/* $Id: traps.c,v 1.85 2002/02/09 19:49:31 davem Exp $ * arch/sparc64/kernel/traps.c * * Copyright (C) 1995,1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com) */ /* * I like traps on v9, :)))) */ #include #include #include /* for jiffies */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_KMOD #include #endif struct notifier_block *sparc64die_chain; static DEFINE_SPINLOCK(die_notifier_lock); int register_die_notifier(struct notifier_block *nb) { int err = 0; unsigned long flags; spin_lock_irqsave(&die_notifier_lock, flags); err = notifier_chain_register(&sparc64die_chain, nb); spin_unlock_irqrestore(&die_notifier_lock, flags); return err; } /* When an irrecoverable trap occurs at tl > 0, the trap entry * code logs the trap state registers at every level in the trap * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout * is as follows: */ struct tl1_traplog { struct { unsigned long tstate; unsigned long tpc; unsigned long tnpc; unsigned long tt; } trapstack[4]; unsigned long tl; }; static void dump_tl1_traplog(struct tl1_traplog *p) { int i, limit; printk("TRAPLOG: Error at trap level 0x%lx, dumping track stack.\n", p->tl); limit = (tlb_type == hypervisor) ? 2 : 4; for (i = 0; i < 4; i++) { printk(KERN_CRIT "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] " "TNPC[%016lx] TT[%lx]\n", i + 1, p->trapstack[i].tstate, p->trapstack[i].tpc, p->trapstack[i].tnpc, p->trapstack[i].tt); } } void do_call_debug(struct pt_regs *regs) { notify_die(DIE_CALL, "debug call", regs, 0, 255, SIGINT); } void bad_trap(struct pt_regs *regs, long lvl) { char buffer[32]; siginfo_t info; if (notify_die(DIE_TRAP, "bad trap", regs, 0, lvl, SIGTRAP) == NOTIFY_STOP) return; if (lvl < 0x100) { sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl); die_if_kernel(buffer, regs); } lvl -= 0x100; if (regs->tstate & TSTATE_PRIV) { sprintf(buffer, "Kernel bad sw trap %lx", lvl); die_if_kernel(buffer, regs); } if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGILL; info.si_errno = 0; info.si_code = ILL_ILLTRP; info.si_addr = (void __user *)regs->tpc; info.si_trapno = lvl; force_sig_info(SIGILL, &info, current); } void bad_trap_tl1(struct pt_regs *regs, long lvl) { char buffer[32]; if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs, 0, lvl, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); sprintf (buffer, "Bad trap %lx at tl>0", lvl); die_if_kernel (buffer, regs); } #ifdef CONFIG_DEBUG_BUGVERBOSE void do_BUG(const char *file, int line) { bust_spinlocks(1); printk("kernel BUG at %s:%d!\n", file, line); } #endif void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { siginfo_t info; if (notify_die(DIE_TRAP, "instruction access exception", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { printk("spitfire_insn_access_exception: SFSR[%016lx] " "SFAR[%016lx], going.\n", sfsr, sfar); die_if_kernel("Iax", regs); } if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = SEGV_MAPERR; info.si_addr = (void __user *)regs->tpc; info.si_trapno = 0; force_sig_info(SIGSEGV, &info, current); } void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); spitfire_insn_access_exception(regs, sfsr, sfar); } void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { unsigned short type = (type_ctx >> 16); unsigned short ctx = (type_ctx & 0xffff); siginfo_t info; if (notify_die(DIE_TRAP, "instruction access exception", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { printk("sun4v_insn_access_exception: ADDR[%016lx] " "CTX[%04x] TYPE[%04x], going.\n", addr, ctx, type); die_if_kernel("Iax", regs); } if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = SEGV_MAPERR; info.si_addr = (void __user *) addr; info.si_trapno = 0; force_sig_info(SIGSEGV, &info, current); } void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); sun4v_insn_access_exception(regs, addr, type_ctx); } void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { siginfo_t info; if (notify_die(DIE_TRAP, "data access exception", regs, 0, 0x30, SIGTRAP) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { /* Test if this comes from uaccess places. */ const struct exception_table_entry *entry; entry = search_exception_tables(regs->tpc); if (entry) { /* Ouch, somebody is trying VM hole tricks on us... */ #ifdef DEBUG_EXCEPTIONS printk("Exception: PC<%016lx> faddr\n", regs->tpc); printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", regs->tpc, entry->fixup); #endif regs->tpc = entry->fixup; regs->tnpc = regs->tpc + 4; return; } /* Shit... */ printk("spitfire_data_access_exception: SFSR[%016lx] " "SFAR[%016lx], going.\n", sfsr, sfar); die_if_kernel("Dax", regs); } info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = SEGV_MAPERR; info.si_addr = (void __user *)sfar; info.si_trapno = 0; force_sig_info(SIGSEGV, &info, current); } void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 0, 0x30, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); spitfire_data_access_exception(regs, sfsr, sfar); } void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { unsigned short type = (type_ctx >> 16); unsigned short ctx = (type_ctx & 0xffff); siginfo_t info; if (notify_die(DIE_TRAP, "data access exception", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { printk("sun4v_data_access_exception: ADDR[%016lx] " "CTX[%04x] TYPE[%04x], going.\n", addr, ctx, type); die_if_kernel("Iax", regs); } if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = SEGV_MAPERR; info.si_addr = (void __user *) addr; info.si_trapno = 0; force_sig_info(SIGSEGV, &info, current); } void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); sun4v_data_access_exception(regs, addr, type_ctx); } #ifdef CONFIG_PCI /* This is really pathetic... */ extern volatile int pci_poke_in_progress; extern volatile int pci_poke_cpu; extern volatile int pci_poke_faulted; #endif /* When access exceptions happen, we must do this. */ static void spitfire_clean_and_reenable_l1_caches(void) { unsigned long va; if (tlb_type != spitfire) BUG(); /* Clean 'em. */ for (va = 0; va < (PAGE_SIZE << 1); va += 32) { spitfire_put_icache_tag(va, 0x0); spitfire_put_dcache_tag(va, 0x0); } /* Re-enable in LSU. */ __asm__ __volatile__("flush %%g6\n\t" "membar #Sync\n\t" "stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC | LSU_CONTROL_IM | LSU_CONTROL_DM), "i" (ASI_LSU_CONTROL) : "memory"); } static void spitfire_enable_estate_errors(void) { __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (ESTATE_ERR_ALL), "i" (ASI_ESTATE_ERROR_EN)); } static char ecc_syndrome_table[] = { 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49, 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a, 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48, 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c, 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48, 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29, 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b, 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48, 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48, 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e, 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b, 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36, 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48, 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48, 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b, 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32, 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48, 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b, 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48, 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49, 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48, 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48, 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b, 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a }; static char *syndrome_unknown = ""; static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit) { unsigned short scode; char memmod_str[64], *p; if (udbl & bit) { scode = ecc_syndrome_table[udbl & 0xff]; if (prom_getunumber(scode, afar, memmod_str, sizeof(memmod_str)) == -1) p = syndrome_unknown; else p = memmod_str; printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] " "Memory Module \"%s\"\n", smp_processor_id(), scode, p); } if (udbh & bit) { scode = ecc_syndrome_table[udbh & 0xff]; if (prom_getunumber(scode, afar, memmod_str, sizeof(memmod_str)) == -1) p = syndrome_unknown; else p = memmod_str; printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] " "Memory Module \"%s\"\n", smp_processor_id(), scode, p); } } static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs) { printk(KERN_WARNING "CPU[%d]: Correctable ECC Error " "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n", smp_processor_id(), afsr, afar, udbl, udbh, tl1); spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE); /* We always log it, even if someone is listening for this * trap. */ notify_die(DIE_TRAP, "Correctable ECC Error", regs, 0, TRAP_TYPE_CEE, SIGTRAP); /* The Correctable ECC Error trap does not disable I/D caches. So * we only have to restore the ESTATE Error Enable register. */ spitfire_enable_estate_errors(); } static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs) { siginfo_t info; printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] " "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n", smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1); /* XXX add more human friendly logging of the error status * XXX as is implemented for cheetah */ spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE); /* We always log it, even if someone is listening for this * trap. */ notify_die(DIE_TRAP, "Uncorrectable Error", regs, 0, tt, SIGTRAP); if (regs->tstate & TSTATE_PRIV) { if (tl1) dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("UE", regs); } /* XXX need more intelligent processing here, such as is implemented * XXX for cheetah errors, in fact if the E-cache still holds the * XXX line with bad parity this will loop */ spitfire_clean_and_reenable_l1_caches(); spitfire_enable_estate_errors(); if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_OBJERR; info.si_addr = (void *)0; info.si_trapno = 0; force_sig_info(SIGBUS, &info, current); } void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar) { unsigned long afsr, tt, udbh, udbl; int tl1; afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT; tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT; tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0; udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT; udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT; #ifdef CONFIG_PCI if (tt == TRAP_TYPE_DAE && pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { spitfire_clean_and_reenable_l1_caches(); spitfire_enable_estate_errors(); pci_poke_faulted = 1; regs->tnpc = regs->tpc + 4; return; } #endif if (afsr & SFAFSR_UE) spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs); if (tt == TRAP_TYPE_CEE) { /* Handle the case where we took a CEE trap, but ACK'd * only the UE state in the UDB error registers. */ if (afsr & SFAFSR_UE) { if (udbh & UDBE_CE) { __asm__ __volatile__( "stxa %0, [%1] %2\n\t" "membar #Sync" : /* no outputs */ : "r" (udbh & UDBE_CE), "r" (0x0), "i" (ASI_UDB_ERROR_W)); } if (udbl & UDBE_CE) { __asm__ __volatile__( "stxa %0, [%1] %2\n\t" "membar #Sync" : /* no outputs */ : "r" (udbl & UDBE_CE), "r" (0x18), "i" (ASI_UDB_ERROR_W)); } } spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs); } } int cheetah_pcache_forced_on; void cheetah_enable_pcache(void) { unsigned long dcr; printk("CHEETAH: Enabling P-Cache on cpu %d.\n", smp_processor_id()); __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (dcr) : "i" (ASI_DCU_CONTROL_REG)); dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL); __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (dcr), "i" (ASI_DCU_CONTROL_REG)); } /* Cheetah error trap handling. */ static unsigned long ecache_flush_physbase; static unsigned long ecache_flush_linesize; static unsigned long ecache_flush_size; /* WARNING: The error trap handlers in assembly know the precise * layout of the following structure. * * C-level handlers below use this information to log the error * and then determine how to recover (if possible). */ struct cheetah_err_info { /*0x00*/u64 afsr; /*0x08*/u64 afar; /* D-cache state */ /*0x10*/u64 dcache_data[4]; /* The actual data */ /*0x30*/u64 dcache_index; /* D-cache index */ /*0x38*/u64 dcache_tag; /* D-cache tag/valid */ /*0x40*/u64 dcache_utag; /* D-cache microtag */ /*0x48*/u64 dcache_stag; /* D-cache snooptag */ /* I-cache state */ /*0x50*/u64 icache_data[8]; /* The actual insns + predecode */ /*0x90*/u64 icache_index; /* I-cache index */ /*0x98*/u64 icache_tag; /* I-cache phys tag */ /*0xa0*/u64 icache_utag; /* I-cache microtag */ /*0xa8*/u64 icache_stag; /* I-cache snooptag */ /*0xb0*/u64 icache_upper; /* I-cache upper-tag */ /*0xb8*/u64 icache_lower; /* I-cache lower-tag */ /* E-cache state */ /*0xc0*/u64 ecache_data[4]; /* 32 bytes from staging registers */ /*0xe0*/u64 ecache_index; /* E-cache index */ /*0xe8*/u64 ecache_tag; /* E-cache tag/state */ /*0xf0*/u64 __pad[32 - 30]; }; #define CHAFSR_INVALID ((u64)-1L) /* This table is ordered in priority of errors and matches the * AFAR overwrite policy as well. */ struct afsr_error_table { unsigned long mask; const char *name; }; static const char CHAFSR_PERR_msg[] = "System interface protocol error"; static const char CHAFSR_IERR_msg[] = "Internal processor error"; static const char CHAFSR_ISAP_msg[] = "System request parity error on incoming addresss"; static const char CHAFSR_UCU_msg[] = "Uncorrectable E-cache ECC error for ifetch/data"; static const char CHAFSR_UCC_msg[] = "SW Correctable E-cache ECC error for ifetch/data"; static const char CHAFSR_UE_msg[] = "Uncorrectable system bus data ECC error for read"; static const char CHAFSR_EDU_msg[] = "Uncorrectable E-cache ECC error for stmerge/blkld"; static const char CHAFSR_EMU_msg[] = "Uncorrectable system bus MTAG error"; static const char CHAFSR_WDU_msg[] = "Uncorrectable E-cache ECC error for writeback"; static const char CHAFSR_CPU_msg[] = "Uncorrectable ECC error for copyout"; static const char CHAFSR_CE_msg[] = "HW corrected system bus data ECC error for read"; static const char CHAFSR_EDC_msg[] = "HW corrected E-cache ECC error for stmerge/blkld"; static const char CHAFSR_EMC_msg[] = "HW corrected system bus MTAG ECC error"; static const char CHAFSR_WDC_msg[] = "HW corrected E-cache ECC error for writeback"; static const char CHAFSR_CPC_msg[] = "HW corrected ECC error for copyout"; static const char CHAFSR_TO_msg[] = "Unmapped error from system bus"; static const char CHAFSR_BERR_msg[] = "Bus error response from system bus"; static const char CHAFSR_IVC_msg[] = "HW corrected system bus data ECC error for ivec read"; static const char CHAFSR_IVU_msg[] = "Uncorrectable system bus data ECC error for ivec read"; static struct afsr_error_table __cheetah_error_table[] = { { CHAFSR_PERR, CHAFSR_PERR_msg }, { CHAFSR_IERR, CHAFSR_IERR_msg }, { CHAFSR_ISAP, CHAFSR_ISAP_msg }, { CHAFSR_UCU, CHAFSR_UCU_msg }, { CHAFSR_UCC, CHAFSR_UCC_msg }, { CHAFSR_UE, CHAFSR_UE_msg }, { CHAFSR_EDU, CHAFSR_EDU_msg }, { CHAFSR_EMU, CHAFSR_EMU_msg }, { CHAFSR_WDU, CHAFSR_WDU_msg }, { CHAFSR_CPU, CHAFSR_CPU_msg }, { CHAFSR_CE, CHAFSR_CE_msg }, { CHAFSR_EDC, CHAFSR_EDC_msg }, { CHAFSR_EMC, CHAFSR_EMC_msg }, { CHAFSR_WDC, CHAFSR_WDC_msg }, { CHAFSR_CPC, CHAFSR_CPC_msg }, { CHAFSR_TO, CHAFSR_TO_msg }, { CHAFSR_BERR, CHAFSR_BERR_msg }, /* These two do not update the AFAR. */ { CHAFSR_IVC, CHAFSR_IVC_msg }, { CHAFSR_IVU, CHAFSR_IVU_msg }, { 0, NULL }, }; static const char CHPAFSR_DTO_msg[] = "System bus unmapped error for prefetch/storequeue-read"; static const char CHPAFSR_DBERR_msg[] = "System bus error for prefetch/storequeue-read"; static const char CHPAFSR_THCE_msg[] = "Hardware corrected E-cache Tag ECC error"; static const char CHPAFSR_TSCE_msg[] = "SW handled correctable E-cache Tag ECC error"; static const char CHPAFSR_TUE_msg[] = "Uncorrectable E-cache Tag ECC error"; static const char CHPAFSR_DUE_msg[] = "System bus uncorrectable data ECC error due to prefetch/store-fill"; static struct afsr_error_table __cheetah_plus_error_table[] = { { CHAFSR_PERR, CHAFSR_PERR_msg }, { CHAFSR_IERR, CHAFSR_IERR_msg }, { CHAFSR_ISAP, CHAFSR_ISAP_msg }, { CHAFSR_UCU, CHAFSR_UCU_msg }, { CHAFSR_UCC, CHAFSR_UCC_msg }, { CHAFSR_UE, CHAFSR_UE_msg }, { CHAFSR_EDU, CHAFSR_EDU_msg }, { CHAFSR_EMU, CHAFSR_EMU_msg }, { CHAFSR_WDU, CHAFSR_WDU_msg }, { CHAFSR_CPU, CHAFSR_CPU_msg }, { CHAFSR_CE, CHAFSR_CE_msg }, { CHAFSR_EDC, CHAFSR_EDC_msg }, { CHAFSR_EMC, CHAFSR_EMC_msg }, { CHAFSR_WDC, CHAFSR_WDC_msg }, { CHAFSR_CPC, CHAFSR_CPC_msg }, { CHAFSR_TO, CHAFSR_TO_msg }, { CHAFSR_BERR, CHAFSR_BERR_msg }, { CHPAFSR_DTO, CHPAFSR_DTO_msg }, { CHPAFSR_DBERR, CHPAFSR_DBERR_msg }, { CHPAFSR_THCE, CHPAFSR_THCE_msg }, { CHPAFSR_TSCE, CHPAFSR_TSCE_msg }, { CHPAFSR_TUE, CHPAFSR_TUE_msg }, { CHPAFSR_DUE, CHPAFSR_DUE_msg }, /* These two do not update the AFAR. */ { CHAFSR_IVC, CHAFSR_IVC_msg }, { CHAFSR_IVU, CHAFSR_IVU_msg }, { 0, NULL }, }; static const char JPAFSR_JETO_msg[] = "System interface protocol error, hw timeout caused"; static const char JPAFSR_SCE_msg[] = "Parity error on system snoop results"; static const char JPAFSR_JEIC_msg[] = "System interface protocol error, illegal command detected"; static const char JPAFSR_JEIT_msg[] = "System interface protocol error, illegal ADTYPE detected"; static const char JPAFSR_OM_msg[] = "Out of range memory error has occurred"; static const char JPAFSR_ETP_msg[] = "Parity error on L2 cache tag SRAM"; static const char JPAFSR_UMS_msg[] = "Error due to unsupported store"; static const char JPAFSR_RUE_msg[] = "Uncorrectable ECC error from remote cache/memory"; static const char JPAFSR_RCE_msg[] = "Correctable ECC error from remote cache/memory"; static const char JPAFSR_BP_msg[] = "JBUS parity error on returned read data"; static const char JPAFSR_WBP_msg[] = "JBUS parity error on data for writeback or block store"; static const char JPAFSR_FRC_msg[] = "Foreign read to DRAM incurring correctable ECC error"; static const char JPAFSR_FRU_msg[] = "Foreign read to DRAM incurring uncorrectable ECC error"; static struct afsr_error_table __jalapeno_error_table[] = { { JPAFSR_JETO, JPAFSR_JETO_msg }, { JPAFSR_SCE, JPAFSR_SCE_msg }, { JPAFSR_JEIC, JPAFSR_JEIC_msg }, { JPAFSR_JEIT, JPAFSR_JEIT_msg }, { CHAFSR_PERR, CHAFSR_PERR_msg }, { CHAFSR_IERR, CHAFSR_IERR_msg }, { CHAFSR_ISAP, CHAFSR_ISAP_msg }, { CHAFSR_UCU, CHAFSR_UCU_msg }, { CHAFSR_UCC, CHAFSR_UCC_msg }, { CHAFSR_UE, CHAFSR_UE_msg }, { CHAFSR_EDU, CHAFSR_EDU_msg }, { JPAFSR_OM, JPAFSR_OM_msg }, { CHAFSR_WDU, CHAFSR_WDU_msg }, { CHAFSR_CPU, CHAFSR_CPU_msg }, { CHAFSR_CE, CHAFSR_CE_msg }, { CHAFSR_EDC, CHAFSR_EDC_msg }, { JPAFSR_ETP, JPAFSR_ETP_msg }, { CHAFSR_WDC, CHAFSR_WDC_msg }, { CHAFSR_CPC, CHAFSR_CPC_msg }, { CHAFSR_TO, CHAFSR_TO_msg }, { CHAFSR_BERR, CHAFSR_BERR_msg }, { JPAFSR_UMS, JPAFSR_UMS_msg }, { JPAFSR_RUE, JPAFSR_RUE_msg }, { JPAFSR_RCE, JPAFSR_RCE_msg }, { JPAFSR_BP, JPAFSR_BP_msg }, { JPAFSR_WBP, JPAFSR_WBP_msg }, { JPAFSR_FRC, JPAFSR_FRC_msg }, { JPAFSR_FRU, JPAFSR_FRU_msg }, /* These two do not update the AFAR. */ { CHAFSR_IVU, CHAFSR_IVU_msg }, { 0, NULL }, }; static struct afsr_error_table *cheetah_error_table; static unsigned long cheetah_afsr_errors; /* This is allocated at boot time based upon the largest hardware * cpu ID in the system. We allocate two entries per cpu, one for * TL==0 logging and one for TL >= 1 logging. */ struct cheetah_err_info *cheetah_error_log; static __inline__ struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr) { struct cheetah_err_info *p; int cpu = smp_processor_id(); if (!cheetah_error_log) return NULL; p = cheetah_error_log + (cpu * 2); if ((afsr & CHAFSR_TL1) != 0UL) p++; return p; } extern unsigned int tl0_icpe[], tl1_icpe[]; extern unsigned int tl0_dcpe[], tl1_dcpe[]; extern unsigned int tl0_fecc[], tl1_fecc[]; extern unsigned int tl0_cee[], tl1_cee[]; extern unsigned int tl0_iae[], tl1_iae[]; extern unsigned int tl0_dae[], tl1_dae[]; extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[]; extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[]; extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[]; extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[]; extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[]; void __init cheetah_ecache_flush_init(void) { unsigned long largest_size, smallest_linesize, order, ver; int node, i, instance; /* Scan all cpu device tree nodes, note two values: * 1) largest E-cache size * 2) smallest E-cache line size */ largest_size = 0UL; smallest_linesize = ~0UL; instance = 0; while (!cpu_find_by_instance(instance, &node, NULL)) { unsigned long val; val = prom_getintdefault(node, "ecache-size", (2 * 1024 * 1024)); if (val > largest_size) largest_size = val; val = prom_getintdefault(node, "ecache-line-size", 64); if (val < smallest_linesize) smallest_linesize = val; instance++; } if (largest_size == 0UL || smallest_linesize == ~0UL) { prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache " "parameters.\n"); prom_halt(); } ecache_flush_size = (2 * largest_size); ecache_flush_linesize = smallest_linesize; ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size); if (ecache_flush_physbase == ~0UL) { prom_printf("cheetah_ecache_flush_init: Cannot find %d byte " "contiguous physical memory.\n", ecache_flush_size); prom_halt(); } /* Now allocate error trap reporting scoreboard. */ node = NR_CPUS * (2 * sizeof(struct cheetah_err_info)); for (order = 0; order < MAX_ORDER; order++) { if ((PAGE_SIZE << order) >= node) break; } cheetah_error_log = (struct cheetah_err_info *) __get_free_pages(GFP_KERNEL, order); if (!cheetah_error_log) { prom_printf("cheetah_ecache_flush_init: Failed to allocate " "error logging scoreboard (%d bytes).\n", node); prom_halt(); } memset(cheetah_error_log, 0, PAGE_SIZE << order); /* Mark all AFSRs as invalid so that the trap handler will * log new new information there. */ for (i = 0; i < 2 * NR_CPUS; i++) cheetah_error_log[i].afsr = CHAFSR_INVALID; __asm__ ("rdpr %%ver, %0" : "=r" (ver)); if ((ver >> 32) == __JALAPENO_ID || (ver >> 32) == __SERRANO_ID) { cheetah_error_table = &__jalapeno_error_table[0]; cheetah_afsr_errors = JPAFSR_ERRORS; } else if ((ver >> 32) == 0x003e0015) { cheetah_error_table = &__cheetah_plus_error_table[0]; cheetah_afsr_errors = CHPAFSR_ERRORS; } else { cheetah_error_table = &__cheetah_error_table[0]; cheetah_afsr_errors = CHAFSR_ERRORS; } /* Now patch trap tables. */ memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4)); memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4)); memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4)); memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4)); memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4)); memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4)); memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4)); memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4)); if (tlb_type == cheetah_plus) { memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4)); memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4)); memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4)); memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4)); } flushi(PAGE_OFFSET); } static void cheetah_flush_ecache(void) { unsigned long flush_base = ecache_flush_physbase; unsigned long flush_linesize = ecache_flush_linesize; unsigned long flush_size = ecache_flush_size; __asm__ __volatile__("1: subcc %0, %4, %0\n\t" " bne,pt %%xcc, 1b\n\t" " ldxa [%2 + %0] %3, %%g0\n\t" : "=&r" (flush_size) : "0" (flush_size), "r" (flush_base), "i" (ASI_PHYS_USE_EC), "r" (flush_linesize)); } static void cheetah_flush_ecache_line(unsigned long physaddr) { unsigned long alias; physaddr &= ~(8UL - 1UL); physaddr = (ecache_flush_physbase + (physaddr & ((ecache_flush_size>>1UL) - 1UL))); alias = physaddr + (ecache_flush_size >> 1UL); __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t" "ldxa [%1] %2, %%g0\n\t" "membar #Sync" : /* no outputs */ : "r" (physaddr), "r" (alias), "i" (ASI_PHYS_USE_EC)); } /* Unfortunately, the diagnostic access to the I-cache tags we need to * use to clear the thing interferes with I-cache coherency transactions. * * So we must only flush the I-cache when it is disabled. */ static void __cheetah_flush_icache(void) { unsigned int icache_size, icache_line_size; unsigned long addr; icache_size = local_cpu_data().icache_size; icache_line_size = local_cpu_data().icache_line_size; /* Clear the valid bits in all the tags. */ for (addr = 0; addr < icache_size; addr += icache_line_size) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (addr | (2 << 3)), "i" (ASI_IC_TAG)); } } static void cheetah_flush_icache(void) { unsigned long dcu_save; /* Save current DCU, disable I-cache. */ __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" "or %0, %2, %%g1\n\t" "stxa %%g1, [%%g0] %1\n\t" "membar #Sync" : "=r" (dcu_save) : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) : "g1"); __cheetah_flush_icache(); /* Restore DCU register */ __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG)); } static void cheetah_flush_dcache(void) { unsigned int dcache_size, dcache_line_size; unsigned long addr; dcache_size = local_cpu_data().dcache_size; dcache_line_size = local_cpu_data().dcache_line_size; for (addr = 0; addr < dcache_size; addr += dcache_line_size) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (addr), "i" (ASI_DCACHE_TAG)); } } /* In order to make the even parity correct we must do two things. * First, we clear DC_data_parity and set DC_utag to an appropriate value. * Next, we clear out all 32-bytes of data for that line. Data of * all-zero + tag parity value of zero == correct parity. */ static void cheetah_plus_zap_dcache_parity(void) { unsigned int dcache_size, dcache_line_size; unsigned long addr; dcache_size = local_cpu_data().dcache_size; dcache_line_size = local_cpu_data().dcache_line_size; for (addr = 0; addr < dcache_size; addr += dcache_line_size) { unsigned long tag = (addr >> 14); unsigned long line; __asm__ __volatile__("membar #Sync\n\t" "stxa %0, [%1] %2\n\t" "membar #Sync" : /* no outputs */ : "r" (tag), "r" (addr), "i" (ASI_DCACHE_UTAG)); for (line = addr; line < addr + dcache_line_size; line += 8) __asm__ __volatile__("membar #Sync\n\t" "stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (line), "i" (ASI_DCACHE_DATA)); } } /* Conversion tables used to frob Cheetah AFSR syndrome values into * something palatable to the memory controller driver get_unumber * routine. */ #define MT0 137 #define MT1 138 #define MT2 139 #define NONE 254 #define MTC0 140 #define MTC1 141 #define MTC2 142 #define MTC3 143 #define C0 128 #define C1 129 #define C2 130 #define C3 131 #define C4 132 #define C5 133 #define C6 134 #define C7 135 #define C8 136 #define M2 144 #define M3 145 #define M4 146 #define M 147 static unsigned char cheetah_ecc_syntab[] = { /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M, /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16, /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10, /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M, /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6, /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4, /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4, /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3, /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5, /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M, /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2, /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3, /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M, /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3, /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M, /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M, /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4, /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M, /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2, /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M, /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4, /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3, /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3, /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2, /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4, /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M, /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3, /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M, /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3, /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M, /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M, /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M }; static unsigned char cheetah_mtag_syntab[] = { NONE, MTC0, MTC1, NONE, MTC2, NONE, NONE, MT0, MTC3, NONE, NONE, MT1, NONE, MT2, NONE, NONE }; /* Return the highest priority error conditon mentioned. */ static __inline__ unsigned long cheetah_get_hipri(unsigned long afsr) { unsigned long tmp = 0; int i; for (i = 0; cheetah_error_table[i].mask; i++) { if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL) return tmp; } return tmp; } static const char *cheetah_get_string(unsigned long bit) { int i; for (i = 0; cheetah_error_table[i].mask; i++) { if ((bit & cheetah_error_table[i].mask) != 0UL) return cheetah_error_table[i].name; } return "???"; } extern int chmc_getunumber(int, unsigned long, char *, int); static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info, unsigned long afsr, unsigned long afar, int recoverable) { unsigned long hipri; char unum[256]; printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), afsr, afar, (afsr & CHAFSR_TL1) ? 1 : 0); printk("%s" "ERROR(%d): TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT, (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT, (afsr & CHAFSR_ME) ? ", Multiple Errors" : "", (afsr & CHAFSR_PRIV) ? ", Privileged" : ""); hipri = cheetah_get_hipri(afsr); printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), hipri, cheetah_get_string(hipri)); /* Try to get unumber if relevant. */ #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \ CHAFSR_CPC | CHAFSR_CPU | \ CHAFSR_UE | CHAFSR_CE | \ CHAFSR_EDC | CHAFSR_EDU | \ CHAFSR_UCC | CHAFSR_UCU | \ CHAFSR_WDU | CHAFSR_WDC) #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU) if (afsr & ESYND_ERRORS) { int syndrome; int ret; syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT; syndrome = cheetah_ecc_syntab[syndrome]; ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum)); if (ret != -1) printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), unum); } else if (afsr & MSYND_ERRORS) { int syndrome; int ret; syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT; syndrome = cheetah_mtag_syntab[syndrome]; ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum)); if (ret != -1) printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), unum); } /* Now dump the cache snapshots. */ printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (int) info->dcache_index, info->dcache_tag, info->dcache_utag, info->dcache_stag); printk("%s" "ERROR(%d): D-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->dcache_data[0], info->dcache_data[1], info->dcache_data[2], info->dcache_data[3]); printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx] " "u[%016lx] l[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (int) info->icache_index, info->icache_tag, info->icache_utag, info->icache_stag, info->icache_upper, info->icache_lower); printk("%s" "ERROR(%d): I-cache INSN0[%016lx] INSN1[%016lx] INSN2[%016lx] INSN3[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->icache_data[0], info->icache_data[1], info->icache_data[2], info->icache_data[3]); printk("%s" "ERROR(%d): I-cache INSN4[%016lx] INSN5[%016lx] INSN6[%016lx] INSN7[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->icache_data[4], info->icache_data[5], info->icache_data[6], info->icache_data[7]); printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (int) info->ecache_index, info->ecache_tag); printk("%s" "ERROR(%d): E-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->ecache_data[0], info->ecache_data[1], info->ecache_data[2], info->ecache_data[3]); afsr = (afsr & ~hipri) & cheetah_afsr_errors; while (afsr != 0UL) { unsigned long bit = cheetah_get_hipri(afsr); printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n", (recoverable ? KERN_WARNING : KERN_CRIT), bit, cheetah_get_string(bit)); afsr &= ~bit; } if (!recoverable) printk(KERN_CRIT "ERROR: This condition is not recoverable.\n"); } static int cheetah_recheck_errors(struct cheetah_err_info *logp) { unsigned long afsr, afar; int ret = 0; __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" : "=r" (afsr) : "i" (ASI_AFSR)); if ((afsr & cheetah_afsr_errors) != 0) { if (logp != NULL) { __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" : "=r" (afar) : "i" (ASI_AFAR)); logp->afsr = afsr; logp->afar = afar; } ret = 1; } __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync\n\t" : : "r" (afsr), "i" (ASI_AFSR)); return ret; } void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) { struct cheetah_err_info local_snapshot, *p; int recoverable; /* Flush E-cache */ cheetah_flush_ecache(); p = cheetah_get_error_log(afsr); if (!p) { prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n", afsr, afar); prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); prom_halt(); } /* Grab snapshot of logged error. */ memcpy(&local_snapshot, p, sizeof(local_snapshot)); /* If the current trap snapshot does not match what the * trap handler passed along into our args, big trouble. * In such a case, mark the local copy as invalid. * * Else, it matches and we mark the afsr in the non-local * copy as invalid so we may log new error traps there. */ if (p->afsr != afsr || p->afar != afar) local_snapshot.afsr = CHAFSR_INVALID; else p->afsr = CHAFSR_INVALID; cheetah_flush_icache(); cheetah_flush_dcache(); /* Re-enable I-cache/D-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_DC | DCU_IC) : "g1"); /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) : "g1"); /* Decide if we can continue after handling this trap and * logging the error. */ recoverable = 1; if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) recoverable = 0; /* Re-check AFSR/AFAR. What we are looking for here is whether a new * error was logged while we had error reporting traps disabled. */ if (cheetah_recheck_errors(&local_snapshot)) { unsigned long new_afsr = local_snapshot.afsr; /* If we got a new asynchronous error, die... */ if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | CHAFSR_WDU | CHAFSR_CPU | CHAFSR_IVU | CHAFSR_UE | CHAFSR_BERR | CHAFSR_TO)) recoverable = 0; } /* Log errors. */ cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); if (!recoverable) panic("Irrecoverable Fast-ECC error trap.\n"); /* Flush E-cache to kick the error trap handlers out. */ cheetah_flush_ecache(); } /* Try to fix a correctable error by pushing the line out from * the E-cache. Recheck error reporting registers to see if the * problem is intermittent. */ static int cheetah_fix_ce(unsigned long physaddr) { unsigned long orig_estate; unsigned long alias1, alias2; int ret; /* Make sure correctable error traps are disabled. */ __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t" "andn %0, %1, %%g1\n\t" "stxa %%g1, [%%g0] %2\n\t" "membar #Sync" : "=&r" (orig_estate) : "i" (ESTATE_ERROR_CEEN), "i" (ASI_ESTATE_ERROR_EN) : "g1"); /* We calculate alias addresses that will force the * cache line in question out of the E-cache. Then * we bring it back in with an atomic instruction so * that we get it in some modified/exclusive state, * then we displace it again to try and get proper ECC * pushed back into the system. */ physaddr &= ~(8UL - 1UL); alias1 = (ecache_flush_physbase + (physaddr & ((ecache_flush_size >> 1) - 1))); alias2 = alias1 + (ecache_flush_size >> 1); __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t" "ldxa [%1] %3, %%g0\n\t" "casxa [%2] %3, %%g0, %%g0\n\t" "membar #StoreLoad | #StoreStore\n\t" "ldxa [%0] %3, %%g0\n\t" "ldxa [%1] %3, %%g0\n\t" "membar #Sync" : /* no outputs */ : "r" (alias1), "r" (alias2), "r" (physaddr), "i" (ASI_PHYS_USE_EC)); /* Did that trigger another error? */ if (cheetah_recheck_errors(NULL)) { /* Try one more time. */ __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t" "membar #Sync" : : "r" (physaddr), "i" (ASI_PHYS_USE_EC)); if (cheetah_recheck_errors(NULL)) ret = 2; else ret = 1; } else { /* No new error, intermittent problem. */ ret = 0; } /* Restore error enables. */ __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN)); return ret; } /* Return non-zero if PADDR is a valid physical memory address. */ static int cheetah_check_main_memory(unsigned long paddr) { unsigned long vaddr = PAGE_OFFSET + paddr; if (vaddr > (unsigned long) high_memory) return 0; return kern_addr_valid(vaddr); } void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) { struct cheetah_err_info local_snapshot, *p; int recoverable, is_memory; p = cheetah_get_error_log(afsr); if (!p) { prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n", afsr, afar); prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); prom_halt(); } /* Grab snapshot of logged error. */ memcpy(&local_snapshot, p, sizeof(local_snapshot)); /* If the current trap snapshot does not match what the * trap handler passed along into our args, big trouble. * In such a case, mark the local copy as invalid. * * Else, it matches and we mark the afsr in the non-local * copy as invalid so we may log new error traps there. */ if (p->afsr != afsr || p->afar != afar) local_snapshot.afsr = CHAFSR_INVALID; else p->afsr = CHAFSR_INVALID; is_memory = cheetah_check_main_memory(afar); if (is_memory && (afsr & CHAFSR_CE) != 0UL) { /* XXX Might want to log the results of this operation * XXX somewhere... -DaveM */ cheetah_fix_ce(afar); } { int flush_all, flush_line; flush_all = flush_line = 0; if ((afsr & CHAFSR_EDC) != 0UL) { if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC) flush_line = 1; else flush_all = 1; } else if ((afsr & CHAFSR_CPC) != 0UL) { if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC) flush_line = 1; else flush_all = 1; } /* Trap handler only disabled I-cache, flush it. */ cheetah_flush_icache(); /* Re-enable I-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) : "g1"); if (flush_all) cheetah_flush_ecache(); else if (flush_line) cheetah_flush_ecache_line(afar); } /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_CEEN) : "g1"); /* Decide if we can continue after handling this trap and * logging the error. */ recoverable = 1; if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) recoverable = 0; /* Re-check AFSR/AFAR */ (void) cheetah_recheck_errors(&local_snapshot); /* Log errors. */ cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); if (!recoverable) panic("Irrecoverable Correctable-ECC error trap.\n"); } void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) { struct cheetah_err_info local_snapshot, *p; int recoverable, is_memory; #ifdef CONFIG_PCI /* Check for the special PCI poke sequence. */ if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { cheetah_flush_icache(); cheetah_flush_dcache(); /* Re-enable I-cache/D-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_DC | DCU_IC) : "g1"); /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) : "g1"); (void) cheetah_recheck_errors(NULL); pci_poke_faulted = 1; regs->tpc += 4; regs->tnpc = regs->tpc + 4; return; } #endif p = cheetah_get_error_log(afsr); if (!p) { prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n", afsr, afar); prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); prom_halt(); } /* Grab snapshot of logged error. */ memcpy(&local_snapshot, p, sizeof(local_snapshot)); /* If the current trap snapshot does not match what the * trap handler passed along into our args, big trouble. * In such a case, mark the local copy as invalid. * * Else, it matches and we mark the afsr in the non-local * copy as invalid so we may log new error traps there. */ if (p->afsr != afsr || p->afar != afar) local_snapshot.afsr = CHAFSR_INVALID; else p->afsr = CHAFSR_INVALID; is_memory = cheetah_check_main_memory(afar); { int flush_all, flush_line; flush_all = flush_line = 0; if ((afsr & CHAFSR_EDU) != 0UL) { if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU) flush_line = 1; else flush_all = 1; } else if ((afsr & CHAFSR_BERR) != 0UL) { if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR) flush_line = 1; else flush_all = 1; } cheetah_flush_icache(); cheetah_flush_dcache(); /* Re-enable I/D caches */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC | DCU_DC) : "g1"); if (flush_all) cheetah_flush_ecache(); else if (flush_line) cheetah_flush_ecache_line(afar); } /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) : "g1"); /* Decide if we can continue after handling this trap and * logging the error. */ recoverable = 1; if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) recoverable = 0; /* Re-check AFSR/AFAR. What we are looking for here is whether a new * error was logged while we had error reporting traps disabled. */ if (cheetah_recheck_errors(&local_snapshot)) { unsigned long new_afsr = local_snapshot.afsr; /* If we got a new asynchronous error, die... */ if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | CHAFSR_WDU | CHAFSR_CPU | CHAFSR_IVU | CHAFSR_UE | CHAFSR_BERR | CHAFSR_TO)) recoverable = 0; } /* Log errors. */ cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); /* "Recoverable" here means we try to yank the page from ever * being newly used again. This depends upon a few things: * 1) Must be main memory, and AFAR must be valid. * 2) If we trapped from user, OK. * 3) Else, if we trapped from kernel we must find exception * table entry (ie. we have to have been accessing user * space). * * If AFAR is not in main memory, or we trapped from kernel * and cannot find an exception table entry, it is unacceptable * to try and continue. */ if (recoverable && is_memory) { if ((regs->tstate & TSTATE_PRIV) == 0UL) { /* OK, usermode access. */ recoverable = 1; } else { const struct exception_table_entry *entry; entry = search_exception_tables(regs->tpc); if (entry) { /* OK, kernel access to userspace. */ recoverable = 1; } else { /* BAD, privileged state is corrupted. */ recoverable = 0; } if (recoverable) { if (pfn_valid(afar >> PAGE_SHIFT)) get_page(pfn_to_page(afar >> PAGE_SHIFT)); else recoverable = 0; /* Only perform fixup if we still have a * recoverable condition. */ if (recoverable) { regs->tpc = entry->fixup; regs->tnpc = regs->tpc + 4; } } } } else { recoverable = 0; } if (!recoverable) panic("Irrecoverable deferred error trap.\n"); } /* Handle a D/I cache parity error trap. TYPE is encoded as: * * Bit0: 0=dcache,1=icache * Bit1: 0=recoverable,1=unrecoverable * * The hardware has disabled both the I-cache and D-cache in * the %dcr register. */ void cheetah_plus_parity_error(int type, struct pt_regs *regs) { if (type & 0x1) __cheetah_flush_icache(); else cheetah_plus_zap_dcache_parity(); cheetah_flush_dcache(); /* Re-enable I-cache/D-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_DC | DCU_IC) : "g1"); if (type & 0x2) { printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", smp_processor_id(), (type & 0x1) ? 'I' : 'D', regs->tpc); panic("Irrecoverable Cheetah+ parity error."); } printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", smp_processor_id(), (type & 0x1) ? 'I' : 'D', regs->tpc); } struct sun4v_error_entry { u64 err_handle; u64 err_stick; u32 err_type; #define SUN4V_ERR_TYPE_UNDEFINED 0 #define SUN4V_ERR_TYPE_UNCORRECTED_RES 1 #define SUN4V_ERR_TYPE_PRECISE_NONRES 2 #define SUN4V_ERR_TYPE_DEFERRED_NONRES 3 #define SUN4V_ERR_TYPE_WARNING_RES 4 u32 err_attrs; #define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001 #define SUN4V_ERR_ATTRS_MEMORY 0x00000002 #define SUN4V_ERR_ATTRS_PIO 0x00000004 #define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008 #define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010 #define SUN4V_ERR_ATTRS_USER_MODE 0x01000000 #define SUN4V_ERR_ATTRS_PRIV_MODE 0x02000000 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000 u64 err_raddr; u32 err_size; u16 err_cpu; u16 err_pad; }; static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0); static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0); static const char *sun4v_err_type_to_str(u32 type) { switch (type) { case SUN4V_ERR_TYPE_UNDEFINED: return "undefined"; case SUN4V_ERR_TYPE_UNCORRECTED_RES: return "uncorrected resumable"; case SUN4V_ERR_TYPE_PRECISE_NONRES: return "precise nonresumable"; case SUN4V_ERR_TYPE_DEFERRED_NONRES: return "deferred nonresumable"; case SUN4V_ERR_TYPE_WARNING_RES: return "warning resumable"; default: return "unknown"; }; } static void sun4v_log_error(struct sun4v_error_entry *ent, int cpu, const char *pfx, atomic_t *ocnt) { int cnt; printk("%s: Reporting on cpu %d\n", pfx, cpu); printk("%s: err_handle[%lx] err_stick[%lx] err_type[%08x:%s]\n", pfx, ent->err_handle, ent->err_stick, ent->err_type, sun4v_err_type_to_str(ent->err_type)); printk("%s: err_attrs[%08x:%s %s %s %s %s %s %s %s]\n", pfx, ent->err_attrs, ((ent->err_attrs & SUN4V_ERR_ATTRS_PROCESSOR) ? "processor" : ""), ((ent->err_attrs & SUN4V_ERR_ATTRS_MEMORY) ? "memory" : ""), ((ent->err_attrs & SUN4V_ERR_ATTRS_PIO) ? "pio" : ""), ((ent->err_attrs & SUN4V_ERR_ATTRS_INT_REGISTERS) ? "integer-regs" : ""), ((ent->err_attrs & SUN4V_ERR_ATTRS_FPU_REGISTERS) ? "fpu-regs" : ""), ((ent->err_attrs & SUN4V_ERR_ATTRS_USER_MODE) ? "user" : ""), ((ent->err_attrs & SUN4V_ERR_ATTRS_PRIV_MODE) ? "privileged" : ""), ((ent->err_attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) ? "queue-full" : "")); printk("%s: err_raddr[%016lx] err_size[%u] err_cpu[%u]\n", pfx, ent->err_raddr, ent->err_size, ent->err_cpu); if ((cnt = atomic_read(ocnt)) != 0) { atomic_set(ocnt, 0); wmb(); printk("%s: Queue overflowed %d times.\n", pfx, cnt); } } /* We run with %pil set to 15 and PSTATE_IE enabled in %pstate. * Log the event and clear the first word of the entry. */ void sun4v_resum_error(struct pt_regs *regs, unsigned long offset) { struct sun4v_error_entry *ent, local_copy; struct trap_per_cpu *tb; unsigned long paddr; int cpu; cpu = get_cpu(); tb = &trap_block[cpu]; paddr = tb->resum_kernel_buf_pa + offset; ent = __va(paddr); memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); /* We have a local copy now, so release the entry. */ ent->err_handle = 0; wmb(); put_cpu(); sun4v_log_error(&local_copy, cpu, KERN_ERR "RESUMABLE ERROR", &sun4v_resum_oflow_cnt); } /* If we try to printk() we'll probably make matters worse, by trying * to retake locks this cpu already holds or causing more errors. So * just bump a counter, and we'll report these counter bumps above. */ void sun4v_resum_overflow(struct pt_regs *regs) { atomic_inc(&sun4v_resum_oflow_cnt); } /* We run with %pil set to 15 and PSTATE_IE enabled in %pstate. * Log the event, clear the first word of the entry, and die. */ void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset) { struct sun4v_error_entry *ent, local_copy; struct trap_per_cpu *tb; unsigned long paddr; int cpu; cpu = get_cpu(); tb = &trap_block[cpu]; paddr = tb->nonresum_kernel_buf_pa + offset; ent = __va(paddr); memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); /* We have a local copy now, so release the entry. */ ent->err_handle = 0; wmb(); put_cpu(); #ifdef CONFIG_PCI /* Check for the special PCI poke sequence. */ if (pci_poke_in_progress && pci_poke_cpu == cpu) { pci_poke_faulted = 1; regs->tpc += 4; regs->tnpc = regs->tpc + 4; return; } #endif sun4v_log_error(&local_copy, cpu, KERN_EMERG "NON-RESUMABLE ERROR", &sun4v_nonresum_oflow_cnt); panic("Non-resumable error."); } /* If we try to printk() we'll probably make matters worse, by trying * to retake locks this cpu already holds or causing more errors. So * just bump a counter, and we'll report these counter bumps above. */ void sun4v_nonresum_overflow(struct pt_regs *regs) { /* XXX Actually even this can make not that much sense. Perhaps * XXX we should just pull the plug and panic directly from here? */ atomic_inc(&sun4v_nonresum_oflow_cnt); } void do_fpe_common(struct pt_regs *regs) { if (regs->tstate & TSTATE_PRIV) { regs->tpc = regs->tnpc; regs->tnpc += 4; } else { unsigned long fsr = current_thread_info()->xfsr[0]; siginfo_t info; if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGFPE; info.si_errno = 0; info.si_addr = (void __user *)regs->tpc; info.si_trapno = 0; info.si_code = __SI_FAULT; if ((fsr & 0x1c000) == (1 << 14)) { if (fsr & 0x10) info.si_code = FPE_FLTINV; else if (fsr & 0x08) info.si_code = FPE_FLTOVF; else if (fsr & 0x04) info.si_code = FPE_FLTUND; else if (fsr & 0x02) info.si_code = FPE_FLTDIV; else if (fsr & 0x01) info.si_code = FPE_FLTRES; } force_sig_info(SIGFPE, &info, current); } } void do_fpieee(struct pt_regs *regs) { if (notify_die(DIE_TRAP, "fpu exception ieee", regs, 0, 0x24, SIGFPE) == NOTIFY_STOP) return; do_fpe_common(regs); } extern int do_mathemu(struct pt_regs *, struct fpustate *); void do_fpother(struct pt_regs *regs) { struct fpustate *f = FPUSTATE; int ret = 0; if (notify_die(DIE_TRAP, "fpu exception other", regs, 0, 0x25, SIGFPE) == NOTIFY_STOP) return; switch ((current_thread_info()->xfsr[0] & 0x1c000)) { case (2 << 14): /* unfinished_FPop */ case (3 << 14): /* unimplemented_FPop */ ret = do_mathemu(regs, f); break; } if (ret) return; do_fpe_common(regs); } void do_tof(struct pt_regs *regs) { siginfo_t info; if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs, 0, 0x26, SIGEMT) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) die_if_kernel("Penguin overflow trap from kernel mode", regs); if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGEMT; info.si_errno = 0; info.si_code = EMT_TAGOVF; info.si_addr = (void __user *)regs->tpc; info.si_trapno = 0; force_sig_info(SIGEMT, &info, current); } void do_div0(struct pt_regs *regs) { siginfo_t info; if (notify_die(DIE_TRAP, "integer division by zero", regs, 0, 0x28, SIGFPE) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) die_if_kernel("TL0: Kernel divide by zero.", regs); if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGFPE; info.si_errno = 0; info.si_code = FPE_INTDIV; info.si_addr = (void __user *)regs->tpc; info.si_trapno = 0; force_sig_info(SIGFPE, &info, current); } void instruction_dump (unsigned int *pc) { int i; if ((((unsigned long) pc) & 3)) return; printk("Instruction DUMP:"); for (i = -3; i < 6; i++) printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>'); printk("\n"); } static void user_instruction_dump (unsigned int __user *pc) { int i; unsigned int buf[9]; if ((((unsigned long) pc) & 3)) return; if (copy_from_user(buf, pc - 3, sizeof(buf))) return; printk("Instruction DUMP:"); for (i = 0; i < 9; i++) printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>'); printk("\n"); } void show_stack(struct task_struct *tsk, unsigned long *_ksp) { unsigned long pc, fp, thread_base, ksp; void *tp = task_stack_page(tsk); struct reg_window *rw; int count = 0; ksp = (unsigned long) _ksp; if (tp == current_thread_info()) flushw_all(); fp = ksp + STACK_BIAS; thread_base = (unsigned long) tp; printk("Call Trace:"); #ifdef CONFIG_KALLSYMS printk("\n"); #endif do { /* Bogus frame pointer? */ if (fp < (thread_base + sizeof(struct thread_info)) || fp >= (thread_base + THREAD_SIZE)) break; rw = (struct reg_window *)fp; pc = rw->ins[7]; printk(" [%016lx] ", pc); print_symbol("%s\n", pc); fp = rw->ins[6] + STACK_BIAS; } while (++count < 16); #ifndef CONFIG_KALLSYMS printk("\n"); #endif } void dump_stack(void) { unsigned long *ksp; __asm__ __volatile__("mov %%fp, %0" : "=r" (ksp)); show_stack(current, ksp); } EXPORT_SYMBOL(dump_stack); static inline int is_kernel_stack(struct task_struct *task, struct reg_window *rw) { unsigned long rw_addr = (unsigned long) rw; unsigned long thread_base, thread_end; if (rw_addr < PAGE_OFFSET) { if (task != &init_task) return 0; } thread_base = (unsigned long) task_stack_page(task); thread_end = thread_base + sizeof(union thread_union); if (rw_addr >= thread_base && rw_addr < thread_end && !(rw_addr & 0x7UL)) return 1; return 0; } static inline struct reg_window *kernel_stack_up(struct reg_window *rw) { unsigned long fp = rw->ins[6]; if (!fp) return NULL; return (struct reg_window *) (fp + STACK_BIAS); } void die_if_kernel(char *str, struct pt_regs *regs) { static int die_counter; extern void __show_regs(struct pt_regs * regs); extern void smp_report_regs(void); int count = 0; /* Amuse the user. */ printk( " \\|/ ____ \\|/\n" " \"@'/ .. \\`@\"\n" " /_| \\__/ |_\\\n" " \\__U_/\n"); printk("%s(%d): %s [#%d]\n", current->comm, current->pid, str, ++die_counter); notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV); __asm__ __volatile__("flushw"); __show_regs(regs); if (regs->tstate & TSTATE_PRIV) { struct reg_window *rw = (struct reg_window *) (regs->u_regs[UREG_FP] + STACK_BIAS); /* Stop the back trace when we hit userland or we * find some badly aligned kernel stack. */ while (rw && count++ < 30&& is_kernel_stack(current, rw)) { printk("Caller[%016lx]", rw->ins[7]); print_symbol(": %s", rw->ins[7]); printk("\n"); rw = kernel_stack_up(rw); } instruction_dump ((unsigned int *) regs->tpc); } else { if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } user_instruction_dump ((unsigned int __user *) regs->tpc); } #ifdef CONFIG_SMP smp_report_regs(); #endif if (regs->tstate & TSTATE_PRIV) do_exit(SIGKILL); do_exit(SIGSEGV); } extern int handle_popc(u32 insn, struct pt_regs *regs); extern int handle_ldf_stq(u32 insn, struct pt_regs *regs); void do_illegal_instruction(struct pt_regs *regs) { unsigned long pc = regs->tpc; unsigned long tstate = regs->tstate; u32 insn; siginfo_t info; if (notify_die(DIE_TRAP, "illegal instruction", regs, 0, 0x10, SIGILL) == NOTIFY_STOP) return; if (tstate & TSTATE_PRIV) die_if_kernel("Kernel illegal instruction", regs); if (test_thread_flag(TIF_32BIT)) pc = (u32)pc; if (get_user(insn, (u32 __user *) pc) != -EFAULT) { if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ { if (handle_popc(insn, regs)) return; } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ { if (handle_ldf_stq(insn, regs)) return; } } info.si_signo = SIGILL; info.si_errno = 0; info.si_code = ILL_ILLOPC; info.si_addr = (void __user *)pc; info.si_trapno = 0; force_sig_info(SIGILL, &info, current); } extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn); void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) { siginfo_t info; if (notify_die(DIE_TRAP, "memory address unaligned", regs, 0, 0x34, SIGSEGV) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); return; } info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRALN; info.si_addr = (void __user *)sfar; info.si_trapno = 0; force_sig_info(SIGBUS, &info, current); } void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { siginfo_t info; if (notify_die(DIE_TRAP, "memory address unaligned", regs, 0, 0x34, SIGSEGV) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); return; } info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRALN; info.si_addr = (void __user *) addr; info.si_trapno = 0; force_sig_info(SIGBUS, &info, current); } void do_privop(struct pt_regs *regs) { siginfo_t info; if (notify_die(DIE_TRAP, "privileged operation", regs, 0, 0x11, SIGILL) == NOTIFY_STOP) return; if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } info.si_signo = SIGILL; info.si_errno = 0; info.si_code = ILL_PRVOPC; info.si_addr = (void __user *)regs->tpc; info.si_trapno = 0; force_sig_info(SIGILL, &info, current); } void do_privact(struct pt_regs *regs) { do_privop(regs); } /* Trap level 1 stuff or other traps we should never see... */ void do_cee(struct pt_regs *regs) { die_if_kernel("TL0: Cache Error Exception", regs); } void do_cee_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Cache Error Exception", regs); } void do_dae_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Data Access Exception", regs); } void do_iae_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Instruction Access Exception", regs); } void do_div0_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: DIV0 Exception", regs); } void do_fpdis_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: FPU Disabled", regs); } void do_fpieee_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: FPU IEEE Exception", regs); } void do_fpother_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: FPU Other Exception", regs); } void do_ill_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Illegal Instruction Exception", regs); } void do_irq_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: IRQ Exception", regs); } void do_lddfmna_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: LDDF Exception", regs); } void do_stdfmna_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: STDF Exception", regs); } void do_paw(struct pt_regs *regs) { die_if_kernel("TL0: Phys Watchpoint Exception", regs); } void do_paw_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Phys Watchpoint Exception", regs); } void do_vaw(struct pt_regs *regs) { die_if_kernel("TL0: Virt Watchpoint Exception", regs); } void do_vaw_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Virt Watchpoint Exception", regs); } void do_tof_tl1(struct pt_regs *regs) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Tag Overflow Exception", regs); } void do_getpsr(struct pt_regs *regs) { regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate); regs->tpc = regs->tnpc; regs->tnpc += 4; if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } } struct trap_per_cpu trap_block[NR_CPUS]; /* This can get invoked before sched_init() so play it super safe * and use hard_smp_processor_id(). */ void init_cur_cpu_trap(void) { int cpu = hard_smp_processor_id(); struct trap_per_cpu *p = &trap_block[cpu]; p->thread = current_thread_info(); p->pgd_paddr = 0; } extern void thread_info_offsets_are_bolixed_dave(void); extern void trap_per_cpu_offsets_are_bolixed_dave(void); /* Only invoked on boot processor. */ void __init trap_init(void) { /* Compile time sanity check. */ if (TI_TASK != offsetof(struct thread_info, task) || TI_FLAGS != offsetof(struct thread_info, flags) || TI_CPU != offsetof(struct thread_info, cpu) || TI_FPSAVED != offsetof(struct thread_info, fpsaved) || TI_KSP != offsetof(struct thread_info, ksp) || TI_FAULT_ADDR != offsetof(struct thread_info, fault_address) || TI_KREGS != offsetof(struct thread_info, kregs) || TI_UTRAPS != offsetof(struct thread_info, utraps) || TI_EXEC_DOMAIN != offsetof(struct thread_info, exec_domain) || TI_REG_WINDOW != offsetof(struct thread_info, reg_window) || TI_RWIN_SPTRS != offsetof(struct thread_info, rwbuf_stkptrs) || TI_GSR != offsetof(struct thread_info, gsr) || TI_XFSR != offsetof(struct thread_info, xfsr) || TI_USER_CNTD0 != offsetof(struct thread_info, user_cntd0) || TI_USER_CNTD1 != offsetof(struct thread_info, user_cntd1) || TI_KERN_CNTD0 != offsetof(struct thread_info, kernel_cntd0) || TI_KERN_CNTD1 != offsetof(struct thread_info, kernel_cntd1) || TI_PCR != offsetof(struct thread_info, pcr_reg) || TI_PRE_COUNT != offsetof(struct thread_info, preempt_count) || TI_NEW_CHILD != offsetof(struct thread_info, new_child) || TI_SYS_NOERROR != offsetof(struct thread_info, syscall_noerror) || TI_RESTART_BLOCK != offsetof(struct thread_info, restart_block) || TI_KUNA_REGS != offsetof(struct thread_info, kern_una_regs) || TI_KUNA_INSN != offsetof(struct thread_info, kern_una_insn) || TI_FPREGS != offsetof(struct thread_info, fpregs) || (TI_FPREGS & (64 - 1))) thread_info_offsets_are_bolixed_dave(); if (TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, thread) || (TRAP_PER_CPU_PGD_PADDR != offsetof(struct trap_per_cpu, pgd_paddr)) || (TRAP_PER_CPU_CPU_MONDO_PA != offsetof(struct trap_per_cpu, cpu_mondo_pa)) || (TRAP_PER_CPU_DEV_MONDO_PA != offsetof(struct trap_per_cpu, dev_mondo_pa)) || (TRAP_PER_CPU_RESUM_MONDO_PA != offsetof(struct trap_per_cpu, resum_mondo_pa)) || (TRAP_PER_CPU_RESUM_KBUF_PA != offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) || (TRAP_PER_CPU_NONRESUM_MONDO_PA != offsetof(struct trap_per_cpu, nonresum_mondo_pa)) || (TRAP_PER_CPU_NONRESUM_KBUF_PA != offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) || (TRAP_PER_CPU_FAULT_INFO != offsetof(struct trap_per_cpu, fault_info)) || (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA != offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) || (TRAP_PER_CPU_CPU_LIST_PA != offsetof(struct trap_per_cpu, cpu_list_pa))) trap_per_cpu_offsets_are_bolixed_dave(); /* Attach to the address space of init_task. On SMP we * do this in smp.c:smp_callin for other cpus. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; }