; struct inode *ino = current_fh->fh_dentry->d_inode; int status; dprintk("NFSD: preprocess_stateid_op: stateid = (%08x/%08x/%08x/%08x)\n", stateid->si_boot, stateid->si_stateownerid, stateid->si_fileid, stateid->si_generation); if (filpp) *filpp = NULL; if (io_during_grace_disallowed(ino, flags)) return nfserr_grace; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) return check_special_stateids(current_fh, stateid, flags); /* STALE STATEID */ status = nfserr_stale_stateid; if (STALE_STATEID(stateid)) goto out; /* BAD STATEID */ status = nfserr_bad_stateid; if (!stateid->si_fileid) { /* delegation stateid */ if(!(dp = find_delegation_stateid(ino, stateid))) { dprintk("NFSD: delegation stateid not found\n"); if (nfs4_in_grace()) status = nfserr_grace; goto out; } stidp = &dp->dl_stateid; } else { /* open or lock stateid */ if (!(stp = find_stateid(stateid, flags))) { dprintk("NFSD: open or lock stateid not found\n"); if (nfs4_in_grace()) status = nfserr_grace; goto out; } if ((flags & CHECK_FH) && nfs4_check_fh(current_fh, stp)) goto out; if (!stp->st_stateowner->so_confirmed) goto out; stidp = &stp->st_stateid; } if (stateid->si_generation > stidp->si_generation) goto out; /* OLD STATEID */ status = nfserr_old_stateid; if (stateid->si_generation < stidp->si_generation) goto out; if (stp) { if ((status = nfs4_check_openmode(stp,flags))) goto out; renew_client(stp->st_stateowner->so_client); if (filpp) *filpp = stp->st_vfs_file; } else if (dp) { if ((status = nfs4_check_delegmode(dp, flags))) goto out; renew_client(dp->dl_client); if (flags & DELEG_RET) unhash_delegation(dp); if (filpp) *filpp = dp->dl_vfs_file; } status = nfs_ok; out: return status; } static inline int setlkflg (int type) { return (type == NFS4_READW_LT || type == NFS4_READ_LT) ? RD_STATE : WR_STATE; } /* * Checks for sequence id mutating operations. */ static int nfs4_preprocess_seqid_op(struct svc_fh *current_fh, u32 seqid, stateid_t *stateid, int flags, struct nfs4_stateowner **sopp, struct nfs4_stateid **stpp, struct nfsd4_lock *lock) { struct nfs4_stateid *stp; struct nfs4_stateowner *sop; dprintk("NFSD: preprocess_seqid_op: seqid=%d " "stateid = (%08x/%08x/%08x/%08x)\n", seqid, stateid->si_boot, stateid->si_stateownerid, stateid->si_fileid, stateid->si_generation); *stpp = NULL; *sopp = NULL; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) { printk("NFSD: preprocess_seqid_op: magic stateid!\n"); return nfserr_bad_stateid; } if (STALE_STATEID(stateid)) return nfserr_stale_stateid; /* * We return BAD_STATEID if filehandle doesn't match stateid, * the confirmed flag is incorrecly set, or the generation * number is incorrect. */ stp = find_stateid(stateid, flags); if (stp == NULL) { /* * Also, we should make sure this isn't just the result of * a replayed close: */ sop = search_close_lru(stateid->si_stateownerid, flags); if (sop == NULL) return nfserr_bad_stateid; *sopp = sop; goto check_replay; } if (lock) { struct nfs4_stateowner *sop = stp->st_stateowner; clientid_t *lockclid = &lock->v.new.clientid; struct nfs4_client *clp = sop->so_client; int lkflg = 0; int status; lkflg = setlkflg(lock->lk_type); if (lock->lk_is_new) { if (!sop->so_is_open_owner) return nfserr_bad_stateid; if (!cmp_clid(&clp->cl_clientid, lockclid)) return nfserr_bad_stateid; /* stp is the open stateid */ status = nfs4_check_openmode(stp, lkflg); if (status) return status; } else { /* stp is the lock stateid */ status = nfs4_check_openmode(stp->st_openstp, lkflg); if (status) return status; } } if ((flags & CHECK_FH) && nfs4_check_fh(current_fh, stp)) { printk("NFSD: preprocess_seqid_op: fh-stateid mismatch!\n"); return nfserr_bad_stateid; } *stpp = stp; *sopp = sop = stp->st_stateowner; /* * We now validate the seqid and stateid generation numbers. * For the moment, we ignore the possibility of * generation number wraparound. */ if (seqid != sop->so_seqid) goto check_replay; if (sop->so_confirmed && flags & CONFIRM) { printk("NFSD: preprocess_seqid_op: expected" " unconfirmed stateowner!\n"); return nfserr_bad_stateid; } if (!sop->so_confirmed && !(flags & CONFIRM)) { printk("NFSD: preprocess_seqid_op: stateowner not" " confirmed yet!\n"); return nfserr_bad_stateid; } if (stateid->si_generation > stp->st_stateid.si_generation) { printk("NFSD: preprocess_seqid_op: future stateid?!\n"); return nfserr_bad_stateid; } if (stateid->si_generation < stp->st_stateid.si_generation) { printk("NFSD: preprocess_seqid_op: old stateid!\n"); return nfserr_old_stateid; } renew_client(sop->so_client); return nfs_ok; check_replay: if (seqid == sop->so_seqid - 1) { dprintk("NFSD: preprocess_seqid_op: retransmission?\n"); /* indicate replay to calling function */ return NFSERR_REPLAY_ME; } printk("NFSD: preprocess_seqid_op: bad seqid (expected %d, got %d)\n", sop->so_seqid, seqid); *sopp = NULL; return nfserr_bad_seqid; } int nfsd4_open_confirm(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open_confirm *oc, struct nfs4_stateowner **replay_owner) { int status; struct nfs4_stateowner *sop; struct nfs4_stateid *stp; dprintk("NFSD: nfsd4_open_confirm on file %.*s\n", (int)current_fh->fh_dentry->d_name.len, current_fh->fh_dentry->d_name.name); if ((status = fh_verify(rqstp, current_fh, S_IFREG, 0))) goto out; nfs4_lock_state(); if ((status = nfs4_preprocess_seqid_op(current_fh, oc->oc_seqid, &oc->oc_req_stateid, CHECK_FH | CONFIRM | OPEN_STATE, &oc->oc_stateowner, &stp, NULL))) goto out; sop = oc->oc_stateowner; sop->so_confirmed = 1; update_stateid(&stp->st_stateid); memcpy(&oc->oc_resp_stateid, &stp->st_stateid, sizeof(stateid_t)); dprintk("NFSD: nfsd4_open_confirm: success, seqid=%d " "stateid=(%08x/%08x/%08x/%08x)\n", oc->oc_seqid, stp->st_stateid.si_boot, stp->st_stateid.si_stateownerid, stp->st_stateid.si_fileid, stp->st_stateid.si_generation); nfsd4_create_clid_dir(sop->so_client); out: if (oc->oc_stateowner) { nfs4_get_stateowner(oc->oc_stateowner); *replay_owner = oc->oc_stateowner; } nfs4_unlock_state(); return status; } /* * unset all bits in union bitmap (bmap) that * do not exist in share (from successful OPEN_DOWNGRADE) */ static void reset_union_bmap_access(unsigned long access, unsigned long *bmap) { int i; for (i = 1; i < 4; i++) { if ((i & access) != i) __clear_bit(i, bmap); } } static void reset_union_bmap_deny(unsigned long deny, unsigned long *bmap) { int i; for (i = 0; i < 4; i++) { if ((i & deny) != i) __clear_bit(i, bmap); } } int nfsd4_open_downgrade(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open_downgrade *od, struct nfs4_stateowner **replay_owner) { int status; struct nfs4_stateid *stp; unsigned int share_access; dprintk("NFSD: nfsd4_open_downgrade on file %.*s\n", (int)current_fh->fh_dentry->d_name.len, current_fh->fh_dentry->d_name.name); if (!TEST_ACCESS(od->od_share_access) || !TEST_DENY(od->od_share_deny)) return nfserr_inval; nfs4_lock_state(); if ((status = nfs4_preprocess_seqid_op(current_fh, od->od_seqid, &od->od_stateid, CHECK_FH | OPEN_STATE, &od->od_stateowner, &stp, NULL))) goto out; status = nfserr_inval; if (!test_bit(od->od_share_access, &stp->st_access_bmap)) { dprintk("NFSD:access not a subset current bitmap: 0x%lx, input access=%08x\n", stp->st_access_bmap, od->od_share_access); goto out; } if (!test_bit(od->od_share_deny, &stp->st_deny_bmap)) { dprintk("NFSD:deny not a subset current bitmap: 0x%lx, input deny=%08x\n", stp->st_deny_bmap, od->od_share_deny); goto out; } set_access(&share_access, stp->st_access_bmap); nfs4_file_downgrade(stp->st_vfs_file, share_access & ~od->od_share_access); reset_union_bmap_access(od->od_share_access, &stp->st_access_bmap); reset_union_bmap_deny(od->od_share_deny, &stp->st_deny_bmap); update_stateid(&stp->st_stateid); memcpy(&od->od_stateid, &stp->st_stateid, sizeof(stateid_t)); status = nfs_ok; out: if (od->od_stateowner) { nfs4_get_stateowner(od->od_stateowner); *replay_owner = od->od_stateowner; } nfs4_unlock_state(); return status; } /* * nfs4_unlock_state() called after encode */ int nfsd4_close(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_close *close, struct nfs4_stateowner **replay_owner) { int status; struct nfs4_stateid *stp; dprintk("NFSD: nfsd4_close on file %.*s\n", (int)current_fh->fh_dentry->d_name.len, current_fh->fh_dentry->d_name.name); nfs4_lock_state(); /* check close_lru for replay */ if ((status = nfs4_preprocess_seqid_op(current_fh, close->cl_seqid, &close->cl_stateid, CHECK_FH | OPEN_STATE | CLOSE_STATE, &close->cl_stateowner, &stp, NULL))) goto out; status = nfs_ok; update_stateid(&stp->st_stateid); memcpy(&close->cl_stateid, &stp->st_stateid, sizeof(stateid_t)); /* release_stateid() calls nfsd_close() if needed */ release_stateid(stp, OPEN_STATE); /* place unused nfs4_stateowners on so_close_lru list to be * released by the laundromat service after the lease period * to enable us to handle CLOSE replay */ if (list_empty(&close->cl_stateowner->so_stateids)) move_to_close_lru(close->cl_stateowner); out: if (close->cl_stateowner) { nfs4_get_stateowner(close->cl_stateowner); *replay_owner = close->cl_stateowner; } nfs4_unlock_state(); return status; } int nfsd4_delegreturn(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_delegreturn *dr) { int status; if ((status = fh_verify(rqstp, current_fh, S_IFREG, 0))) goto out; nfs4_lock_state(); status = nfs4_preprocess_stateid_op(current_fh, &dr->dr_stateid, DELEG_RET, NULL); nfs4_unlock_state(); out: return status; } /* * Lock owner state (byte-range locks) */ #define LOFF_OVERFLOW(start, len) ((u64)(len) > ~(u64)(start)) #define LOCK_HASH_BITS 8 #define LOCK_HASH_SIZE (1 << LOCK_HASH_BITS) #define LOCK_HASH_MASK (LOCK_HASH_SIZE - 1) #define lockownerid_hashval(id) \ ((id) & LOCK_HASH_MASK) static inline unsigned int lock_ownerstr_hashval(struct inode *inode, u32 cl_id, struct xdr_netobj *ownername) { return (file_hashval(inode) + cl_id + opaque_hashval(ownername->data, ownername->len)) & LOCK_HASH_MASK; } static struct list_head lock_ownerid_hashtbl[LOCK_HASH_SIZE]; static struct list_head lock_ownerstr_hashtbl[LOCK_HASH_SIZE]; static struct list_head lockstateid_hashtbl[STATEID_HASH_SIZE]; static struct nfs4_stateid * find_stateid(stateid_t *stid, int flags) { struct nfs4_stateid *local = NULL; u32 st_id = stid->si_stateownerid; u32 f_id = stid->si_fileid; unsigned int hashval; dprintk("NFSD: find_stateid flags 0x%x\n",flags); if ((flags & LOCK_STATE) || (flags & RD_STATE) || (flags & WR_STATE)) { hashval = stateid_hashval(st_id, f_id); list_for_each_entry(local, &lockstateid_hashtbl[hashval], st_hash) { if ((local->st_stateid.si_stateownerid == st_id) && (local->st_stateid.si_fileid == f_id)) return local; } } if ((flags & OPEN_STATE) || (flags & RD_STATE) || (flags & WR_STATE)) { hashval = stateid_hashval(st_id, f_id); list_for_each_entry(local, &stateid_hashtbl[hashval], st_hash) { if ((local->st_stateid.si_stateownerid == st_id) && (local->st_stateid.si_fileid == f_id)) return local; } } return NULL; } static struct nfs4_delegation * find_delegation_stateid(struct inode *ino, stateid_t *stid) { struct nfs4_file *fp; struct nfs4_delegation *dl; dprintk("NFSD:find_delegation_stateid stateid=(%08x/%08x/%08x/%08x)\n", stid->si_boot, stid->si_stateownerid, stid->si_fileid, stid->si_generation); fp = find_file(ino); if (!fp) return NULL; dl = find_delegation_file(fp, stid); put_nfs4_file(fp); return dl; } /* * TODO: Linux file offsets are _signed_ 64-bit quantities, which means that * we can't properly handle lock requests that go beyond the (2^63 - 1)-th * byte, because of sign extension problems. Since NFSv4 calls for 64-bit * locking, this prevents us from being completely protocol-compliant. The * real solution to this problem is to start using unsigned file offsets in * the VFS, but this is a very deep change! */ static inline void nfs4_transform_lock_offset(struct file_lock *lock) { if (lock->fl_start < 0) lock->fl_start = OFFSET_MAX; if (lock->fl_end < 0) lock->fl_end = OFFSET_MAX; } static int nfs4_verify_lock_stateowner(struct nfs4_stateowner *sop, unsigned int hashval) { struct nfs4_stateowner *local = NULL; int status = 0; if (hashval >= LOCK_HASH_SIZE) goto out; list_for_each_entry(local, &lock_ownerid_hashtbl[hashval], so_idhash) { if (local == sop) { status = 1; goto out; } } out: return status; } static inline void nfs4_set_lock_denied(struct file_lock *fl, struct nfsd4_lock_denied *deny) { struct nfs4_stateowner *sop = (struct nfs4_stateowner *) fl->fl_owner; unsigned int hval = lockownerid_hashval(sop->so_id); deny->ld_sop = NULL; if (nfs4_verify_lock_stateowner(sop, hval)) { kref_get(&sop->so_ref); deny->ld_sop = sop; deny->ld_clientid = sop->so_client->cl_clientid; } deny->ld_start = fl->fl_start; deny->ld_length = ~(u64)0; if (fl->fl_end != ~(u64)0) deny->ld_length = fl->fl_end - fl->fl_start + 1; deny->ld_type = NFS4_READ_LT; if (fl->fl_type != F_RDLCK) deny->ld_type = NFS4_WRITE_LT; } static struct nfs4_stateowner * find_lockstateowner_str(struct inode *inode, clientid_t *clid, struct xdr_netobj *owner) { unsigned int hashval = lock_ownerstr_hashval(inode, clid->cl_id, owner); struct nfs4_stateowner *op; list_for_each_entry(op, &lock_ownerstr_hashtbl[hashval], so_strhash) { if (cmp_owner_str(op, owner, clid)) return op; } return NULL; } /* * Alloc a lock owner structure. * Called in nfsd4_lock - therefore, OPEN and OPEN_CONFIRM (if needed) has * occured. * * strhashval = lock_ownerstr_hashval */ static struct nfs4_stateowner * alloc_init_lock_stateowner(unsigned int strhashval, struct nfs4_client *clp, struct nfs4_stateid *open_stp, struct nfsd4_lock *lock) { struct nfs4_stateowner *sop; struct nfs4_replay *rp; unsigned int idhashval; if (!(sop = alloc_stateowner(&lock->lk_new_owner))) return NULL; idhashval = lockownerid_hashval(current_ownerid); INIT_LIST_HEAD(&sop->so_idhash); INIT_LIST_HEAD(&sop->so_strhash); INIT_LIST_HEAD(&sop->so_perclient); INIT_LIST_HEAD(&sop->so_stateids); INIT_LIST_HEAD(&sop->so_perstateid); INIT_LIST_HEAD(&sop->so_close_lru); /* not used */ sop->so_time = 0; list_add(&sop->so_idhash, &lock_ownerid_hashtbl[idhashval]); list_add(&sop->so_strhash, &lock_ownerstr_hashtbl[strhashval]); list_add(&sop->so_perstateid, &open_stp->st_lockowners); sop->so_is_open_owner = 0; sop->so_id = current_ownerid++; sop->so_client = clp; /* It is the openowner seqid that will be incremented in encode in the * case of new lockowners; so increment the lock seqid manually: */ sop->so_seqid = lock->lk_new_lock_seqid + 1; sop->so_confirmed = 1; rp = &sop->so_replay; rp->rp_status = NFSERR_SERVERFAULT; rp->rp_buflen = 0; rp->rp_buf = rp->rp_ibuf; return sop; } static struct nfs4_stateid * alloc_init_lock_stateid(struct nfs4_stateowner *sop, struct nfs4_file *fp, struct nfs4_stateid *open_stp) { struct nfs4_stateid *stp; unsigned int hashval = stateid_hashval(sop->so_id, fp->fi_id); stp = nfs4_alloc_stateid(); if (stp == NULL) goto out; INIT_LIST_HEAD(&stp->st_hash); INIT_LIST_HEAD(&stp->st_perfile); INIT_LIST_HEAD(&stp->st_perstateowner); INIT_LIST_HEAD(&stp->st_lockowners); /* not used */ list_add(&stp->st_hash, &lockstateid_hashtbl[hashval]); list_add(&stp->st_perfile, &fp->fi_stateids); list_add(&stp->st_perstateowner, &sop->so_stateids); stp->st_stateowner = sop; get_nfs4_file(fp); stp->st_file = fp; stp->st_stateid.si_boot = boot_time; stp->st_stateid.si_stateownerid = sop->so_id; stp->st_stateid.si_fileid = fp->fi_id; stp->st_stateid.si_generation = 0; stp->st_vfs_file = open_stp->st_vfs_file; /* FIXME refcount?? */ stp->st_access_bmap = open_stp->st_access_bmap; stp->st_deny_bmap = open_stp->st_deny_bmap; stp->st_openstp = open_stp; out: return stp; } static int check_lock_length(u64 offset, u64 length) { return ((length == 0) || ((length != ~(u64)0) && LOFF_OVERFLOW(offset, length))); } /* * LOCK operation */ int nfsd4_lock(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_lock *lock, struct nfs4_stateowner **replay_owner) { struct nfs4_stateowner *open_sop = NULL; struct nfs4_stateowner *lock_sop = NULL; struct nfs4_stateid *lock_stp; struct file *filp; struct file_lock file_lock; struct file_lock *conflock; int status = 0; unsigned int strhashval; dprintk("NFSD: nfsd4_lock: start=%Ld length=%Ld\n", (long long) lock->lk_offset, (long long) lock->lk_length); if (check_lock_length(lock->lk_offset, lock->lk_length)) return nfserr_inval; if ((status = fh_verify(rqstp, current_fh, S_IFREG, MAY_LOCK))) { dprintk("NFSD: nfsd4_lock: permission denied!\n"); return status; } nfs4_lock_state(); if (lock->lk_is_new) { /* * Client indicates that this is a new lockowner. * Use open owner and open stateid to create lock owner and * lock stateid. */ struct nfs4_stateid *open_stp = NULL; struct nfs4_file *fp; status = nfserr_stale_clientid; if (STALE_CLIENTID(&lock->lk_new_clientid)) goto out; /* validate and update open stateid and open seqid */ status = nfs4_preprocess_seqid_op(current_fh, lock->lk_new_open_seqid, &lock->lk_new_open_stateid, CHECK_FH | OPEN_STATE, &lock->lk_replay_owner, &open_stp, lock); if (status) goto out; open_sop = lock->lk_replay_owner; /* create lockowner and lock stateid */ fp = open_stp->st_file; strhashval = lock_ownerstr_hashval(fp->fi_inode, open_sop->so_client->cl_clientid.cl_id, &lock->v.new.owner); /* XXX: Do we need to check for duplicate stateowners on * the same file, or should they just be allowed (and * create new stateids)? */ status = nfserr_resource; lock_sop = alloc_init_lock_stateowner(strhashval, open_sop->so_client, open_stp, lock); if (lock_sop == NULL) goto out; lock_stp = alloc_init_lock_stateid(lock_sop, fp, open_stp); if (lock_stp == NULL) goto out; } else { /* lock (lock owner + lock stateid) already exists */ status = nfs4_preprocess_seqid_op(current_fh, lock->lk_old_lock_seqid, &lock->lk_old_lock_stateid, CHECK_FH | LOCK_STATE, &lock->lk_replay_owner, &lock_stp, lock); if (status) goto out; lock_sop = lock->lk_replay_owner; } /* lock->lk_replay_owner and lock_stp have been created or found */ filp = lock_stp->st_vfs_file; status = nfserr_grace; if (nfs4_in_grace() && !lock->lk_reclaim) goto out; status = nfserr_no_grace; if (!nfs4_in_grace() && lock->lk_reclaim) goto out; locks_init_lock(&file_lock); switch (lock->lk_type) { case NFS4_READ_LT: case NFS4_READW_LT: file_lock.fl_type = F_RDLCK; break; case NFS4_WRITE_LT: case NFS4_WRITEW_LT: file_lock.fl_type = F_WRLCK; break; default: status = nfserr_inval; goto out; } file_lock.fl_owner = (fl_owner_t)lock_sop; file_lock.fl_pid = current->tgid; file_lock.fl_file = filp; file_lock.fl_flags = FL_POSIX; file_lock.fl_start = lock->lk_offset; if ((lock->lk_length == ~(u64)0) || LOFF_OVERFLOW(lock->lk_offset, lock->lk_length)) file_lock.fl_end = ~(u64)0; else file_lock.fl_end = lock->lk_offset + lock->lk_length - 1; nfs4_transform_lock_offset(&file_lock); /* * Try to lock the file in the VFS. * Note: locks.c uses the BKL to protect the inode's lock list. */ status = posix_lock_file(filp, &file_lock); dprintk("NFSD: nfsd4_lock: posix_lock_file status %d\n",status); switch (-status) { case 0: /* success! */ update_stateid(&lock_stp->st_stateid); memcpy(&lock->lk_resp_stateid, &lock_stp->st_stateid, sizeof(stateid_t)); goto out; case (EAGAIN): goto conflicting_lock; case (EDEADLK): status = nfserr_deadlock; default: dprintk("NFSD: nfsd4_lock: posix_lock_file() failed! status %d\n",status); goto out; } conflicting_lock: dprintk("NFSD: nfsd4_lock: conflicting lock found!\n"); status = nfserr_denied; /* XXX There is a race here. Future patch needed to provide * an atomic posix_lock_and_test_file */ if (!(conflock = posix_test_lock(filp, &file_lock))) { status = nfserr_serverfault; goto out; } nfs4_set_lock_denied(conflock, &lock->lk_denied); out: if (status && lock->lk_is_new && lock_sop) release_stateowner(lock_sop); if (lock->lk_replay_owner) { nfs4_get_stateowner(lock->lk_replay_owner); *replay_owner = lock->lk_replay_owner; } nfs4_unlock_state(); return status; } /* * LOCKT operation */ int nfsd4_lockt(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_lockt *lockt) { struct inode *inode; struct file file; struct file_lock file_lock; struct file_lock *conflicting_lock; int status; if (nfs4_in_grace()) return nfserr_grace; if (check_lock_length(lockt->lt_offset, lockt->lt_length)) return nfserr_inval; lockt->lt_stateowner = NULL; nfs4_lock_state(); status = nfserr_stale_clientid; if (STALE_CLIENTID(&lockt->lt_clientid)) goto out; if ((status = fh_verify(rqstp, current_fh, S_IFREG, 0))) { dprintk("NFSD: nfsd4_lockt: fh_verify() failed!\n"); if (status == nfserr_symlink) status = nfserr_inval; goto out; } inode = current_fh->fh_dentry->d_inode; locks_init_lock(&file_lock); switch (lockt->lt_type) { case NFS4_READ_LT: case NFS4_READW_LT: file_lock.fl_type = F_RDLCK; break; case NFS4_WRITE_LT: case NFS4_WRITEW_LT: file_lock.fl_type = F_WRLCK; break; default: printk("NFSD: nfs4_lockt: bad lock type!\n"); status = nfserr_inval; goto out; } lockt->lt_stateowner = find_lockstateowner_str(inode, &lockt->lt_clientid, &lockt->lt_owner); if (lockt->lt_stateowner) file_lock.fl_owner = (fl_owner_t)lockt->lt_stateowner; file_lock.fl_pid = current->tgid; file_lock.fl_flags = FL_POSIX; file_lock.fl_start = lockt->lt_offset; if ((lockt->lt_length == ~(u64)0) || LOFF_OVERFLOW(lockt->lt_offset, lockt->lt_length)) file_lock.fl_end = ~(u64)0; else file_lock.fl_end = lockt->lt_offset + lockt->lt_length - 1; nfs4_transform_lock_offset(&file_lock); /* posix_test_lock uses the struct file _only_ to resolve the inode. * since LOCKT doesn't require an OPEN, and therefore a struct * file may not exist, pass posix_test_lock a struct file with * only the dentry:inode set. */ memset(&file, 0, sizeof (struct file)); file.f_dentry = current_fh->fh_dentry; status = nfs_ok; conflicting_lock = posix_test_lock(&file, &file_lock); if (conflicting_lock) { status = nfserr_denied; nfs4_set_lock_denied(conflicting_lock, &lockt->lt_denied); } out: nfs4_unlock_state(); return status; } int nfsd4_locku(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_locku *locku, struct nfs4_stateowner **replay_owner) { struct nfs4_stateid *stp; struct file *filp = NULL; struct file_lock file_lock; int status; dprintk("NFSD: nfsd4_locku: start=%Ld length=%Ld\n", (long long) locku->lu_offset, (long long) locku->lu_length); if (check_lock_length(locku->lu_offset, locku->lu_length)) return nfserr_inval; nfs4_lock_state(); if ((status = nfs4_preprocess_seqid_op(current_fh, locku->lu_seqid, &locku->lu_stateid, CHECK_FH | LOCK_STATE, &locku->lu_stateowner, &stp, NULL))) goto out; filp = stp->st_vfs_file; BUG_ON(!filp); locks_init_lock(&file_lock); file_lock.fl_type = F_UNLCK; file_lock.fl_owner = (fl_owner_t) locku->lu_stateowner; file_lock.fl_pid = current->tgid; file_lock.fl_file = filp; file_lock.fl_flags = FL_POSIX; file_lock.fl_start = locku->lu_offset; if ((locku->lu_length == ~(u64)0) || LOFF_OVERFLOW(locku->lu_offset, locku->lu_length)) file_lock.fl_end = ~(u64)0; else file_lock.fl_end = locku->lu_offset + locku->lu_length - 1; nfs4_transform_lock_offset(&file_lock); /* * Try to unlock the file in the VFS. */ status = posix_lock_file(filp, &file_lock); if (status) { dprintk("NFSD: nfs4_locku: posix_lock_file failed!\n"); goto out_nfserr; } /* * OK, unlock succeeded; the only thing left to do is update the stateid. */ update_stateid(&stp->st_stateid); memcpy(&locku->lu_stateid, &stp->st_stateid, sizeof(stateid_t)); out: if (locku->lu_stateowner) { nfs4_get_stateowner(locku->lu_stateowner); *replay_owner = locku->lu_stateowner; } nfs4_unlock_state(); return status; out_nfserr: status = nfserrno(status); goto out; } /* * returns * 1: locks held by lockowner * 0: no locks held by lockowner */ static int check_for_locks(struct file *filp, struct nfs4_stateowner *lowner) { struct file_lock **flpp; struct inode *inode = filp->f_dentry->d_inode; int status = 0; lock_kernel(); for (flpp = &inode->i_flock; *flpp != NULL; flpp = &(*flpp)->fl_next) { if ((*flpp)->fl_owner == (fl_owner_t)lowner) { status = 1; goto out; } } out: unlock_kernel(); return status; } int nfsd4_release_lockowner(struct svc_rqst *rqstp, struct nfsd4_release_lockowner *rlockowner) { clientid_t *clid = &rlockowner->rl_clientid; struct nfs4_stateowner *sop; struct nfs4_stateid *stp; struct xdr_netobj *owner = &rlockowner->rl_owner; struct list_head matches; int i; int status; dprintk("nfsd4_release_lockowner clientid: (%08x/%08x):\n", clid->cl_boot, clid->cl_id); /* XXX check for lease expiration */ status = nfserr_stale_clientid; if (STALE_CLIENTID(clid)) return status; nfs4_lock_state(); status = nfserr_locks_held; /* XXX: we're doing a linear search through all the lockowners. * Yipes! For now we'll just hope clients aren't really using * release_lockowner much, but eventually we have to fix these * data structures. */ INIT_LIST_HEAD(&matches); for (i = 0; i < LOCK_HASH_SIZE; i++) { list_for_each_entry(sop, &lock_ownerid_hashtbl[i], so_idhash) { if (!cmp_owner_str(sop, owner, clid)) continue; list_for_each_entry(stp, &sop->so_stateids, st_perstateowner) { if (check_for_locks(stp->st_vfs_file, sop)) goto out; /* Note: so_perclient unused for lockowners, * so it's OK to fool with here. */ list_add(&sop->so_perclient, &matches); } } } /* Clients probably won't expect us to return with some (but not all) * of the lockowner state released; so don't release any until all * have been checked. */ status = nfs_ok; while (!list_empty(&matches)) { sop = list_entry(matches.next, struct nfs4_stateowner, so_perclient); /* unhash_stateowner deletes so_perclient only * for openowners. */ list_del(&sop->so_perclient); release_stateowner(sop); } out: nfs4_unlock_state(); return status; } static inline struct nfs4_client_reclaim * alloc_reclaim(void) { return kmalloc(sizeof(struct nfs4_client_reclaim), GFP_KERNEL); } int nfs4_has_reclaimed_state(const char *name) { unsigned int strhashval = clientstr_hashval(name); struct nfs4_client *clp; clp = find_confirmed_client_by_str(name, strhashval); return clp ? 1 : 0; } /* * failure => all reset bets are off, nfserr_no_grace... */ int nfs4_client_to_reclaim(const char *name) { unsigned int strhashval; struct nfs4_client_reclaim *crp = NULL; dprintk("NFSD nfs4_client_to_reclaim NAME: %.*s\n", HEXDIR_LEN, name); crp = alloc_reclaim(); if (!crp) return 0; strhashval = clientstr_hashval(name); INIT_LIST_HEAD(&crp->cr_strhash); list_add(&crp->cr_strhash, &reclaim_str_hashtbl[strhashval]); memcpy(crp->cr_recdir, name, HEXDIR_LEN); reclaim_str_hashtbl_size++; return 1; } static void nfs4_release_reclaim(void) { struct nfs4_client_reclaim *crp = NULL; int i; for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&reclaim_str_hashtbl[i])) { crp = list_entry(reclaim_str_hashtbl[i].next, struct nfs4_client_reclaim, cr_strhash); list_del(&crp->cr_strhash); kfree(crp); reclaim_str_hashtbl_size--; } } BUG_ON(reclaim_str_hashtbl_size); } /* * called from OPEN, CLAIM_PREVIOUS with a new clientid. */ static struct nfs4_client_reclaim * nfs4_find_reclaim_client(clientid_t *clid) { unsigned int strhashval; struct nfs4_client *clp; struct nfs4_client_reclaim *crp = NULL; /* find clientid in conf_id_hashtbl */ clp = find_confirmed_client(clid); if (clp == NULL) return NULL; dprintk("NFSD: nfs4_find_reclaim_client for %.*s with recdir %s\n", clp->cl_name.len, clp->cl_name.data, clp->cl_recdir); /* find clp->cl_name in reclaim_str_hashtbl */ strhashval = clientstr_hashval(clp->cl_recdir); list_for_each_entry(crp, &reclaim_str_hashtbl[strhashval], cr_strhash) { if (same_name(crp->cr_recdir, clp->cl_recdir)) { return crp; } } return NULL; } /* * Called from OPEN. Look for clientid in reclaim list. */ int nfs4_check_open_reclaim(clientid_t *clid) { return nfs4_find_reclaim_client(clid) ? nfs_ok : nfserr_reclaim_bad; } /* initialization to perform at module load time: */ void nfs4_state_init(void) { int i; for (i = 0; i < CLIENT_HASH_SIZE; i++) { INIT_LIST_HEAD(&conf_id_hashtbl[i]); INIT_LIST_HEAD(&conf_str_hashtbl[i]); INIT_LIST_HEAD(&unconf_str_hashtbl[i]); INIT_LIST_HEAD(&unconf_id_hashtbl[i]); } for (i = 0; i < FILE_HASH_SIZE; i++) { INIT_LIST_HEAD(&file_hashtbl[i]); } for (i = 0; i < OWNER_HASH_SIZE; i++) { INIT_LIST_HEAD(&ownerstr_hashtbl[i]); INIT_LIST_HEAD(&ownerid_hashtbl[i]); } for (i = 0; i < STATEID_HASH_SIZE; i++) { INIT_LIST_HEAD(&stateid_hashtbl[i]); INIT_LIST_HEAD(&lockstateid_hashtbl[i]); } for (i = 0; i < LOCK_HASH_SIZE; i++) { INIT_LIST_HEAD(&lock_ownerid_hashtbl[i]); INIT_LIST_HEAD(&lock_ownerstr_hashtbl[i]); } memset(&onestateid, ~0, sizeof(stateid_t)); INIT_LIST_HEAD(&close_lru); INIT_LIST_HEAD(&client_lru); INIT_LIST_HEAD(&del_recall_lru); for (i = 0; i < CLIENT_HASH_SIZE; i++) INIT_LIST_HEAD(&reclaim_str_hashtbl[i]); reclaim_str_hashtbl_size = 0; } static void nfsd4_load_reboot_recovery_data(void) { int status; nfs4_lock_state(); nfsd4_init_recdir(user_recovery_dirname); status = nfsd4_recdir_load(); nfs4_unlock_state(); if (status) printk("NFSD: Failure reading reboot recovery data\n"); } /* initialization to perform when the nfsd service is started: */ static void __nfs4_state_start(void) { time_t grace_time; boot_time = get_seconds(); grace_time = max(user_lease_time, lease_time); lease_time = user_lease_time; in_grace = 1; printk("NFSD: starting %ld-second grace period\n", grace_time); laundry_wq = create_singlethread_workqueue("nfsd4"); queue_delayed_work(laundry_wq, &laundromat_work, grace_time*HZ); } int nfs4_state_start(void) { int status; if (nfs4_init) return 0; status = nfsd4_init_slabs(); if (status) return status; nfsd4_load_reboot_recovery_data(); __nfs4_state_start(); nfs4_init = 1; return 0; } int nfs4_in_grace(void) { return in_grace; } time_t nfs4_lease_time(void) { return lease_time; } static void __nfs4_state_shutdown(void) { int i; struct nfs4_client *clp = NULL; struct nfs4_delegation *dp = NULL; struct nfs4_stateowner *sop = NULL; struct list_head *pos, *next, reaplist; list_for_each_safe(pos, next, &close_lru) { sop = list_entry(pos, struct nfs4_stateowner, so_close_lru); list_del(&sop->so_close_lru); nfs4_put_stateowner(sop); } for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&conf_id_hashtbl[i])) { clp = list_entry(conf_id_hashtbl[i].next, struct nfs4_client, cl_idhash); expire_client(clp); } while (!list_empty(&unconf_str_hashtbl[i])) { clp = list_entry(unconf_str_hashtbl[i].next, struct nfs4_client, cl_strhash); expire_client(clp); } } INIT_LIST_HEAD(&reaplist); spin_lock(&recall_lock); list_for_each_safe(pos, next, &del_recall_lru) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); list_move(&dp->dl_recall_lru, &reaplist); } spin_unlock(&recall_lock); list_for_each_safe(pos, next, &reaplist) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); unhash_delegation(dp); } cancel_delayed_work(&laundromat_work); flush_workqueue(laundry_wq); destroy_workqueue(laundry_wq); nfsd4_shutdown_recdir(); nfs4_init = 0; } void nfs4_state_shutdown(void) { nfs4_lock_state(); nfs4_release_reclaim(); __nfs4_state_shutdown(); nfsd4_free_slabs(); nfs4_unlock_state(); } static void nfs4_set_recdir(char *recdir) { nfs4_lock_state(); strcpy(user_recovery_dirname, recdir); nfs4_unlock_state(); } /* * Change the NFSv4 recovery directory to recdir. */ int nfs4_reset_recoverydir(char *recdir) { int status; struct nameidata nd; status = path_lookup(recdir, LOOKUP_FOLLOW, &nd); if (status) return status; status = -ENOTDIR; if (S_ISDIR(nd.dentry->d_inode->i_mode)) { nfs4_set_recdir(recdir); status = 0; } path_release(&nd); return status; } /* * Called when leasetime is changed. * * The only way the protocol gives us to handle on-the-fly lease changes is to * simulate a reboot. Instead of doing that, we just wait till the next time * we start to register any changes in lease time. If the administrator * really wants to change the lease time *now*, they can go ahead and bring * nfsd down and then back up again after changing the lease time. */ void nfs4_reset_lease(time_t leasetime) { lock_kernel(); user_lease_time = leasetime; unlock_kernel(); }