/* * Kernel-based Virtual Machine driver for Linux * * AMD SVM support * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Yaniv Kamay * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "kvm_svm.h" #include "x86_emulate.h" #include #include #include #include #include #include #include MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); #define IOPM_ALLOC_ORDER 2 #define MSRPM_ALLOC_ORDER 1 #define DB_VECTOR 1 #define UD_VECTOR 6 #define GP_VECTOR 13 #define DR7_GD_MASK (1 << 13) #define DR6_BD_MASK (1 << 13) #define SEG_TYPE_LDT 2 #define SEG_TYPE_BUSY_TSS16 3 #define KVM_EFER_LMA (1 << 10) #define KVM_EFER_LME (1 << 8) #define SVM_FEATURE_NPT (1 << 0) #define SVM_FEATURE_LBRV (1 << 1) #define SVM_DEATURE_SVML (1 << 2) static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) { return container_of(vcpu, struct vcpu_svm, vcpu); } unsigned long iopm_base; unsigned long msrpm_base; struct kvm_ldttss_desc { u16 limit0; u16 base0; unsigned base1 : 8, type : 5, dpl : 2, p : 1; unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8; u32 base3; u32 zero1; } __attribute__((packed)); struct svm_cpu_data { int cpu; u64 asid_generation; u32 max_asid; u32 next_asid; struct kvm_ldttss_desc *tss_desc; struct page *save_area; }; static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); static uint32_t svm_features; struct svm_init_data { int cpu; int r; }; static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) #define MSRS_RANGE_SIZE 2048 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) #define MAX_INST_SIZE 15 static inline u32 svm_has(u32 feat) { return svm_features & feat; } static unsigned get_addr_size(struct vcpu_svm *svm) { struct vmcb_save_area *sa = &svm->vmcb->save; u16 cs_attrib; if (!(sa->cr0 & X86_CR0_PE) || (sa->rflags & X86_EFLAGS_VM)) return 2; cs_attrib = sa->cs.attrib; return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 : (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2; } static inline u8 pop_irq(struct kvm_vcpu *vcpu) { int word_index = __ffs(vcpu->irq_summary); int bit_index = __ffs(vcpu->irq_pending[word_index]); int irq = word_index * BITS_PER_LONG + bit_index; clear_bit(bit_index, &vcpu->irq_pending[word_index]); if (!vcpu->irq_pending[word_index]) clear_bit(word_index, &vcpu->irq_summary); return irq; } static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq) { set_bit(irq, vcpu->irq_pending); set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary); } static inline void clgi(void) { asm volatile (SVM_CLGI); } static inline void stgi(void) { asm volatile (SVM_STGI); } static inline void invlpga(unsigned long addr, u32 asid) { asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid)); } static inline unsigned long kvm_read_cr2(void) { unsigned long cr2; asm volatile ("mov %%cr2, %0" : "=r" (cr2)); return cr2; } static inline void kvm_write_cr2(unsigned long val) { asm volatile ("mov %0, %%cr2" :: "r" (val)); } static inline unsigned long read_dr6(void) { unsigned long dr6; asm volatile ("mov %%dr6, %0" : "=r" (dr6)); return dr6; } static inline void write_dr6(unsigned long val) { asm volatile ("mov %0, %%dr6" :: "r" (val)); } static inline unsigned long read_dr7(void) { unsigned long dr7; asm volatile ("mov %%dr7, %0" : "=r" (dr7)); return dr7; } static inline void write_dr7(unsigned long val) { asm volatile ("mov %0, %%dr7" :: "r" (val)); } static inline void force_new_asid(struct kvm_vcpu *vcpu) { to_svm(vcpu)->asid_generation--; } static inline void flush_guest_tlb(struct kvm_vcpu *vcpu) { force_new_asid(vcpu); } static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) { if (!(efer & KVM_EFER_LMA)) efer &= ~KVM_EFER_LME; to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK; vcpu->shadow_efer = efer; } static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_VALID_ERR | SVM_EVTINJ_TYPE_EXEPT | GP_VECTOR; svm->vmcb->control.event_inj_err = error_code; } static void inject_ud(struct kvm_vcpu *vcpu) { to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT | UD_VECTOR; } static int is_page_fault(uint32_t info) { info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT); } static int is_external_interrupt(u32 info) { info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); } static void skip_emulated_instruction(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (!svm->next_rip) { printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__); return; } if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) { printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n", __FUNCTION__, svm->vmcb->save.rip, svm->next_rip); } vcpu->rip = svm->vmcb->save.rip = svm->next_rip; svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; vcpu->interrupt_window_open = 1; } static int has_svm(void) { uint32_t eax, ebx, ecx, edx; if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) { printk(KERN_INFO "has_svm: not amd\n"); return 0; } cpuid(0x80000000, &eax, &ebx, &ecx, &edx); if (eax < SVM_CPUID_FUNC) { printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n"); return 0; } cpuid(0x80000001, &eax, &ebx, &ecx, &edx); if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) { printk(KERN_DEBUG "has_svm: svm not available\n"); return 0; } return 1; } static void svm_hardware_disable(void *garbage) { struct svm_cpu_data *svm_data = per_cpu(svm_data, raw_smp_processor_id()); if (svm_data) { uint64_t efer; wrmsrl(MSR_VM_HSAVE_PA, 0); rdmsrl(MSR_EFER, efer); wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK); per_cpu(svm_data, raw_smp_processor_id()) = NULL; __free_page(svm_data->save_area); kfree(svm_data); } } static void svm_hardware_enable(void *garbage) { struct svm_cpu_data *svm_data; uint64_t efer; #ifdef CONFIG_X86_64 struct desc_ptr gdt_descr; #else struct Xgt_desc_struct gdt_descr; #endif struct desc_struct *gdt; int me = raw_smp_processor_id(); if (!has_svm()) { printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me); return; } svm_data = per_cpu(svm_data, me); if (!svm_data) { printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n", me); return; } svm_data->asid_generation = 1; svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; svm_data->next_asid = svm_data->max_asid + 1; svm_features = cpuid_edx(SVM_CPUID_FUNC); asm volatile ( "sgdt %0" : "=m"(gdt_descr) ); gdt = (struct desc_struct *)gdt_descr.address; svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); rdmsrl(MSR_EFER, efer); wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK); wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(svm_data->save_area) << PAGE_SHIFT); } static int svm_cpu_init(int cpu) { struct svm_cpu_data *svm_data; int r; svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); if (!svm_data) return -ENOMEM; svm_data->cpu = cpu; svm_data->save_area = alloc_page(GFP_KERNEL); r = -ENOMEM; if (!svm_data->save_area) goto err_1; per_cpu(svm_data, cpu) = svm_data; return 0; err_1: kfree(svm_data); return r; } static int set_msr_interception(u32 *msrpm, unsigned msr, int read, int write) { int i; for (i = 0; i < NUM_MSR_MAPS; i++) { if (msr >= msrpm_ranges[i] && msr < msrpm_ranges[i] + MSRS_IN_RANGE) { u32 msr_offset = (i * MSRS_IN_RANGE + msr - msrpm_ranges[i]) * 2; u32 *base = msrpm + (msr_offset / 32); u32 msr_shift = msr_offset % 32; u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1); *base = (*base & ~(0x3 << msr_shift)) | (mask << msr_shift); return 1; } } printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr); return 0; } static __init int svm_hardware_setup(void) { int cpu; struct page *iopm_pages; struct page *msrpm_pages; void *iopm_va, *msrpm_va; int r; kvm_emulator_want_group7_invlpg(); iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); if (!iopm_pages) return -ENOMEM; iopm_va = page_address(iopm_pages); memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */ iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); r = -ENOMEM; if (!msrpm_pages) goto err_1; msrpm_va = page_address(msrpm_pages); memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT; #ifdef CONFIG_X86_64 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1); set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1); set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1); set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1); set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1); set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1); #endif set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1); set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1); set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1); set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1); for_each_online_cpu(cpu) { r = svm_cpu_init(cpu); if (r) goto err_2; } return 0; err_2: __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); msrpm_base = 0; err_1: __free_pages(iopm_pages, IOPM_ALLOC_ORDER); iopm_base = 0; return r; } static __exit void svm_hardware_unsetup(void) { __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER); __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); iopm_base = msrpm_base = 0; } static void init_seg(struct vmcb_seg *seg) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ seg->limit = 0xffff; seg->base = 0; } static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | type; seg->limit = 0xffff; seg->base = 0; } static void init_vmcb(struct vmcb *vmcb) { struct vmcb_control_area *control = &vmcb->control; struct vmcb_save_area *save = &vmcb->save; control->intercept_cr_read = INTERCEPT_CR0_MASK | INTERCEPT_CR3_MASK | INTERCEPT_CR4_MASK; control->intercept_cr_write = INTERCEPT_CR0_MASK | INTERCEPT_CR3_MASK | INTERCEPT_CR4_MASK; control->intercept_dr_read = INTERCEPT_DR0_MASK | INTERCEPT_DR1_MASK | INTERCEPT_DR2_MASK | INTERCEPT_DR3_MASK; control->intercept_dr_write = INTERCEPT_DR0_MASK | INTERCEPT_DR1_MASK | INTERCEPT_DR2_MASK | INTERCEPT_DR3_MASK | INTERCEPT_DR5_MASK | INTERCEPT_DR7_MASK; control->intercept_exceptions = 1 << PF_VECTOR; control->intercept = (1ULL << INTERCEPT_INTR) | (1ULL << INTERCEPT_NMI) | (1ULL << INTERCEPT_SMI) | /* * selective cr0 intercept bug? * 0: 0f 22 d8 mov %eax,%cr3 * 3: 0f 20 c0 mov %cr0,%eax * 6: 0d 00 00 00 80 or $0x80000000,%eax * b: 0f 22 c0 mov %eax,%cr0 * set cr3 ->interception * get cr0 ->interception * set cr0 -> no interception */ /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */ (1ULL << INTERCEPT_CPUID) | (1ULL << INTERCEPT_HLT) | (1ULL << INTERCEPT_INVLPGA) | (1ULL << INTERCEPT_IOIO_PROT) | (1ULL << INTERCEPT_MSR_PROT) | (1ULL << INTERCEPT_TASK_SWITCH) | (1ULL << INTERCEPT_SHUTDOWN) | (1ULL << INTERCEPT_VMRUN) | (1ULL << INTERCEPT_VMMCALL) | (1ULL << INTERCEPT_VMLOAD) | (1ULL << INTERCEPT_VMSAVE) | (1ULL << INTERCEPT_STGI) | (1ULL << INTERCEPT_CLGI) | (1ULL << INTERCEPT_SKINIT) | (1ULL << INTERCEPT_MONITOR) | (1ULL << INTERCEPT_MWAIT); control->iopm_base_pa = iopm_base; control->msrpm_base_pa = msrpm_base; control->tsc_offset = 0; control->int_ctl = V_INTR_MASKING_MASK; init_seg(&save->es); init_seg(&save->ss); init_seg(&save->ds); init_seg(&save->fs); init_seg(&save->gs); save->cs.selector = 0xf000; /* Executable/Readable Code Segment */ save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; save->cs.limit = 0xffff; /* * cs.base should really be 0xffff0000, but vmx can't handle that, so * be consistent with it. * * Replace when we have real mode working for vmx. */ save->cs.base = 0xf0000; save->gdtr.limit = 0xffff; save->idtr.limit = 0xffff; init_sys_seg(&save->ldtr, SEG_TYPE_LDT); init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); save->efer = MSR_EFER_SVME_MASK; save->dr6 = 0xffff0ff0; save->dr7 = 0x400; save->rflags = 2; save->rip = 0x0000fff0; /* * cr0 val on cpu init should be 0x60000010, we enable cpu * cache by default. the orderly way is to enable cache in bios. */ save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP; save->cr4 = X86_CR4_PAE; /* rdx = ?? */ } static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) { struct vcpu_svm *svm; struct page *page; int err; svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!svm) { err = -ENOMEM; goto out; } err = kvm_vcpu_init(&svm->vcpu, kvm, id); if (err) goto free_svm; page = alloc_page(GFP_KERNEL); if (!page) { err = -ENOMEM; goto uninit; } svm->vmcb = page_address(page); clear_page(svm->vmcb); svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; svm->asid_generation = 0; memset(svm->db_regs, 0, sizeof(svm->db_regs)); init_vmcb(svm->vmcb); fx_init(&svm->vcpu); svm->vcpu.fpu_active = 1; svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; if (svm->vcpu.vcpu_id == 0) svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP; return &svm->vcpu; uninit: kvm_vcpu_uninit(&svm->vcpu); free_svm: kfree(svm); out: return ERR_PTR(err); } static void svm_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT)); kvm_vcpu_uninit(vcpu); kfree(svm); } static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_svm *svm = to_svm(vcpu); int i; if (unlikely(cpu != vcpu->cpu)) { u64 tsc_this, delta; /* * Make sure that the guest sees a monotonically * increasing TSC. */ rdtscll(tsc_this); delta = vcpu->host_tsc - tsc_this; svm->vmcb->control.tsc_offset += delta; vcpu->cpu = cpu; } for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); } static void svm_vcpu_put(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); int i; for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); rdtscll(vcpu->host_tsc); } static void svm_vcpu_decache(struct kvm_vcpu *vcpu) { } static void svm_cache_regs(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; vcpu->rip = svm->vmcb->save.rip; } static void svm_decache_regs(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP]; svm->vmcb->save.rip = vcpu->rip; } static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) { return to_svm(vcpu)->vmcb->save.rflags; } static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { to_svm(vcpu)->vmcb->save.rflags = rflags; } static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; switch (seg) { case VCPU_SREG_CS: return &save->cs; case VCPU_SREG_DS: return &save->ds; case VCPU_SREG_ES: return &save->es; case VCPU_SREG_FS: return &save->fs; case VCPU_SREG_GS: return &save->gs; case VCPU_SREG_SS: return &save->ss; case VCPU_SREG_TR: return &save->tr; case VCPU_SREG_LDTR: return &save->ldtr; } BUG(); return NULL; } static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); return s->base; } static void svm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); var->base = s->base; var->limit = s->limit; var->selector = s->selector; var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1; var->unusable = !var->present; } static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS); *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; } static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->limit = svm->vmcb->save.idtr.limit; dt->base = svm->vmcb->save.idtr.base; } static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.idtr.limit = dt->limit; svm->vmcb->save.idtr.base = dt->base ; } static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->limit = svm->vmcb->save.gdtr.limit; dt->base = svm->vmcb->save.gdtr.base; } static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.gdtr.limit = dt->limit; svm->vmcb->save.gdtr.base = dt->base ; } static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) { } static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_svm *svm = to_svm(vcpu); #ifdef CONFIG_X86_64 if (vcpu->shadow_efer & KVM_EFER_LME) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { vcpu->shadow_efer |= KVM_EFER_LMA; svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME; } if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) { vcpu->shadow_efer &= ~KVM_EFER_LMA; svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME); } } #endif if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) { svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR); vcpu->fpu_active = 1; } vcpu->cr0 = cr0; cr0 |= X86_CR0_PG | X86_CR0_WP; cr0 &= ~(X86_CR0_CD | X86_CR0_NW); svm->vmcb->save.cr0 = cr0; } static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { vcpu->cr4 = cr4; to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE; } static void svm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_seg *s = svm_seg(vcpu, seg); s->base = var->base; s->limit = var->limit; s->selector = var->selector; if (var->unusable) s->attrib = 0; else { s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT; s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; } if (seg == VCPU_SREG_CS) svm->vmcb->save.cpl = (svm->vmcb->save.cs.attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; } /* FIXME: svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK; svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK); */ static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) { return -EOPNOTSUPP; } static void load_host_msrs(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); #endif } static void save_host_msrs(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); #endif } static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data) { if (svm_data->next_asid > svm_data->max_asid) { ++svm_data->asid_generation; svm_data->next_asid = 1; svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; } svm->vcpu.cpu = svm_data->cpu; svm->asid_generation = svm_data->asid_generation; svm->vmcb->control.asid = svm_data->next_asid++; } static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address) { invlpga(address, to_svm(vcpu)->vmcb->control.asid); // is needed? } static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr) { return to_svm(vcpu)->db_regs[dr]; } static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value, int *exception) { struct vcpu_svm *svm = to_svm(vcpu); *exception = 0; if (svm->vmcb->save.dr7 & DR7_GD_MASK) { svm->vmcb->save.dr7 &= ~DR7_GD_MASK; svm->vmcb->save.dr6 |= DR6_BD_MASK; *exception = DB_VECTOR; return; } switch (dr) { case 0 ... 3: svm->db_regs[dr] = value; return; case 4 ... 5: if (vcpu->cr4 & X86_CR4_DE) { *exception = UD_VECTOR; return; } case 7: { if (value & ~((1ULL << 32) - 1)) { *exception = GP_VECTOR; return; } svm->vmcb->save.dr7 = value; return; } default: printk(KERN_DEBUG "%s: unexpected dr %u\n", __FUNCTION__, dr); *exception = UD_VECTOR; return; } } static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { u32 exit_int_info = svm->vmcb->control.exit_int_info; struct kvm *kvm = svm->vcpu.kvm; u64 fault_address; u32 error_code; enum emulation_result er; int r; if (is_external_interrupt(exit_int_info)) push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK); mutex_lock(&kvm->lock); fault_address = svm->vmcb->control.exit_info_2; error_code = svm->vmcb->control.exit_info_1; r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code); if (r < 0) { mutex_unlock(&kvm->lock); return r; } if (!r) { mutex_unlock(&kvm->lock); return 1; } er = emulate_instruction(&svm->vcpu, kvm_run, fault_address, error_code); mutex_unlock(&kvm->lock); switch (er) { case EMULATE_DONE: return 1; case EMULATE_DO_MMIO: ++svm->vcpu.stat.mmio_exits; return 0; case EMULATE_FAIL: vcpu_printf(&svm->vcpu, "%s: emulate fail\n", __FUNCTION__); break; default: BUG(); } kvm_run->exit_reason = KVM_EXIT_UNKNOWN; return 0; } static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR); if (!(svm->vcpu.cr0 & X86_CR0_TS)) svm->vmcb->save.cr0 &= ~X86_CR0_TS; svm->vcpu.fpu_active = 1; return 1; } static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { /* * VMCB is undefined after a SHUTDOWN intercept * so reinitialize it. */ clear_page(svm->vmcb); init_vmcb(svm->vmcb); kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; } static int io_get_override(struct vcpu_svm *svm, struct vmcb_seg **seg, int *addr_override) { u8 inst[MAX_INST_SIZE]; unsigned ins_length; gva_t rip; int i; rip = svm->vmcb->save.rip; ins_length = svm->next_rip - rip; rip += svm->vmcb->save.cs.base; if (ins_length > MAX_INST_SIZE) printk(KERN_DEBUG "%s: inst length err, cs base 0x%llx rip 0x%llx " "next rip 0x%llx ins_length %u\n", __FUNCTION__, svm->vmcb->save.cs.base, svm->vmcb->save.rip, svm->vmcb->control.exit_info_2, ins_length); if (emulator_read_std(rip, inst, ins_length, &svm->vcpu) != X86EMUL_CONTINUE) /* #PF */ return 0; *addr_override = 0; *seg = NULL; for (i = 0; i < ins_length; i++) switch (inst[i]) { case 0xf0: case 0xf2: case 0xf3: case 0x66: continue; case 0x67: *addr_override = 1; continue; case 0x2e: *seg = &svm->vmcb->save.cs; continue; case 0x36: *seg = &svm->vmcb->save.ss; continue; case 0x3e: *seg = &svm->vmcb->save.ds; continue; case 0x26: *seg = &svm->vmcb->save.es; continue; case 0x64: *seg = &svm->vmcb->save.fs; continue; case 0x65: *seg = &svm->vmcb->save.gs; continue; default: return 1; } printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__); return 0; } static unsigned long io_address(struct vcpu_svm *svm, int ins, gva_t *address) { unsigned long addr_mask; unsigned long *reg; struct vmcb_seg *seg; int addr_override; struct vmcb_save_area *save_area = &svm->vmcb->save; u16 cs_attrib = save_area->cs.attrib; unsigned addr_size = get_addr_size(svm); if (!io_get_override(svm, &seg, &addr_override)) return 0; if (addr_override) addr_size = (addr_size == 2) ? 4: (addr_size >> 1); if (ins) { reg = &svm->vcpu.regs[VCPU_REGS_RDI]; seg = &svm->vmcb->save.es; } else { reg = &svm->vcpu.regs[VCPU_REGS_RSI]; seg = (seg) ? seg : &svm->vmcb->save.ds; } addr_mask = ~0ULL >> (64 - (addr_size * 8)); if ((cs_attrib & SVM_SELECTOR_L_MASK) && !(svm->vmcb->save.rflags & X86_EFLAGS_VM)) { *address = (*reg & addr_mask); return addr_mask; } if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) { svm_inject_gp(&svm->vcpu, 0); return 0; } *address = (*reg & addr_mask) + seg->base; return addr_mask; } static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { u32 io_info = svm->vmcb->control.exit_info_1; //address size bug? int size, down, in, string, rep; unsigned port; unsigned long count; gva_t address = 0; ++svm->vcpu.stat.io_exits; svm->next_rip = svm->vmcb->control.exit_info_2; in = (io_info & SVM_IOIO_TYPE_MASK) != 0; port = io_info >> 16; size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; string = (io_info & SVM_IOIO_STR_MASK) != 0; rep = (io_info & SVM_IOIO_REP_MASK) != 0; count = 1; down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0; if (string) { unsigned addr_mask; addr_mask = io_address(svm, in, &address); if (!addr_mask) { printk(KERN_DEBUG "%s: get io address failed\n", __FUNCTION__); return 1; } if (rep) count = svm->vcpu.regs[VCPU_REGS_RCX] & addr_mask; } return kvm_setup_pio(&svm->vcpu, kvm_run, in, size, count, string, down, address, rep, port); } static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { return 1; } static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { svm->next_rip = svm->vmcb->save.rip + 1; skip_emulated_instruction(&svm->vcpu); return kvm_emulate_halt(&svm->vcpu); } static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { svm->next_rip = svm->vmcb->save.rip + 3; skip_emulated_instruction(&svm->vcpu); return kvm_hypercall(&svm->vcpu, kvm_run); } static int invalid_op_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { inject_ud(&svm->vcpu); return 1; } static int task_switch_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__); kvm_run->exit_reason = KVM_EXIT_UNKNOWN; return 0; } static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { svm->next_rip = svm->vmcb->save.rip + 2; kvm_emulate_cpuid(&svm->vcpu); return 1; } static int emulate_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { if (emulate_instruction(&svm->vcpu, NULL, 0, 0) != EMULATE_DONE) printk(KERN_ERR "%s: failed\n", __FUNCTION__); return 1; } static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data) { struct vcpu_svm *svm = to_svm(vcpu); switch (ecx) { case MSR_IA32_TIME_STAMP_COUNTER: { u64 tsc; rdtscll(tsc); *data = svm->vmcb->control.tsc_offset + tsc; break; } case MSR_K6_STAR: *data = svm->vmcb->save.star; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: *data = svm->vmcb->save.lstar; break; case MSR_CSTAR: *data = svm->vmcb->save.cstar; break; case MSR_KERNEL_GS_BASE: *data = svm->vmcb->save.kernel_gs_base; break; case MSR_SYSCALL_MASK: *data = svm->vmcb->save.sfmask; break; #endif case MSR_IA32_SYSENTER_CS: *data = svm->vmcb->save.sysenter_cs; break; case MSR_IA32_SYSENTER_EIP: *data = svm->vmcb->save.sysenter_eip; break; case MSR_IA32_SYSENTER_ESP: *data = svm->vmcb->save.sysenter_esp; break; default: return kvm_get_msr_common(vcpu, ecx, data); } return 0; } static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX]; u64 data; if (svm_get_msr(&svm->vcpu, ecx, &data)) svm_inject_gp(&svm->vcpu, 0); else { svm->vmcb->save.rax = data & 0xffffffff; svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32; svm->next_rip = svm->vmcb->save.rip + 2; skip_emulated_instruction(&svm->vcpu); } return 1; } static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data) { struct vcpu_svm *svm = to_svm(vcpu); switch (ecx) { case MSR_IA32_TIME_STAMP_COUNTER: { u64 tsc; rdtscll(tsc); svm->vmcb->control.tsc_offset = data - tsc; break; } case MSR_K6_STAR: svm->vmcb->save.star = data; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: svm->vmcb->save.lstar = data; break; case MSR_CSTAR: svm->vmcb->save.cstar = data; break; case MSR_KERNEL_GS_BASE: svm->vmcb->save.kernel_gs_base = data; break; case MSR_SYSCALL_MASK: svm->vmcb->save.sfmask = data; break; #endif case MSR_IA32_SYSENTER_CS: svm->vmcb->save.sysenter_cs = data; break; case MSR_IA32_SYSENTER_EIP: svm->vmcb->save.sysenter_eip = data; break; case MSR_IA32_SYSENTER_ESP: svm->vmcb->save.sysenter_esp = data; break; default: return kvm_set_msr_common(vcpu, ecx, data); } return 0; } static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX]; u64 data = (svm->vmcb->save.rax & -1u) | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32); svm->next_rip = svm->vmcb->save.rip + 2; if (svm_set_msr(&svm->vcpu, ecx, data)) svm_inject_gp(&svm->vcpu, 0); else skip_emulated_instruction(&svm->vcpu); return 1; } static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { if (svm->vmcb->control.exit_info_1) return wrmsr_interception(svm, kvm_run); else return rdmsr_interception(svm, kvm_run); } static int interrupt_window_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { /* * If the user space waits to inject interrupts, exit as soon as * possible */ if (kvm_run->request_interrupt_window && !svm->vcpu.irq_summary) { ++svm->vcpu.stat.irq_window_exits; kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; return 0; } return 1; } static int (*svm_exit_handlers[])(struct vcpu_svm *svm, struct kvm_run *kvm_run) = { [SVM_EXIT_READ_CR0] = emulate_on_interception, [SVM_EXIT_READ_CR3] = emulate_on_interception, [SVM_EXIT_READ_CR4] = emulate_on_interception, /* for now: */ [SVM_EXIT_WRITE_CR0] = emulate_on_interception, [SVM_EXIT_WRITE_CR3] = emulate_on_interception, [SVM_EXIT_WRITE_CR4] = emulate_on_interception, [SVM_EXIT_READ_DR0] = emulate_on_interception, [SVM_EXIT_READ_DR1] = emulate_on_interception, [SVM_EXIT_READ_DR2] = emulate_on_interception, [SVM_EXIT_READ_DR3] = emulate_on_interception, [SVM_EXIT_WRITE_DR0] = emulate_on_interception, [SVM_EXIT_WRITE_DR1] = emulate_on_interception, [SVM_EXIT_WRITE_DR2] = emulate_on_interception, [SVM_EXIT_WRITE_DR3] = emulate_on_interception, [SVM_EXIT_WRITE_DR5] = emulate_on_interception, [SVM_EXIT_WRITE_DR7] = emulate_on_interception, [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception, [SVM_EXIT_INTR] = nop_on_interception, [SVM_EXIT_NMI] = nop_on_interception, [SVM_EXIT_SMI] = nop_on_interception, [SVM_EXIT_INIT] = nop_on_interception, [SVM_EXIT_VINTR] = interrupt_window_interception, /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */ [SVM_EXIT_CPUID] = cpuid_interception, [SVM_EXIT_HLT] = halt_interception, [SVM_EXIT_INVLPG] = emulate_on_interception, [SVM_EXIT_INVLPGA] = invalid_op_interception, [SVM_EXIT_IOIO] = io_interception, [SVM_EXIT_MSR] = msr_interception, [SVM_EXIT_TASK_SWITCH] = task_switch_interception, [SVM_EXIT_SHUTDOWN] = shutdown_interception, [SVM_EXIT_VMRUN] = invalid_op_interception, [SVM_EXIT_VMMCALL] = vmmcall_interception, [SVM_EXIT_VMLOAD] = invalid_op_interception, [SVM_EXIT_VMSAVE] = invalid_op_interception, [SVM_EXIT_STGI] = invalid_op_interception, [SVM_EXIT_CLGI] = invalid_op_interception, [SVM_EXIT_SKINIT] = invalid_op_interception, [SVM_EXIT_MONITOR] = invalid_op_interception, [SVM_EXIT_MWAIT] = invalid_op_interception, }; static int handle_exit(struct vcpu_svm *svm, struct kvm_run *kvm_run) { u32 exit_code = svm->vmcb->control.exit_code; if (is_external_interrupt(svm->vmcb->control.exit_int_info) && exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR) printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x " "exit_code 0x%x\n", __FUNCTION__, svm->vmcb->control.exit_int_info, exit_code); if (exit_code >= ARRAY_SIZE(svm_exit_handlers) || svm_exit_handlers[exit_code] == 0) { kvm_run->exit_reason = KVM_EXIT_UNKNOWN; kvm_run->hw.hardware_exit_reason = exit_code; return 0; } return svm_exit_handlers[exit_code](svm, kvm_run); } static void reload_tss(struct kvm_vcpu *vcpu) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); svm_data->tss_desc->type = 9; //available 32/64-bit TSS load_TR_desc(); } static void pre_svm_run(struct vcpu_svm *svm) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; if (svm->vcpu.cpu != cpu || svm->asid_generation != svm_data->asid_generation) new_asid(svm, svm_data); } static inline void inject_irq(struct vcpu_svm *svm) { struct vmcb_control_area *control; control = &svm->vmcb->control; control->int_vector = pop_irq(&svm->vcpu); control->int_ctl &= ~V_INTR_PRIO_MASK; control->int_ctl |= V_IRQ_MASK | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); } static void reput_irq(struct vcpu_svm *svm) { struct vmcb_control_area *control = &svm->vmcb->control; if (control->int_ctl & V_IRQ_MASK) { control->int_ctl &= ~V_IRQ_MASK; push_irq(&svm->vcpu, control->int_vector); } svm->vcpu.interrupt_window_open = !(control->int_state & SVM_INTERRUPT_SHADOW_MASK); } static void do_interrupt_requests(struct vcpu_svm *svm, struct kvm_run *kvm_run) { struct vmcb_control_area *control = &svm->vmcb->control; svm->vcpu.interrupt_window_open = (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) && (svm->vmcb->save.rflags & X86_EFLAGS_IF)); if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary) /* * If interrupts enabled, and not blocked by sti or mov ss. Good. */ inject_irq(svm); /* * Interrupts blocked. Wait for unblock. */ if (!svm->vcpu.interrupt_window_open && (svm->vcpu.irq_summary || kvm_run->request_interrupt_window)) { control->intercept |= 1ULL << INTERCEPT_VINTR; } else control->intercept &= ~(1ULL << INTERCEPT_VINTR); } static void post_kvm_run_save(struct vcpu_svm *svm, struct kvm_run *kvm_run) { kvm_run->ready_for_interrupt_injection = (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary == 0); kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0; kvm_run->cr8 = svm->vcpu.cr8; kvm_run->apic_base = svm->vcpu.apic_base; } /* * Check if userspace requested an interrupt window, and that the * interrupt window is open. * * No need to exit to userspace if we already have an interrupt queued. */ static int dm_request_for_irq_injection(struct vcpu_svm *svm, struct kvm_run *kvm_run) { return (!svm->vcpu.irq_summary && kvm_run->request_interrupt_window && svm->vcpu.interrupt_window_open && (svm->vmcb->save.rflags & X86_EFLAGS_IF)); } static void save_db_regs(unsigned long *db_regs) { asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0])); asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1])); asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2])); asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3])); } static void load_db_regs(unsigned long *db_regs) { asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0])); asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1])); asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2])); asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3])); } static void svm_flush_tlb(struct kvm_vcpu *vcpu) { force_new_asid(vcpu); } static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { struct vcpu_svm *svm = to_svm(vcpu); u16 fs_selector; u16 gs_selector; u16 ldt_selector; int r; again: r = kvm_mmu_reload(vcpu); if (unlikely(r)) return r; if (!vcpu->mmio_read_completed) do_interrupt_requests(svm, kvm_run); clgi(); vcpu->guest_mode = 1; if (vcpu->requests) if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests)) svm_flush_tlb(vcpu); pre_svm_run(svm); save_host_msrs(vcpu); fs_selector = read_fs(); gs_selector = read_gs(); ldt_selector = read_ldt(); svm->host_cr2 = kvm_read_cr2(); svm->host_dr6 = read_dr6(); svm->host_dr7 = read_dr7(); svm->vmcb->save.cr2 = vcpu->cr2; if (svm->vmcb->save.dr7 & 0xff) { write_dr7(0); save_db_regs(svm->host_db_regs); load_db_regs(svm->db_regs); } if (vcpu->fpu_active) { fx_save(&vcpu->host_fx_image); fx_restore(&vcpu->guest_fx_image); } asm volatile ( #ifdef CONFIG_X86_64 "push %%rbx; push %%rcx; push %%rdx;" "push %%rsi; push %%rdi; push %%rbp;" "push %%r8; push %%r9; push %%r10; push %%r11;" "push %%r12; push %%r13; push %%r14; push %%r15;" #else "push %%ebx; push %%ecx; push %%edx;" "push %%esi; push %%edi; push %%ebp;" #endif #ifdef CONFIG_X86_64 "mov %c[rbx](%[svm]), %%rbx \n\t" "mov %c[rcx](%[svm]), %%rcx \n\t" "mov %c[rdx](%[svm]), %%rdx \n\t" "mov %c[rsi](%[svm]), %%rsi \n\t" "mov %c[rdi](%[svm]), %%rdi \n\t" "mov %c[rbp](%[svm]), %%rbp \n\t" "mov %c[r8](%[svm]), %%r8 \n\t" "mov %c[r9](%[svm]), %%r9 \n\t" "mov %c[r10](%[svm]), %%r10 \n\t" "mov %c[r11](%[svm]), %%r11 \n\t" "mov %c[r12](%[svm]), %%r12 \n\t" "mov %c[r13](%[svm]), %%r13 \n\t" "mov %c[r14](%[svm]), %%r14 \n\t" "mov %c[r15](%[svm]), %%r15 \n\t" #else "mov %c[rbx](%[svm]), %%ebx \n\t" "mov %c[rcx](%[svm]), %%ecx \n\t" "mov %c[rdx](%[svm]), %%edx \n\t" "mov %c[rsi](%[svm]), %%esi \n\t" "mov %c[rdi](%[svm]), %%edi \n\t" "mov %c[rbp](%[svm]), %%ebp \n\t" #endif #ifdef CONFIG_X86_64 /* Enter guest mode */ "push %%rax \n\t" "mov %c[vmcb](%[svm]), %%rax \n\t" SVM_VMLOAD "\n\t" SVM_VMRUN "\n\t" SVM_VMSAVE "\n\t" "pop %%rax \n\t" #else /* Enter guest mode */ "push %%eax \n\t" "mov %c[vmcb](%[svm]), %%eax \n\t" SVM_VMLOAD "\n\t" SVM_VMRUN "\n\t" SVM_VMSAVE "\n\t" "pop %%eax \n\t" #endif /* Save guest registers, load host registers */ #ifdef CONFIG_X86_64 "mov %%rbx, %c[rbx](%[svm]) \n\t" "mov %%rcx, %c[rcx](%[svm]) \n\t" "mov %%rdx, %c[rdx](%[svm]) \n\t" "mov %%rsi, %c[rsi](%[svm]) \n\t" "mov %%rdi, %c[rdi](%[svm]) \n\t" "mov %%rbp, %c[rbp](%[svm]) \n\t" "mov %%r8, %c[r8](%[svm]) \n\t" "mov %%r9, %c[r9](%[svm]) \n\t" "mov %%r10, %c[r10](%[svm]) \n\t" "mov %%r11, %c[r11](%[svm]) \n\t" "mov %%r12, %c[r12](%[svm]) \n\t" "mov %%r13, %c[r13](%[svm]) \n\t" "mov %%r14, %c[r14](%[svm]) \n\t" "mov %%r15, %c[r15](%[svm]) \n\t" "pop %%r15; pop %%r14; pop %%r13; pop %%r12;" "pop %%r11; pop %%r10; pop %%r9; pop %%r8;" "pop %%rbp; pop %%rdi; pop %%rsi;" "pop %%rdx; pop %%rcx; pop %%rbx; \n\t" #else "mov %%ebx, %c[rbx](%[svm]) \n\t" "mov %%ecx, %c[rcx](%[svm]) \n\t" "mov %%edx, %c[rdx](%[svm]) \n\t" "mov %%esi, %c[rsi](%[svm]) \n\t" "mov %%edi, %c[rdi](%[svm]) \n\t" "mov %%ebp, %c[rbp](%[svm]) \n\t" "pop %%ebp; pop %%edi; pop %%esi;" "pop %%edx; pop %%ecx; pop %%ebx; \n\t" #endif : : [svm]"a"(svm), [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])), [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])), [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])), [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])), [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])), [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP])) #ifdef CONFIG_X86_64 ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])), [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])), [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])), [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])), [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])), [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])), [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])), [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15])) #endif : "cc", "memory" ); vcpu->guest_mode = 0; if (vcpu->fpu_active) { fx_save(&vcpu->guest_fx_image); fx_restore(&vcpu->host_fx_image); } if ((svm->vmcb->save.dr7 & 0xff)) load_db_regs(svm->host_db_regs); vcpu->cr2 = svm->vmcb->save.cr2; write_dr6(svm->host_dr6); write_dr7(svm->host_dr7); kvm_write_cr2(svm->host_cr2); load_fs(fs_selector); load_gs(gs_selector); load_ldt(ldt_selector); load_host_msrs(vcpu); reload_tss(vcpu); /* * Profile KVM exit RIPs: */ if (unlikely(prof_on == KVM_PROFILING)) profile_hit(KVM_PROFILING, (void *)(unsigned long)svm->vmcb->save.rip); stgi(); reput_irq(svm); svm->next_rip = 0; if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; kvm_run->fail_entry.hardware_entry_failure_reason = svm->vmcb->control.exit_code; post_kvm_run_save(svm, kvm_run); return 0; } r = handle_exit(svm, kvm_run); if (r > 0) { if (signal_pending(current)) { ++vcpu->stat.signal_exits; post_kvm_run_save(svm, kvm_run); kvm_run->exit_reason = KVM_EXIT_INTR; return -EINTR; } if (dm_request_for_irq_injection(svm, kvm_run)) { ++vcpu->stat.request_irq_exits; post_kvm_run_save(svm, kvm_run); kvm_run->exit_reason = KVM_EXIT_INTR; return -EINTR; } kvm_resched(vcpu); goto again; } post_kvm_run_save(svm, kvm_run); return r; } static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.cr3 = root; force_new_asid(vcpu); if (vcpu->fpu_active) { svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR); svm->vmcb->save.cr0 |= X86_CR0_TS; vcpu->fpu_active = 0; } } static void svm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, uint32_t err_code) { struct vcpu_svm *svm = to_svm(vcpu); uint32_t exit_int_info = svm->vmcb->control.exit_int_info; ++vcpu->stat.pf_guest; if (is_page_fault(exit_int_info)) { svm->vmcb->control.event_inj_err = 0; svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_VALID_ERR | SVM_EVTINJ_TYPE_EXEPT | DF_VECTOR; return; } vcpu->cr2 = addr; svm->vmcb->save.cr2 = addr; svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_VALID_ERR | SVM_EVTINJ_TYPE_EXEPT | PF_VECTOR; svm->vmcb->control.event_inj_err = err_code; } static int is_disabled(void) { u64 vm_cr; rdmsrl(MSR_VM_CR, vm_cr); if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) return 1; return 0; } static void svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xd9; hypercall[3] = 0xc3; } static struct kvm_arch_ops svm_arch_ops = { .cpu_has_kvm_support = has_svm, .disabled_by_bios = is_disabled, .hardware_setup = svm_hardware_setup, .hardware_unsetup = svm_hardware_unsetup, .hardware_enable = svm_hardware_enable, .hardware_disable = svm_hardware_disable, .vcpu_create = svm_create_vcpu, .vcpu_free = svm_free_vcpu, .vcpu_load = svm_vcpu_load, .vcpu_put = svm_vcpu_put, .vcpu_decache = svm_vcpu_decache, .set_guest_debug = svm_guest_debug, .get_msr = svm_get_msr, .set_msr = svm_set_msr, .get_segment_base = svm_get_segment_base, .get_segment = svm_get_segment, .set_segment = svm_set_segment, .get_cs_db_l_bits = svm_get_cs_db_l_bits, .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, .set_cr0 = svm_set_cr0, .set_cr3 = svm_set_cr3, .set_cr4 = svm_set_cr4, .set_efer = svm_set_efer, .get_idt = svm_get_idt, .set_idt = svm_set_idt, .get_gdt = svm_get_gdt, .set_gdt = svm_set_gdt, .get_dr = svm_get_dr, .set_dr = svm_set_dr, .cache_regs = svm_cache_regs, .decache_regs = svm_decache_regs, .get_rflags = svm_get_rflags, .set_rflags = svm_set_rflags, .invlpg = svm_invlpg, .tlb_flush = svm_flush_tlb, .inject_page_fault = svm_inject_page_fault, .inject_gp = svm_inject_gp, .run = svm_vcpu_run, .skip_emulated_instruction = skip_emulated_instruction, .patch_hypercall = svm_patch_hypercall, }; static int __init svm_init(void) { return kvm_init_arch(&svm_arch_ops, sizeof(struct vcpu_svm), THIS_MODULE); } static void __exit svm_exit(void) { kvm_exit_arch(); } module_init(svm_init) module_exit(svm_exit)