/* * Copyright (c) 2004 Video54 Technologies, Inc. * Copyright (c) 2004-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Atheros rate control algorithm */ #include "core.h" /* FIXME: remove this include! */ #include "../net/mac80211/rate.h" static u32 tx_triglevel_max; static struct ath_rate_table ar5416_11na_ratetable = { 42, { { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, 12, 0, 2, 1, 0, 0, 0, 0, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 0, 3, 1, 1, 1, 1, 1, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ 10000, 0x0a, 0x00, 24, 2, 4, 2, 2, 2, 2, 2, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ 13900, 0x0e, 0x00, 36, 2, 6, 2, 3, 3, 3, 3, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ 17300, 0x09, 0x00, 48, 4, 10, 3, 4, 4, 4, 4, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ 23000, 0x0d, 0x00, 72, 4, 14, 3, 5, 5, 5, 5, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 4, 20, 3, 6, 6, 6, 6, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ 29300, 0x0c, 0x00, 108, 4, 23, 3, 7, 7, 7, 7, 0 }, { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ 6400, 0x80, 0x00, 0, 0, 2, 3, 8, 24, 8, 24, 3216 }, { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ 12700, 0x81, 0x00, 1, 2, 4, 3, 9, 25, 9, 25, 6434 }, { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ 18800, 0x82, 0x00, 2, 2, 6, 3, 10, 26, 10, 26, 9650 }, { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ 25000, 0x83, 0x00, 3, 4, 10, 3, 11, 27, 11, 27, 12868 }, { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ 36700, 0x84, 0x00, 4, 4, 14, 3, 12, 28, 12, 28, 19304 }, { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ 48100, 0x85, 0x00, 5, 4, 20, 3, 13, 29, 13, 29, 25740 }, { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ 53500, 0x86, 0x00, 6, 4, 23, 3, 14, 30, 14, 30, 28956 }, { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ 59000, 0x87, 0x00, 7, 4, 25, 3, 15, 31, 15, 32, 32180 }, { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ 12700, 0x88, 0x00, 8, 0, 2, 3, 16, 33, 16, 33, 6430 }, { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ 24800, 0x89, 0x00, 9, 2, 4, 3, 17, 34, 17, 34, 12860 }, { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ 36600, 0x8a, 0x00, 10, 2, 6, 3, 18, 35, 18, 35, 19300 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ 48100, 0x8b, 0x00, 11, 4, 10, 3, 19, 36, 19, 36, 25736 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ 69500, 0x8c, 0x00, 12, 4, 14, 3, 20, 37, 20, 37, 38600 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ 89500, 0x8d, 0x00, 13, 4, 20, 3, 21, 38, 21, 38, 51472 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ 98900, 0x8e, 0x00, 14, 4, 23, 3, 22, 39, 22, 39, 57890 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ 108300, 0x8f, 0x00, 15, 4, 25, 3, 23, 40, 23, 41, 64320 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ 13200, 0x80, 0x00, 0, 0, 2, 3, 8, 24, 24, 24, 6684 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ 25900, 0x81, 0x00, 1, 2, 4, 3, 9, 25, 25, 25, 13368 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ 38600, 0x82, 0x00, 2, 2, 6, 3, 10, 26, 26, 26, 20052 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ 49800, 0x83, 0x00, 3, 4, 10, 3, 11, 27, 27, 27, 26738 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ 72200, 0x84, 0x00, 4, 4, 14, 3, 12, 28, 28, 28, 40104 }, { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ 92900, 0x85, 0x00, 5, 4, 20, 3, 13, 29, 29, 29, 53476 }, { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ 102700, 0x86, 0x00, 6, 4, 23, 3, 14, 30, 30, 30, 60156 }, { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ 112000, 0x87, 0x00, 7, 4, 25, 3, 15, 31, 32, 32, 66840 }, { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ 122000, 0x87, 0x00, 7, 4, 25, 3, 15, 31, 32, 32, 74200 }, { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ 25800, 0x88, 0x00, 8, 0, 2, 3, 16, 33, 33, 33, 13360 }, { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ 49800, 0x89, 0x00, 9, 2, 4, 3, 17, 34, 34, 34, 26720 }, { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ 71900, 0x8a, 0x00, 10, 2, 6, 3, 18, 35, 35, 35, 40080 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ 92500, 0x8b, 0x00, 11, 4, 10, 3, 19, 36, 36, 36, 53440 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ 130300, 0x8c, 0x00, 12, 4, 14, 3, 20, 37, 37, 37, 80160 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ 162800, 0x8d, 0x00, 13, 4, 20, 3, 21, 38, 38, 38, 106880 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ 178200, 0x8e, 0x00, 14, 4, 23, 3, 22, 39, 39, 39, 120240 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ 192100, 0x8f, 0x00, 15, 4, 25, 3, 23, 40, 41, 41, 133600 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ 207000, 0x8f, 0x00, 15, 4, 25, 3, 23, 40, 41, 41, 148400 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ }; /* TRUE_ALL - valid for 20/40/Legacy, * TRUE - Legacy only, * TRUE_20 - HT 20 only, * TRUE_40 - HT 40 only */ /* 4ms frame limit not used for NG mode. The values filled * for HT are the 64K max aggregate limit */ static struct ath_rate_table ar5416_11ng_ratetable = { 46, { { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */ 900, 0x1b, 0x00, 2, 0, 0, 1, 0, 0, 0, 0, 0 }, { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */ 1900, 0x1a, 0x04, 4, 1, 1, 1, 1, 1, 1, 1, 0 }, { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ 4900, 0x19, 0x04, 11, 2, 2, 2, 2, 2, 2, 2, 0 }, { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */ 8100, 0x18, 0x04, 22, 3, 3, 2, 3, 3, 3, 3, 0 }, { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, 12, 4, 2, 1, 4, 4, 4, 4, 0 }, { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 4, 3, 1, 5, 5, 5, 5, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ 10100, 0x0a, 0x00, 24, 6, 4, 1, 6, 6, 6, 6, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ 14100, 0x0e, 0x00, 36, 6, 6, 2, 7, 7, 7, 7, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ 17700, 0x09, 0x00, 48, 8, 10, 3, 8, 8, 8, 8, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ 23700, 0x0d, 0x00, 72, 8, 14, 3, 9, 9, 9, 9, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 8, 20, 3, 10, 10, 10, 10, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ 30900, 0x0c, 0x00, 108, 8, 23, 3, 11, 11, 11, 11, 0 }, { FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ 6400, 0x80, 0x00, 0, 4, 2, 3, 12, 28, 12, 28, 3216 }, { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ 12700, 0x81, 0x00, 1, 6, 4, 3, 13, 29, 13, 29, 6434 }, { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ 18800, 0x82, 0x00, 2, 6, 6, 3, 14, 30, 14, 30, 9650 }, { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ 25000, 0x83, 0x00, 3, 8, 10, 3, 15, 31, 15, 31, 12868 }, { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ 36700, 0x84, 0x00, 4, 8, 14, 3, 16, 32, 16, 32, 19304 }, { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ 48100, 0x85, 0x00, 5, 8, 20, 3, 17, 33, 17, 33, 25740 }, { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ 53500, 0x86, 0x00, 6, 8, 23, 3, 18, 34, 18, 34, 28956 }, { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ 59000, 0x87, 0x00, 7, 8, 25, 3, 19, 35, 19, 36, 32180 }, { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ 12700, 0x88, 0x00, 8, 4, 2, 3, 20, 37, 20, 37, 6430 }, { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ 24800, 0x89, 0x00, 9, 6, 4, 3, 21, 38, 21, 38, 12860 }, { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ 36600, 0x8a, 0x00, 10, 6, 6, 3, 22, 39, 22, 39, 19300 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ 48100, 0x8b, 0x00, 11, 8, 10, 3, 23, 40, 23, 40, 25736 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ 69500, 0x8c, 0x00, 12, 8, 14, 3, 24, 41, 24, 41, 38600 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ 89500, 0x8d, 0x00, 13, 8, 20, 3, 25, 42, 25, 42, 51472 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ 98900, 0x8e, 0x00, 14, 8, 23, 3, 26, 43, 26, 44, 57890 }, { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ 108300, 0x8f, 0x00, 15, 8, 25, 3, 27, 44, 27, 45, 64320 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ 13200, 0x80, 0x00, 0, 8, 2, 3, 12, 28, 28, 28, 6684 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ 25900, 0x81, 0x00, 1, 8, 4, 3, 13, 29, 29, 29, 13368 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ 38600, 0x82, 0x00, 2, 8, 6, 3, 14, 30, 30, 30, 20052 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ 49800, 0x83, 0x00, 3, 8, 10, 3, 15, 31, 31, 31, 26738 }, { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ 72200, 0x84, 0x00, 4, 8, 14, 3, 16, 32, 32, 32, 40104 }, { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ 92900, 0x85, 0x00, 5, 8, 20, 3, 17, 33, 33, 33, 53476 }, { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ 102700, 0x86, 0x00, 6, 8, 23, 3, 18, 34, 34, 34, 60156 }, { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ 112000, 0x87, 0x00, 7, 8, 23, 3, 19, 35, 36, 36, 66840 }, { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ 122000, 0x87, 0x00, 7, 8, 25, 3, 19, 35, 36, 36, 74200 }, { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ 25800, 0x88, 0x00, 8, 8, 2, 3, 20, 37, 37, 37, 13360 }, { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ 49800, 0x89, 0x00, 9, 8, 4, 3, 21, 38, 38, 38, 26720 }, { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ 71900, 0x8a, 0x00, 10, 8, 6, 3, 22, 39, 39, 39, 40080 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ 92500, 0x8b, 0x00, 11, 8, 10, 3, 23, 40, 40, 40, 53440 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ 130300, 0x8c, 0x00, 12, 8, 14, 3, 24, 41, 41, 41, 80160 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ 162800, 0x8d, 0x00, 13, 8, 20, 3, 25, 42, 42, 42, 106880 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ 178200, 0x8e, 0x00, 14, 8, 23, 3, 26, 43, 43, 43, 120240 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ 192100, 0x8f, 0x00, 15, 8, 23, 3, 27, 44, 45, 45, 133600 }, { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ 207000, 0x8f, 0x00, 15, 8, 25, 3, 27, 44, 45, 45, 148400 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ }; static struct ath_rate_table ar5416_11a_ratetable = { 8, { { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, (0x80|12), 0, 2, 1, 0, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 0, 3, 1, 1, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ 10000, 0x0a, 0x00, (0x80|24), 2, 4, 2, 2, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ 13900, 0x0e, 0x00, 36, 2, 6, 2, 3, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ 17300, 0x09, 0x00, (0x80|48), 4, 10, 3, 4, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ 23000, 0x0d, 0x00, 72, 4, 14, 3, 5, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 4, 19, 3, 6, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ 29300, 0x0c, 0x00, 108, 4, 23, 3, 7, 0 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static struct ath_rate_table ar5416_11a_ratetable_Half = { 8, { { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */ 2700, 0x0b, 0x00, (0x80|6), 0, 2, 1, 0, 0}, { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */ 3900, 0x0f, 0x00, 9, 0, 3, 1, 1, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */ 5000, 0x0a, 0x00, (0x80|12), 2, 4, 2, 2, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */ 6950, 0x0e, 0x00, 18, 2, 6, 2, 3, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */ 8650, 0x09, 0x00, (0x80|24), 4, 10, 3, 4, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */ 11500, 0x0d, 0x00, 36, 4, 14, 3, 5, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */ 13700, 0x08, 0x00, 48, 4, 19, 3, 6, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */ 14650, 0x0c, 0x00, 54, 4, 23, 3, 7, 0 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static struct ath_rate_table ar5416_11a_ratetable_Quarter = { 8, { { TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */ 1350, 0x0b, 0x00, (0x80|3), 0, 2, 1, 0, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */ 1950, 0x0f, 0x00, 4, 0, 3, 1, 1, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */ 2500, 0x0a, 0x00, (0x80|6), 2, 4, 2, 2, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */ 3475, 0x0e, 0x00, 9, 2, 6, 2, 3, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */ 4325, 0x09, 0x00, (0x80|12), 4, 10, 3, 4, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */ 5750, 0x0d, 0x00, 18, 4, 14, 3, 5, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */ 6850, 0x08, 0x00, 24, 4, 19, 3, 6, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */ 7325, 0x0c, 0x00, 27, 4, 23, 3, 7, 0 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static struct ath_rate_table ar5416_11g_ratetable = { 12, { { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ 900, 0x1b, 0x00, 2, 0, 0, 1, 0, 0 }, { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ 1900, 0x1a, 0x04, 4, 1, 1, 1, 1, 0 }, { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ 4900, 0x19, 0x04, 11, 2, 2, 2, 2, 0 }, { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ 8100, 0x18, 0x04, 22, 3, 3, 2, 3, 0 }, { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, 12, 4, 2, 1, 4, 0 }, { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 4, 3, 1, 5, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ 10000, 0x0a, 0x00, 24, 6, 4, 1, 6, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ 13900, 0x0e, 0x00, 36, 6, 6, 2, 7, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ 17300, 0x09, 0x00, 48, 8, 10, 3, 8, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ 23000, 0x0d, 0x00, 72, 8, 14, 3, 9, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 8, 19, 3, 10, 0 }, { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ 29300, 0x0c, 0x00, 108, 8, 23, 3, 11, 0 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static struct ath_rate_table ar5416_11b_ratetable = { 4, { { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ 900, 0x1b, 0x00, (0x80|2), 0, 0, 1, 0, 0 }, { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ 1800, 0x1a, 0x04, (0x80|4), 1, 1, 1, 1, 0 }, { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ 4300, 0x19, 0x04, (0x80|11), 1, 2, 2, 2, 0 }, { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ 7100, 0x18, 0x04, (0x80|22), 1, 4, 100, 3, 0 }, }, 100, /* probe interval */ 100, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static void ar5416_attach_ratetables(struct ath_rate_softc *sc) { /* * Attach rate tables. */ sc->hw_rate_table[ATH9K_MODE_11B] = &ar5416_11b_ratetable; sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable; sc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable; sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable; sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable; sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] = &ar5416_11na_ratetable; sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] = &ar5416_11na_ratetable; sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] = &ar5416_11ng_ratetable; sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] = &ar5416_11ng_ratetable; } static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc) { sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Quarter; return; } static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc) { sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Half; return; } static void ar5416_setfull_ratetable(struct ath_rate_softc *sc) { sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable; return; } /* * Return the median of three numbers */ static inline int8_t median(int8_t a, int8_t b, int8_t c) { if (a >= b) { if (b >= c) return b; else if (a > c) return c; else return a; } else { if (a >= c) return a; else if (b >= c) return c; else return b; } } static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table, struct ath_tx_ratectrl *rate_ctrl) { u8 i, j, idx, idx_next; for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) { for (j = 0; j <= i-1; j++) { idx = rate_ctrl->valid_rate_index[j]; idx_next = rate_ctrl->valid_rate_index[j+1]; if (rate_table->info[idx].ratekbps > rate_table->info[idx_next].ratekbps) { rate_ctrl->valid_rate_index[j] = idx_next; rate_ctrl->valid_rate_index[j+1] = idx; } } } } /* Access functions for valid_txrate_mask */ static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl) { u8 i; for (i = 0; i < rate_ctrl->rate_table_size; i++) rate_ctrl->valid_rate_index[i] = FALSE; } static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl, u8 index, int valid_tx_rate) { ASSERT(index <= rate_ctrl->rate_table_size); rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE; } static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl, u8 index) { ASSERT(index <= rate_ctrl->rate_table_size); return rate_ctrl->valid_rate_index[index]; } /* Iterators for valid_txrate_mask */ static inline int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table, struct ath_tx_ratectrl *rate_ctrl, u8 cur_valid_txrate, u8 *next_idx) { u8 i; for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) { if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { *next_idx = rate_ctrl->valid_rate_index[i+1]; return TRUE; } } /* No more valid rates */ *next_idx = 0; return FALSE; } /* Return true only for single stream */ static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw) { if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG)) return FALSE; if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) return FALSE; if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) return FALSE; if (!ignore_cw && WLAN_RC_PHY_HT(phy)) if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) return FALSE; if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG)) return FALSE; return TRUE; } static inline int ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table, struct ath_tx_ratectrl *rate_ctrl, u8 cur_valid_txrate, u8 *next_idx) { int8_t i; for (i = 1; i < rate_ctrl->max_valid_rate ; i++) { if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { *next_idx = rate_ctrl->valid_rate_index[i-1]; return TRUE; } } return FALSE; } /* * Initialize the Valid Rate Index from valid entries in Rate Table */ static u8 ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv, const struct ath_rate_table *rate_table, u32 capflag) { struct ath_tx_ratectrl *rate_ctrl; u8 i, hi = 0; u32 valid; rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); for (i = 0; i < rate_table->rate_cnt; i++) { valid = (ath_rc_priv->single_stream ? rate_table->info[i].valid_single_stream : rate_table->info[i].valid); if (valid == TRUE) { u32 phy = rate_table->info[i].phy; u8 valid_rate_count = 0; if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) continue; valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy]; rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i; rate_ctrl->valid_phy_ratecnt[phy] += 1; ath_rc_set_valid_txmask(rate_ctrl, i, TRUE); hi = A_MAX(hi, i); } } return hi; } /* * Initialize the Valid Rate Index from Rate Set */ static u8 ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv, const struct ath_rate_table *rate_table, struct ath_rateset *rateset, u32 capflag) { /* XXX: Clean me up and make identation friendly */ u8 i, j, hi = 0; struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); /* Use intersection of working rates and valid rates */ for (i = 0; i < rateset->rs_nrates; i++) { for (j = 0; j < rate_table->rate_cnt; j++) { u32 phy = rate_table->info[j].phy; u32 valid = (ath_rc_priv->single_stream ? rate_table->info[j].valid_single_stream : rate_table->info[j].valid); /* We allow a rate only if its valid and the * capflag matches one of the validity * (TRUE/TRUE_20/TRUE_40) flags */ /* XXX: catch the negative of this branch * first and then continue */ if (((rateset->rs_rates[i] & 0x7F) == (rate_table->info[j].dot11rate & 0x7F)) && ((valid & WLAN_RC_CAP_MODE(capflag)) == WLAN_RC_CAP_MODE(capflag)) && !WLAN_RC_PHY_HT(phy)) { u8 valid_rate_count = 0; if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) continue; valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy]; rate_ctrl->valid_phy_rateidx[phy] [valid_rate_count] = j; rate_ctrl->valid_phy_ratecnt[phy] += 1; ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); hi = A_MAX(hi, j); } } } return hi; } static u8 ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv, const struct ath_rate_table *rate_table, u8 *mcs_set, u32 capflag) { u8 i, j, hi = 0; struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); /* Use intersection of working rates and valid rates */ for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) { for (j = 0; j < rate_table->rate_cnt; j++) { u32 phy = rate_table->info[j].phy; u32 valid = (ath_rc_priv->single_stream ? rate_table->info[j].valid_single_stream : rate_table->info[j].valid); if (((((struct ath_rateset *) mcs_set)->rs_rates[i] & 0x7F) != (rate_table->info[j].dot11rate & 0x7F)) || !WLAN_RC_PHY_HT(phy) || !WLAN_RC_PHY_HT_VALID(valid, capflag)) continue; if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) continue; rate_ctrl->valid_phy_rateidx[phy] [rate_ctrl->valid_phy_ratecnt[phy]] = j; rate_ctrl->valid_phy_ratecnt[phy] += 1; ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); hi = A_MAX(hi, j); } } return hi; } /* * Attach to a device instance. Setup the public definition * of how much per-node space we need and setup the private * phy tables that have rate control parameters. */ struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah) { struct ath_rate_softc *asc; /* we are only in user context so we can sleep for memory */ asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL); if (asc == NULL) return NULL; ar5416_attach_ratetables(asc); /* Save Maximum TX Trigger Level (used for 11n) */ tx_triglevel_max = ah->ah_caps.tx_triglevel_max; /* return alias for ath_rate_softc * */ return asc; } static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp, struct ath_rate_softc *rsc, gfp_t gfp) { struct ath_rate_node *anode; anode = kzalloc(sizeof(struct ath_rate_node), gfp); if (anode == NULL) return NULL; anode->avp = avp; anode->asc = rsc; avp->rc_node = anode; return anode; } static void ath_rate_node_free(struct ath_rate_node *anode) { if (anode != NULL) kfree(anode); } void ath_rate_detach(struct ath_rate_softc *asc) { if (asc != NULL) kfree(asc); } u8 ath_rate_findrateix(struct ath_softc *sc, u8 dot11rate) { const struct ath_rate_table *ratetable; struct ath_rate_softc *rsc = sc->sc_rc; int i; ratetable = rsc->hw_rate_table[sc->sc_curmode]; if (WARN_ON(!ratetable)) return 0; for (i = 0; i < ratetable->rate_cnt; i++) { if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f)) return i; } return 0; } /* * Update rate-control state on a device state change. When * operating as a station this includes associate/reassociate * with an AP. Otherwise this gets called, for example, when * the we transition to run state when operating as an AP. */ void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp) { struct ath_rate_softc *asc = sc->sc_rc; /* For half and quarter rate channles use different * rate tables */ if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_HALF) ar5416_sethalf_ratetable(asc); else if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_QUARTER) ar5416_setquarter_ratetable(asc); else /* full rate */ ar5416_setfull_ratetable(asc); if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) { asc->fixedrix = sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff]; /* NB: check the fixed rate exists */ if (asc->fixedrix == 0xff) asc->fixedrix = IEEE80211_FIXED_RATE_NONE; } else { asc->fixedrix = IEEE80211_FIXED_RATE_NONE; } } static u8 ath_rc_ratefind_ht(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv, const struct ath_rate_table *rate_table, int probe_allowed, int *is_probing, int is_retry) { u32 dt, best_thruput, this_thruput, now_msec; u8 rate, next_rate, best_rate, maxindex, minindex; int8_t rssi_last, rssi_reduce = 0, index = 0; struct ath_tx_ratectrl *rate_ctrl = NULL; rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ? (ath_rc_priv) : NULL); *is_probing = FALSE; rssi_last = median(rate_ctrl->rssi_last, rate_ctrl->rssi_last_prev, rate_ctrl->rssi_last_prev2); /* * Age (reduce) last ack rssi based on how old it is. * The bizarre numbers are so the delta is 160msec, * meaning we divide by 16. * 0msec <= dt <= 25msec: don't derate * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB * 185msec <= dt: derate by 10dB */ now_msec = jiffies_to_msecs(jiffies); dt = now_msec - rate_ctrl->rssi_time; if (dt >= 185) rssi_reduce = 10; else if (dt >= 25) rssi_reduce = (u8)((dt - 25) >> 4); /* Now reduce rssi_last by rssi_reduce */ if (rssi_last < rssi_reduce) rssi_last = 0; else rssi_last -= rssi_reduce; /* * Now look up the rate in the rssi table and return it. * If no rates match then we return 0 (lowest rate) */ best_thruput = 0; maxindex = rate_ctrl->max_valid_rate-1; minindex = 0; best_rate = minindex; /* * Try the higher rate first. It will reduce memory moving time * if we have very good channel characteristics. */ for (index = maxindex; index >= minindex ; index--) { u8 per_thres; rate = rate_ctrl->valid_rate_index[index]; if (rate > rate_ctrl->rate_max_phy) continue; /* * For TCP the average collision rate is around 11%, * so we ignore PERs less than this. This is to * prevent the rate we are currently using (whose * PER might be in the 10-15 range because of TCP * collisions) looking worse than the next lower * rate whose PER has decayed close to 0. If we * used to next lower rate, its PER would grow to * 10-15 and we would be worse off then staying * at the current rate. */ per_thres = rate_ctrl->state[rate].per; if (per_thres < 12) per_thres = 12; this_thruput = rate_table->info[rate].user_ratekbps * (100 - per_thres); if (best_thruput <= this_thruput) { best_thruput = this_thruput; best_rate = rate; } } rate = best_rate; /* if we are retrying for more than half the number * of max retries, use the min rate for the next retry */ if (is_retry) rate = rate_ctrl->valid_rate_index[minindex]; rate_ctrl->rssi_last_lookup = rssi_last; /* * Must check the actual rate (ratekbps) to account for * non-monoticity of 11g's rate table */ if (rate >= rate_ctrl->rate_max_phy && probe_allowed) { rate = rate_ctrl->rate_max_phy; /* Probe the next allowed phy state */ /* FIXME:XXXX Check to make sure ratMax is checked properly */ if (ath_rc_get_nextvalid_txrate(rate_table, rate_ctrl, rate, &next_rate) && (now_msec - rate_ctrl->probe_time > rate_table->probe_interval) && (rate_ctrl->hw_maxretry_pktcnt >= 1)) { rate = next_rate; rate_ctrl->probe_rate = rate; rate_ctrl->probe_time = now_msec; rate_ctrl->hw_maxretry_pktcnt = 0; *is_probing = TRUE; } } /* * Make sure rate is not higher than the allowed maximum. * We should also enforce the min, but I suspect the min is * normally 1 rather than 0 because of the rate 9 vs 6 issue * in the old code. */ if (rate > (rate_ctrl->rate_table_size - 1)) rate = rate_ctrl->rate_table_size - 1; ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) || (rate_table->info[rate].valid_single_stream && ath_rc_priv->single_stream)); return rate; } static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table , struct ath_rc_series *series, u8 tries, u8 rix, int rtsctsenable) { series->tries = tries; series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) | (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ? ATH_RC_DS_FLAG : 0) | (WLAN_RC_PHY_40(rate_table->info[rix].phy) ? ATH_RC_CW40_FLAG : 0) | (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ? ATH_RC_SGI_FLAG : 0); series->rix = rate_table->info[rix].base_index; series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen; } static u8 ath_rc_rate_getidx(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv, const struct ath_rate_table *rate_table, u8 rix, u16 stepdown, u16 min_rate) { u32 j; u8 nextindex; struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); if (min_rate) { for (j = RATE_TABLE_SIZE; j > 0; j--) { if (ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl, rix, &nextindex)) rix = nextindex; else break; } } else { for (j = stepdown; j > 0; j--) { if (ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl, rix, &nextindex)) rix = nextindex; else break; } } return rix; } static void ath_rc_ratefind(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv, int num_tries, int num_rates, unsigned int rcflag, struct ath_rc_series series[], int *is_probe, int is_retry) { u8 try_per_rate = 0, i = 0, rix, nrix; struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; struct ath_rate_table *rate_table; rate_table = (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, (rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0, is_probe, is_retry); nrix = rix; if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) { /* set one try for probe rates. For the * probes don't enable rts */ ath_rc_rate_set_series(rate_table, &series[i++], 1, nrix, FALSE); try_per_rate = (num_tries/num_rates); /* Get the next tried/allowed rate. No RTS for the next series * after the probe rate */ nrix = ath_rc_rate_getidx(sc, ath_rc_priv, rate_table, nrix, 1, FALSE); ath_rc_rate_set_series(rate_table, &series[i++], try_per_rate, nrix, 0); } else { try_per_rate = (num_tries/num_rates); /* Set the choosen rate. No RTS for first series entry. */ ath_rc_rate_set_series(rate_table, &series[i++], try_per_rate, nrix, FALSE); } /* Fill in the other rates for multirate retry */ for ( ; i < num_rates; i++) { u8 try_num; u8 min_rate; try_num = ((i + 1) == num_rates) ? num_tries - (try_per_rate * i) : try_per_rate ; min_rate = (((i + 1) == num_rates) && (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0; nrix = ath_rc_rate_getidx(sc, ath_rc_priv, rate_table, nrix, 1, min_rate); /* All other rates in the series have RTS enabled */ ath_rc_rate_set_series(rate_table, &series[i], try_num, nrix, TRUE); } /* * NB:Change rate series to enable aggregation when operating * at lower MCS rates. When first rate in series is MCS2 * in HT40 @ 2.4GHz, series should look like: * * {MCS2, MCS1, MCS0, MCS0}. * * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should * look like: * * {MCS3, MCS2, MCS1, MCS1} * * So, set fourth rate in series to be same as third one for * above conditions. */ if ((sc->sc_curmode == ATH9K_MODE_11NG_HT20) || (sc->sc_curmode == ATH9K_MODE_11NG_HT40PLUS) || (sc->sc_curmode == ATH9K_MODE_11NG_HT40MINUS)) { u8 dot11rate = rate_table->info[rix].dot11rate; u8 phy = rate_table->info[rix].phy; if (i == 4 && ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { series[3].rix = series[2].rix; series[3].flags = series[2].flags; series[3].max_4ms_framelen = series[2].max_4ms_framelen; } } } /* * Return the Tx rate series. */ static void ath_rate_findrate(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv, int num_tries, int num_rates, unsigned int rcflag, struct ath_rc_series series[], int *is_probe, int is_retry) { struct ath_vap *avp = ath_rc_priv->avp; DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); if (!num_rates || !num_tries) return; if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) { ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates, rcflag, series, is_probe, is_retry); } else { /* Fixed rate */ int idx; u8 flags; u32 rix; struct ath_rate_softc *asc = ath_rc_priv->asc; struct ath_rate_table *rate_table; rate_table = (struct ath_rate_table *) asc->hw_rate_table[sc->sc_curmode]; for (idx = 0; idx < 4; idx++) { unsigned int mcs; u8 series_rix = 0; series[idx].tries = IEEE80211_RATE_IDX_ENTRY( avp->av_config.av_fixed_retryset, idx); mcs = IEEE80211_RATE_IDX_ENTRY( avp->av_config.av_fixed_rateset, idx); if (idx == 3 && (mcs & 0xf0) == 0x70) mcs = (mcs & ~0xf0)|0x80; if (!(mcs & 0x80)) flags = 0; else flags = ((ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? ATH_RC_DS_FLAG : 0) | ((ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ? ATH_RC_CW40_FLAG : 0) | ((ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ? ((ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ? ATH_RC_SGI_FLAG : 0) : 0); series[idx].rix = sc->sc_rixmap[mcs]; series_rix = series[idx].rix; /* XXX: Give me some cleanup love */ if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG)) rix = rate_table->info[series_rix].ht_index; else if (flags & ATH_RC_SGI_FLAG) rix = rate_table->info[series_rix].sgi_index; else if (flags & ATH_RC_CW40_FLAG) rix = rate_table->info[series_rix].cw40index; else rix = rate_table->info[series_rix].base_index; series[idx].max_4ms_framelen = rate_table->info[rix].max_4ms_framelen; series[idx].flags = flags; } } } static void ath_rc_update_ht(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv, struct ath_tx_info_priv *info_priv, int tx_rate, int xretries, int retries) { struct ath_tx_ratectrl *rate_ctrl; u32 now_msec = jiffies_to_msecs(jiffies); int state_change = FALSE, rate, count; u8 last_per; struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; struct ath_rate_table *rate_table = (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; static u32 nretry_to_per_lookup[10] = { 100 * 0 / 1, 100 * 1 / 4, 100 * 1 / 2, 100 * 3 / 4, 100 * 4 / 5, 100 * 5 / 6, 100 * 6 / 7, 100 * 7 / 8, 100 * 8 / 9, 100 * 9 / 10 }; if (!ath_rc_priv) return; rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); ASSERT(tx_rate >= 0); if (tx_rate < 0) return; /* To compensate for some imbalance between ctrl and ext. channel */ if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy)) info_priv->tx.ts_rssi = info_priv->tx.ts_rssi < 3 ? 0 : info_priv->tx.ts_rssi - 3; last_per = rate_ctrl->state[tx_rate].per; if (xretries) { /* Update the PER. */ if (xretries == 1) { rate_ctrl->state[tx_rate].per += 30; if (rate_ctrl->state[tx_rate].per > 100) rate_ctrl->state[tx_rate].per = 100; } else { /* xretries == 2 */ count = sizeof(nretry_to_per_lookup) / sizeof(nretry_to_per_lookup[0]); if (retries >= count) retries = count - 1; /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ rate_ctrl->state[tx_rate].per = (u8)(rate_ctrl->state[tx_rate].per - (rate_ctrl->state[tx_rate].per >> 3) + ((100) >> 3)); } /* xretries == 1 or 2 */ if (rate_ctrl->probe_rate == tx_rate) rate_ctrl->probe_rate = 0; } else { /* xretries == 0 */ /* Update the PER. */ /* Make sure it doesn't index out of array's bounds. */ count = sizeof(nretry_to_per_lookup) / sizeof(nretry_to_per_lookup[0]); if (retries >= count) retries = count - 1; if (info_priv->n_bad_frames) { /* new_PER = 7/8*old_PER + 1/8*(currentPER) * Assuming that n_frames is not 0. The current PER * from the retries is 100 * retries / (retries+1), * since the first retries attempts failed, and the * next one worked. For the one that worked, * n_bad_frames subframes out of n_frames wored, * so the PER for that part is * 100 * n_bad_frames / n_frames, and it contributes * 100 * n_bad_frames / (n_frames * (retries+1)) to * the above PER. The expression below is a * simplified version of the sum of these two terms. */ if (info_priv->n_frames > 0) rate_ctrl->state[tx_rate].per = (u8) (rate_ctrl->state[tx_rate].per - (rate_ctrl->state[tx_rate].per >> 3) + ((100*(retries*info_priv->n_frames + info_priv->n_bad_frames) / (info_priv->n_frames * (retries+1))) >> 3)); } else { /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ rate_ctrl->state[tx_rate].per = (u8) (rate_ctrl->state[tx_rate].per - (rate_ctrl->state[tx_rate].per >> 3) + (nretry_to_per_lookup[retries] >> 3)); } rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev; rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last; rate_ctrl->rssi_last = info_priv->tx.ts_rssi; rate_ctrl->rssi_time = now_msec; /* * If we got at most one retry then increase the max rate if * this was a probe. Otherwise, ignore the probe. */ if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) { if (retries > 0 || 2 * info_priv->n_bad_frames > info_priv->n_frames) { /* * Since we probed with just a single attempt, * any retries means the probe failed. Also, * if the attempt worked, but more than half * the subframes were bad then also consider * the probe a failure. */ rate_ctrl->probe_rate = 0; } else { u8 probe_rate = 0; rate_ctrl->rate_max_phy = rate_ctrl->probe_rate; probe_rate = rate_ctrl->probe_rate; if (rate_ctrl->state[probe_rate].per > 30) rate_ctrl->state[probe_rate].per = 20; rate_ctrl->probe_rate = 0; /* * Since this probe succeeded, we allow the next * probe twice as soon. This allows the maxRate * to move up faster if the probes are * succesful. */ rate_ctrl->probe_time = now_msec - rate_table->probe_interval / 2; } } if (retries > 0) { /* * Don't update anything. We don't know if * this was because of collisions or poor signal. * * Later: if rssi_ack is close to * rate_ctrl->state[txRate].rssi_thres and we see lots * of retries, then we could increase * rate_ctrl->state[txRate].rssi_thres. */ rate_ctrl->hw_maxretry_pktcnt = 0; } else { /* * It worked with no retries. First ignore bogus (small) * rssi_ack values. */ if (tx_rate == rate_ctrl->rate_max_phy && rate_ctrl->hw_maxretry_pktcnt < 255) { rate_ctrl->hw_maxretry_pktcnt++; } if (info_priv->tx.ts_rssi >= rate_table->info[tx_rate].rssi_ack_validmin) { /* Average the rssi */ if (tx_rate != rate_ctrl->rssi_sum_rate) { rate_ctrl->rssi_sum_rate = tx_rate; rate_ctrl->rssi_sum = rate_ctrl->rssi_sum_cnt = 0; } rate_ctrl->rssi_sum += info_priv->tx.ts_rssi; rate_ctrl->rssi_sum_cnt++; if (rate_ctrl->rssi_sum_cnt > 4) { int32_t rssi_ackAvg = (rate_ctrl->rssi_sum + 2) / 4; int8_t rssi_thres = rate_ctrl->state[tx_rate]. rssi_thres; int8_t rssi_ack_vmin = rate_table->info[tx_rate]. rssi_ack_validmin; rate_ctrl->rssi_sum = rate_ctrl->rssi_sum_cnt = 0; /* Now reduce the current * rssi threshold. */ if ((rssi_ackAvg < rssi_thres + 2) && (rssi_thres > rssi_ack_vmin)) { rate_ctrl->state[tx_rate]. rssi_thres--; } state_change = TRUE; } } } } /* For all cases */ /* * If this rate looks bad (high PER) then stop using it for * a while (except if we are probing). */ if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 && rate_table->info[tx_rate].ratekbps <= rate_table->info[rate_ctrl->rate_max_phy].ratekbps) { ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl, (u8) tx_rate, &rate_ctrl->rate_max_phy); /* Don't probe for a little while. */ rate_ctrl->probe_time = now_msec; } if (state_change) { /* * Make sure the rates above this have higher rssi thresholds. * (Note: Monotonicity is kept within the OFDM rates and * within the CCK rates. However, no adjustment is * made to keep the rssi thresholds monotonically * increasing between the CCK and OFDM rates.) */ for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) { if (rate_table->info[rate+1].phy != rate_table->info[tx_rate].phy) break; if (rate_ctrl->state[rate].rssi_thres + rate_table->info[rate].rssi_ack_deltamin > rate_ctrl->state[rate+1].rssi_thres) { rate_ctrl->state[rate+1].rssi_thres = rate_ctrl->state[rate]. rssi_thres + rate_table->info[rate]. rssi_ack_deltamin; } } /* Make sure the rates below this have lower rssi thresholds. */ for (rate = tx_rate - 1; rate >= 0; rate--) { if (rate_table->info[rate].phy != rate_table->info[tx_rate].phy) break; if (rate_ctrl->state[rate].rssi_thres + rate_table->info[rate].rssi_ack_deltamin > rate_ctrl->state[rate+1].rssi_thres) { if (rate_ctrl->state[rate+1].rssi_thres < rate_table->info[rate]. rssi_ack_deltamin) rate_ctrl->state[rate].rssi_thres = 0; else { rate_ctrl->state[rate].rssi_thres = rate_ctrl->state[rate+1]. rssi_thres - rate_table->info[rate]. rssi_ack_deltamin; } if (rate_ctrl->state[rate].rssi_thres < rate_table->info[rate]. rssi_ack_validmin) { rate_ctrl->state[rate].rssi_thres = rate_table->info[rate]. rssi_ack_validmin; } } } } /* Make sure the rates below this have lower PER */ /* Monotonicity is kept only for rates below the current rate. */ if (rate_ctrl->state[tx_rate].per < last_per) { for (rate = tx_rate - 1; rate >= 0; rate--) { if (rate_table->info[rate].phy != rate_table->info[tx_rate].phy) break; if (rate_ctrl->state[rate].per > rate_ctrl->state[rate+1].per) { rate_ctrl->state[rate].per = rate_ctrl->state[rate+1].per; } } } /* Maintain monotonicity for rates above the current rate */ for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) { if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per) rate_ctrl->state[rate+1].per = rate_ctrl->state[rate].per; } /* Every so often, we reduce the thresholds and * PER (different for CCK and OFDM). */ if (now_msec - rate_ctrl->rssi_down_time >= rate_table->rssi_reduce_interval) { for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { if (rate_ctrl->state[rate].rssi_thres > rate_table->info[rate].rssi_ack_validmin) rate_ctrl->state[rate].rssi_thres -= 1; } rate_ctrl->rssi_down_time = now_msec; } /* Every so often, we reduce the thresholds * and PER (different for CCK and OFDM). */ if (now_msec - rate_ctrl->per_down_time >= rate_table->rssi_reduce_interval) { for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { rate_ctrl->state[rate].per = 7 * rate_ctrl->state[rate].per / 8; } rate_ctrl->per_down_time = now_msec; } } /* * This routine is called in rate control callback tx_status() to give * the status of previous frames. */ static void ath_rc_update(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv, struct ath_tx_info_priv *info_priv, int final_ts_idx, int xretries, int long_retry) { struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; struct ath_rate_table *rate_table; struct ath_tx_ratectrl *rate_ctrl; struct ath_rc_series rcs[4]; u8 flags; u32 series = 0, rix; memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0])); rate_table = (struct ath_rate_table *) asc->hw_rate_table[sc->sc_curmode]; rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); ASSERT(rcs[0].tries != 0); /* * If the first rate is not the final index, there * are intermediate rate failures to be processed. */ if (final_ts_idx != 0) { /* Process intermediate rates that failed.*/ for (series = 0; series < final_ts_idx ; series++) { if (rcs[series].tries != 0) { flags = rcs[series].flags; /* If HT40 and we have switched mode from * 40 to 20 => don't update */ if ((flags & ATH_RC_CW40_FLAG) && (rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG))) return; if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG)) rix = rate_table->info[ rcs[series].rix].ht_index; else if (flags & ATH_RC_SGI_FLAG) rix = rate_table->info[ rcs[series].rix].sgi_index; else if (flags & ATH_RC_CW40_FLAG) rix = rate_table->info[ rcs[series].rix].cw40index; else rix = rate_table->info[ rcs[series].rix].base_index; ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix, xretries ? 1 : 2, rcs[series].tries); } } } else { /* * Handle the special case of MIMO PS burst, where the second * aggregate is sent out with only one rate and one try. * Treating it as an excessive retry penalizes the rate * inordinately. */ if (rcs[0].tries == 1 && xretries == 1) xretries = 2; } flags = rcs[series].flags; /* If HT40 and we have switched mode from 40 to 20 => don't update */ if ((flags & ATH_RC_CW40_FLAG) && (rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG))) return; if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG)) rix = rate_table->info[rcs[series].rix].ht_index; else if (flags & ATH_RC_SGI_FLAG) rix = rate_table->info[rcs[series].rix].sgi_index; else if (flags & ATH_RC_CW40_FLAG) rix = rate_table->info[rcs[series].rix].cw40index; else rix = rate_table->info[rcs[series].rix].base_index; ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix, xretries, long_retry); } /* * Process a tx descriptor for a completed transmit (success or failure). */ static void ath_rate_tx_complete(struct ath_softc *sc, struct ath_node *an, struct ath_rate_node *rc_priv, struct ath_tx_info_priv *info_priv) { int final_ts_idx = info_priv->tx.ts_rateindex; int tx_status = 0, is_underrun = 0; struct ath_vap *avp; avp = rc_priv->avp; if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) || (info_priv->tx.ts_status & ATH9K_TXERR_FILT)) return; if (info_priv->tx.ts_rssi > 0) { ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi, info_priv->tx.ts_rssi); } /* * If underrun error is seen assume it as an excessive retry only * if prefetch trigger level have reached the max (0x3f for 5416) * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY * times. This affects how ratectrl updates PER for the failed rate. */ if (info_priv->tx.ts_flags & (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) && ((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) { tx_status = 1; is_underrun = 1; } if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) || (info_priv->tx.ts_status & ATH9K_TXERR_FIFO)) tx_status = 1; ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status, (is_underrun) ? ATH_11N_TXMAXTRY : info_priv->tx.ts_longretry); } /* * Update the SIB's rate control information * * This should be called when the supported rates change * (e.g. SME operation, wireless mode change) * * It will determine which rates are valid for use. */ static void ath_rc_sib_update(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv, u32 capflag, int keep_state, struct ath_rateset *negotiated_rates, struct ath_rateset *negotiated_htrates) { struct ath_rate_table *rate_table = NULL; struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; struct ath_rateset *rateset = negotiated_rates; u8 *ht_mcs = (u8 *)negotiated_htrates; struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *)ath_rc_priv; u8 i, j, k, hi = 0, hthi = 0; rate_table = (struct ath_rate_table *) asc->hw_rate_table[sc->sc_curmode]; /* Initial rate table size. Will change depending * on the working rate set */ rate_ctrl->rate_table_size = MAX_TX_RATE_TBL; /* Initialize thresholds according to the global rate table */ for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) { rate_ctrl->state[i].rssi_thres = rate_table->info[i].rssi_ack_validmin; rate_ctrl->state[i].per = 0; } /* Determine the valid rates */ ath_rc_init_valid_txmask(rate_ctrl); for (i = 0; i < WLAN_RC_PHY_MAX; i++) { for (j = 0; j < MAX_TX_RATE_PHY; j++) rate_ctrl->valid_phy_rateidx[i][j] = 0; rate_ctrl->valid_phy_ratecnt[i] = 0; } rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG); /* Set stream capability */ ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1; if (!rateset->rs_nrates) { /* No working rate, just initialize valid rates */ hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table, capflag); } else { /* Use intersection of working rates and valid rates */ hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table, rateset, capflag); if (capflag & WLAN_RC_HT_FLAG) { hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv, rate_table, ht_mcs, capflag); } hi = A_MAX(hi, hthi); } rate_ctrl->rate_table_size = hi + 1; rate_ctrl->rate_max_phy = 0; ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) { rate_ctrl->valid_rate_index[k++] = rate_ctrl->valid_phy_rateidx[i][j]; } if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE) || !rate_ctrl->valid_phy_ratecnt[i]) continue; rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1]; } ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); ASSERT(k <= MAX_TX_RATE_TBL); rate_ctrl->max_valid_rate = k; /* * Some third party vendors don't send the supported rate series in * order. So sorting to make sure its in order, otherwise our RateFind * Algo will select wrong rates */ ath_rc_sort_validrates(rate_table, rate_ctrl); rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4]; } /* * Update rate-control state on station associate/reassociate. */ static int ath_rate_newassoc(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv, unsigned int capflag, struct ath_rateset *negotiated_rates, struct ath_rateset *negotiated_htrates) { ath_rc_priv->ht_cap = ((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) | ((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) | ((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) | ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0); ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0, negotiated_rates, negotiated_htrates); return 0; } /* * This routine is called to initialize the rate control parameters * in the SIB. It is called initially during system initialization * or when a station is associated with the AP. */ static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv) { struct ath_tx_ratectrl *rate_ctrl; rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies); } static void ath_setup_rates(struct ath_softc *sc, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, struct ath_rate_node *rc_priv) { int i, j = 0; DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); for (i = 0; i < sband->n_bitrates; i++) { if (sta->supp_rates[sband->band] & BIT(i)) { rc_priv->neg_rates.rs_rates[j] = (sband->bitrates[i].bitrate * 2) / 10; j++; } } rc_priv->neg_rates.rs_nrates = j; } void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv) { struct ath_softc *sc = hw->priv; u32 capflag = 0; if (hw->conf.ht.enabled) { capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG; if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040) capflag |= ATH_RC_CW40_FLAG; } ath_rate_newassoc(sc, rc_priv, capflag, &rc_priv->neg_rates, &rc_priv->neg_ht_rates); } /* Rate Control callbacks */ static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta, struct sk_buff *skb) { struct ath_softc *sc = priv; struct ath_tx_info_priv *tx_info_priv; struct ath_node *an; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; __le16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; /* XXX: UGLY HACK!! */ tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif; an = (struct ath_node *)sta->drv_priv; if (tx_info_priv == NULL) return; if (an && priv_sta && ieee80211_is_data(fc)) ath_rate_tx_complete(sc, an, priv_sta, tx_info_priv); kfree(tx_info_priv); tx_info->control.vif = NULL; } static void ath_tx_aggr_resp(struct ath_softc *sc, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, struct ath_node *an, u8 tidno) { struct ath_atx_tid *txtid; u16 buffersize = 0; int state; struct sta_info *si; if (!(sc->sc_flags & SC_OP_TXAGGR)) return; txtid = ATH_AN_2_TID(an, tidno); if (!txtid->paused) return; /* * XXX: This is entirely busted, we aren't supposed to * access the sta from here because it's internal * to mac80211, and looking at the state without * locking is wrong too. */ si = container_of(sta, struct sta_info, sta); buffersize = IEEE80211_MIN_AMPDU_BUF << sband->ht_cap.ampdu_factor; /* FIXME */ state = si->ampdu_mlme.tid_state_tx[tidno]; if (state & HT_ADDBA_RECEIVED_MSK) { txtid->state |= AGGR_ADDBA_COMPLETE; txtid->state &= ~AGGR_ADDBA_PROGRESS; txtid->baw_size = buffersize; DPRINTF(sc, ATH_DBG_AGGR, "%s: Resuming tid, buffersize: %d\n", __func__, buffersize); ath_tx_resume_tid(sc, txtid); } } static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, struct ieee80211_tx_rate_control *txrc) { struct ieee80211_supported_band *sband = txrc->sband; struct sk_buff *skb = txrc->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ath_softc *sc = priv; struct ieee80211_hw *hw = sc->hw; struct ath_tx_info_priv *tx_info_priv; struct ath_rate_node *ath_rc_priv = priv_sta; struct ath_node *an; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); int is_probe = FALSE, chk, ret; s8 lowest_idx; __le16 fc = hdr->frame_control; u8 *qc, tid; DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); /* allocate driver private area of tx_info, XXX: UGLY HACK! */ tx_info->control.vif = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC); tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif; ASSERT(tx_info_priv != NULL); lowest_idx = rate_lowest_index(sband, sta); tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10; /* lowest rate for management and multicast/broadcast frames */ if (!ieee80211_is_data(fc) || is_multicast_ether_addr(hdr->addr1) || !sta) { tx_info->control.rates[0].idx = lowest_idx; return; } /* Find tx rate for unicast frames */ ath_rate_findrate(sc, ath_rc_priv, ATH_11N_TXMAXTRY, 4, ATH_RC_PROBE_ALLOWED, tx_info_priv->rcs, &is_probe, false); #if 0 if (is_probe) sel->probe_idx = ath_rc_priv->tx_ratectrl.probe_rate; #endif /* Ratecontrol sometimes returns invalid rate index */ if (tx_info_priv->rcs[0].rix != 0xff) ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix; else tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix; tx_info->control.rates[0].idx = tx_info_priv->rcs[0].rix; /* Check if aggregation has to be enabled for this tid */ if (hw->conf.ht.enabled) { if (ieee80211_is_data_qos(fc)) { qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; an = (struct ath_node *)sta->drv_priv; chk = ath_tx_aggr_check(sc, an, tid); if (chk == AGGR_REQUIRED) { ret = ieee80211_start_tx_ba_session(hw, hdr->addr1, tid); if (ret) DPRINTF(sc, ATH_DBG_AGGR, "%s: Unable to start tx " "aggr for: %pM\n", __func__, hdr->addr1); else DPRINTF(sc, ATH_DBG_AGGR, "%s: Started tx aggr for: %pM\n", __func__, hdr->addr1); } else if (chk == AGGR_EXCHANGE_PROGRESS) ath_tx_aggr_resp(sc, sband, sta, an, tid); } } } static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta) { struct ath_softc *sc = priv; struct ath_rate_node *ath_rc_priv = priv_sta; int i, j = 0; DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); ath_setup_rates(sc, sband, sta, ath_rc_priv); if (sta->ht_cap.ht_supported) { for (i = 0; i < 77; i++) { if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8))) ath_rc_priv->neg_ht_rates.rs_rates[j++] = i; if (j == ATH_RATE_MAX) break; } ath_rc_priv->neg_ht_rates.rs_nrates = j; } ath_rc_node_update(sc->hw, priv_sta); } static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) { struct ath_softc *sc = hw->priv; DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); return hw->priv; } static void ath_rate_free(void *priv) { return; } static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) { struct ath_softc *sc = priv; struct ath_vap *avp = sc->sc_vaps[0]; struct ath_rate_node *rate_priv; DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp); if (!rate_priv) { DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to allocate private rc structure\n", __func__); return NULL; } ath_rc_sib_init(rate_priv); return rate_priv; } static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta) { struct ath_rate_node *rate_priv = priv_sta; struct ath_softc *sc = priv; DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); ath_rate_node_free(rate_priv); } static struct rate_control_ops ath_rate_ops = { .module = NULL, .name = "ath9k_rate_control", .tx_status = ath_tx_status, .get_rate = ath_get_rate, .rate_init = ath_rate_init, .alloc = ath_rate_alloc, .free = ath_rate_free, .alloc_sta = ath_rate_alloc_sta, .free_sta = ath_rate_free_sta, }; int ath_rate_control_register(void) { return ieee80211_rate_control_register(&ath_rate_ops); } void ath_rate_control_unregister(void) { ieee80211_rate_control_unregister(&ath_rate_ops); }