/* * linux/arch/x86-64/kernel/time.c * * "High Precision Event Timer" based timekeeping. * * Copyright (c) 1991,1992,1995 Linus Torvalds * Copyright (c) 1994 Alan Modra * Copyright (c) 1995 Markus Kuhn * Copyright (c) 1996 Ingo Molnar * Copyright (c) 1998 Andrea Arcangeli * Copyright (c) 2002,2006 Vojtech Pavlik * Copyright (c) 2003 Andi Kleen * RTC support code taken from arch/i386/kernel/timers/time_hpet.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ACPI #include /* for PM timer frequency */ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include static char *timename = NULL; DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); DEFINE_SPINLOCK(i8253_lock); volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES; unsigned long profile_pc(struct pt_regs *regs) { unsigned long pc = instruction_pointer(regs); /* Assume the lock function has either no stack frame or a copy of eflags from PUSHF Eflags always has bits 22 and up cleared unlike kernel addresses. */ if (!user_mode(regs) && in_lock_functions(pc)) { unsigned long *sp = (unsigned long *)regs->rsp; if (sp[0] >> 22) return sp[0]; if (sp[1] >> 22) return sp[1]; } return pc; } EXPORT_SYMBOL(profile_pc); /* * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500 * ms after the second nowtime has started, because when nowtime is written * into the registers of the CMOS clock, it will jump to the next second * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data * sheet for details. */ static void set_rtc_mmss(unsigned long nowtime) { int real_seconds, real_minutes, cmos_minutes; unsigned char control, freq_select; /* * IRQs are disabled when we're called from the timer interrupt, * no need for spin_lock_irqsave() */ spin_lock(&rtc_lock); /* * Tell the clock it's being set and stop it. */ control = CMOS_READ(RTC_CONTROL); CMOS_WRITE(control | RTC_SET, RTC_CONTROL); freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT); cmos_minutes = CMOS_READ(RTC_MINUTES); BCD_TO_BIN(cmos_minutes); /* * since we're only adjusting minutes and seconds, don't interfere with hour * overflow. This avoids messing with unknown time zones but requires your RTC * not to be off by more than 15 minutes. Since we're calling it only when * our clock is externally synchronized using NTP, this shouldn't be a problem. */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - cmos_minutes) >= 30) { printk(KERN_WARNING "time.c: can't update CMOS clock " "from %d to %d\n", cmos_minutes, real_minutes); } else { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); CMOS_WRITE(real_seconds, RTC_SECONDS); CMOS_WRITE(real_minutes, RTC_MINUTES); } /* * The following flags have to be released exactly in this order, otherwise the * DS12887 (popular MC146818A clone with integrated battery and quartz) will * not reset the oscillator and will not update precisely 500 ms later. You * won't find this mentioned in the Dallas Semiconductor data sheets, but who * believes data sheets anyway ... -- Markus Kuhn */ CMOS_WRITE(control, RTC_CONTROL); CMOS_WRITE(freq_select, RTC_FREQ_SELECT); spin_unlock(&rtc_lock); } void main_timer_handler(void) { static unsigned long rtc_update = 0; /* * Here we are in the timer irq handler. We have irqs locally disabled (so we * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running * on the other CPU, so we need a lock. We also need to lock the vsyscall * variables, because both do_timer() and us change them -arca+vojtech */ write_seqlock(&xtime_lock); /* * Do the timer stuff. */ do_timer(1); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif /* * In the SMP case we use the local APIC timer interrupt to do the profiling, * except when we simulate SMP mode on a uniprocessor system, in that case we * have to call the local interrupt handler. */ if (!using_apic_timer) smp_local_timer_interrupt(); /* * If we have an externally synchronized Linux clock, then update CMOS clock * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy * closest to exactly 500 ms before the next second. If the update fails, we * don't care, as it'll be updated on the next turn, and the problem (time way * off) isn't likely to go away much sooner anyway. */ if (ntp_synced() && xtime.tv_sec > rtc_update && abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) { set_rtc_mmss(xtime.tv_sec); rtc_update = xtime.tv_sec + 660; } write_sequnlock(&xtime_lock); } static irqreturn_t timer_interrupt(int irq, void *dev_id) { if (apic_runs_main_timer > 1) return IRQ_HANDLED; main_timer_handler(); if (using_apic_timer) smp_send_timer_broadcast_ipi(); return IRQ_HANDLED; } static unsigned long get_cmos_time(void) { unsigned int year, mon, day, hour, min, sec; unsigned long flags; unsigned century = 0; spin_lock_irqsave(&rtc_lock, flags); do { sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); #ifdef CONFIG_ACPI if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID && acpi_gbl_FADT.century) century = CMOS_READ(acpi_gbl_FADT.century); #endif } while (sec != CMOS_READ(RTC_SECONDS)); spin_unlock_irqrestore(&rtc_lock, flags); /* * We know that x86-64 always uses BCD format, no need to check the * config register. */ BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); if (century) { BCD_TO_BIN(century); year += century * 100; printk(KERN_INFO "Extended CMOS year: %d\n", century * 100); } else { /* * x86-64 systems only exists since 2002. * This will work up to Dec 31, 2100 */ year += 2000; } return mktime(year, mon, day, hour, min, sec); } /* calibrate_cpu is used on systems with fixed rate TSCs to determine * processor frequency */ #define TICK_COUNT 100000000 static unsigned int __init tsc_calibrate_cpu_khz(void) { int tsc_start, tsc_now; int i, no_ctr_free; unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0; unsigned long flags; for (i = 0; i < 4; i++) if (avail_to_resrv_perfctr_nmi_bit(i)) break; no_ctr_free = (i == 4); if (no_ctr_free) { i = 3; rdmsrl(MSR_K7_EVNTSEL3, evntsel3); wrmsrl(MSR_K7_EVNTSEL3, 0); rdmsrl(MSR_K7_PERFCTR3, pmc3); } else { reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i); reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i); } local_irq_save(flags); /* start meauring cycles, incrementing from 0 */ wrmsrl(MSR_K7_PERFCTR0 + i, 0); wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76); rdtscl(tsc_start); do { rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now); tsc_now = get_cycles_sync(); } while ((tsc_now - tsc_start) < TICK_COUNT); local_irq_restore(flags); if (no_ctr_free) { wrmsrl(MSR_K7_EVNTSEL3, 0); wrmsrl(MSR_K7_PERFCTR3, pmc3); wrmsrl(MSR_K7_EVNTSEL3, evntsel3); } else { release_perfctr_nmi(MSR_K7_PERFCTR0 + i); release_evntsel_nmi(MSR_K7_EVNTSEL0 + i); } return pmc_now * tsc_khz / (tsc_now - tsc_start); } /* * pit_calibrate_tsc() uses the speaker output (channel 2) of * the PIT. This is better than using the timer interrupt output, * because we can read the value of the speaker with just one inb(), * where we need three i/o operations for the interrupt channel. * We count how many ticks the TSC does in 50 ms. */ static unsigned int __init pit_calibrate_tsc(void) { unsigned long start, end; unsigned long flags; spin_lock_irqsave(&i8253_lock, flags); outb((inb(0x61) & ~0x02) | 0x01, 0x61); outb(0xb0, 0x43); outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42); outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42); start = get_cycles_sync(); while ((inb(0x61) & 0x20) == 0); end = get_cycles_sync(); spin_unlock_irqrestore(&i8253_lock, flags); return (end - start) / 50; } #define PIT_MODE 0x43 #define PIT_CH0 0x40 static void __init __pit_init(int val, u8 mode) { unsigned long flags; spin_lock_irqsave(&i8253_lock, flags); outb_p(mode, PIT_MODE); outb_p(val & 0xff, PIT_CH0); /* LSB */ outb_p(val >> 8, PIT_CH0); /* MSB */ spin_unlock_irqrestore(&i8253_lock, flags); } void __init pit_init(void) { __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */ } void __init pit_stop_interrupt(void) { __pit_init(0, 0x30); /* mode 0 */ } void __init stop_timer_interrupt(void) { char *name; if (hpet_address) { name = "HPET"; hpet_timer_stop_set_go(0); } else { name = "PIT"; pit_stop_interrupt(); } printk(KERN_INFO "timer: %s interrupt stopped.\n", name); } static struct irqaction irq0 = { timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL }; void __init time_init(void) { if (nohpet) hpet_address = 0; xtime.tv_sec = get_cmos_time(); xtime.tv_nsec = 0; set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); if (hpet_arch_init()) hpet_address = 0; if (hpet_use_timer) { /* set tick_nsec to use the proper rate for HPET */ tick_nsec = TICK_NSEC_HPET; tsc_khz = hpet_calibrate_tsc(); timename = "HPET"; } else { pit_init(); tsc_khz = pit_calibrate_tsc(); timename = "PIT"; } cpu_khz = tsc_khz; if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && boot_cpu_data.x86_vendor == X86_VENDOR_AMD && boot_cpu_data.x86 == 16) cpu_khz = tsc_calibrate_cpu_khz(); if (unsynchronized_tsc()) mark_tsc_unstable("TSCs unsynchronized"); if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP)) vgetcpu_mode = VGETCPU_RDTSCP; else vgetcpu_mode = VGETCPU_LSL; set_cyc2ns_scale(tsc_khz); printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n", cpu_khz / 1000, cpu_khz % 1000); init_tsc_clocksource(); setup_irq(0, &irq0); } static long clock_cmos_diff; static unsigned long sleep_start; /* * sysfs support for the timer. */ static int timer_suspend(struct sys_device *dev, pm_message_t state) { /* * Estimate time zone so that set_time can update the clock */ long cmos_time = get_cmos_time(); clock_cmos_diff = -cmos_time; clock_cmos_diff += get_seconds(); sleep_start = cmos_time; return 0; } static int timer_resume(struct sys_device *dev) { unsigned long flags; unsigned long sec; unsigned long ctime = get_cmos_time(); long sleep_length = (ctime - sleep_start) * HZ; if (sleep_length < 0) { printk(KERN_WARNING "Time skew detected in timer resume!\n"); /* The time after the resume must not be earlier than the time * before the suspend or some nasty things will happen */ sleep_length = 0; ctime = sleep_start; } if (hpet_address) hpet_reenable(); else i8254_timer_resume(); sec = ctime + clock_cmos_diff; write_seqlock_irqsave(&xtime_lock,flags); xtime.tv_sec = sec; xtime.tv_nsec = 0; jiffies += sleep_length; write_sequnlock_irqrestore(&xtime_lock,flags); touch_softlockup_watchdog(); return 0; } static struct sysdev_class timer_sysclass = { .resume = timer_resume, .suspend = timer_suspend, set_kset_name("timer"), }; /* XXX this sysfs stuff should probably go elsewhere later -john */ static struct sys_device device_timer = { .id = 0, .cls = &timer_sysclass, }; static int time_init_device(void) { int error = sysdev_class_register(&timer_sysclass); if (!error) error = sysdev_register(&device_timer); return error; } device_initcall(time_init_device);