/* * Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * These are the routines that handle all the low level interrupt stuff. * Actions handled here are: initialization of the interrupt map, requesting of * interrupt lines by handlers, dispatching if interrupts to handlers, probing * for interrupt lines */ #define shutdown_sb1250_irq disable_sb1250_irq static void end_sb1250_irq(unsigned int irq); static void enable_sb1250_irq(unsigned int irq); static void disable_sb1250_irq(unsigned int irq); static unsigned int startup_sb1250_irq(unsigned int irq); static void ack_sb1250_irq(unsigned int irq); #ifdef CONFIG_SMP static void sb1250_set_affinity(unsigned int irq, cpumask_t mask); #endif #ifdef CONFIG_SIBYTE_HAS_LDT extern unsigned long ldt_eoi_space; #endif #ifdef CONFIG_KGDB static int kgdb_irq; /* Default to UART1 */ int kgdb_port = 1; #ifdef CONFIG_SIBYTE_SB1250_DUART extern char sb1250_duart_present[]; #endif #endif static struct irq_chip sb1250_irq_type = { .typename = "SB1250-IMR", .startup = startup_sb1250_irq, .shutdown = shutdown_sb1250_irq, .enable = enable_sb1250_irq, .disable = disable_sb1250_irq, .ack = ack_sb1250_irq, .end = end_sb1250_irq, #ifdef CONFIG_SMP .set_affinity = sb1250_set_affinity #endif }; /* Store the CPU id (not the logical number) */ int sb1250_irq_owner[SB1250_NR_IRQS]; DEFINE_SPINLOCK(sb1250_imr_lock); void sb1250_mask_irq(int cpu, int irq) { unsigned long flags; u64 cur_ints; spin_lock_irqsave(&sb1250_imr_lock, flags); cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) + R_IMR_INTERRUPT_MASK)); cur_ints |= (((u64) 1) << irq); ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) + R_IMR_INTERRUPT_MASK)); spin_unlock_irqrestore(&sb1250_imr_lock, flags); } void sb1250_unmask_irq(int cpu, int irq) { unsigned long flags; u64 cur_ints; spin_lock_irqsave(&sb1250_imr_lock, flags); cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) + R_IMR_INTERRUPT_MASK)); cur_ints &= ~(((u64) 1) << irq); ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) + R_IMR_INTERRUPT_MASK)); spin_unlock_irqrestore(&sb1250_imr_lock, flags); } #ifdef CONFIG_SMP static void sb1250_set_affinity(unsigned int irq, cpumask_t mask) { int i = 0, old_cpu, cpu, int_on; u64 cur_ints; struct irq_desc *desc = irq_desc + irq; unsigned long flags; i = first_cpu(mask); if (cpus_weight(mask) > 1) { printk("attempted to set irq affinity for irq %d to multiple CPUs\n", irq); return; } /* Convert logical CPU to physical CPU */ cpu = cpu_logical_map(i); /* Protect against other affinity changers and IMR manipulation */ spin_lock_irqsave(&desc->lock, flags); spin_lock(&sb1250_imr_lock); /* Swizzle each CPU's IMR (but leave the IP selection alone) */ old_cpu = sb1250_irq_owner[irq]; cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(old_cpu) + R_IMR_INTERRUPT_MASK)); int_on = !(cur_ints & (((u64) 1) << irq)); if (int_on) { /* If it was on, mask it */ cur_ints |= (((u64) 1) << irq); ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(old_cpu) + R_IMR_INTERRUPT_MASK)); } sb1250_irq_owner[irq] = cpu; if (int_on) { /* unmask for the new CPU */ cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) + R_IMR_INTERRUPT_MASK)); cur_ints &= ~(((u64) 1) << irq); ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) + R_IMR_INTERRUPT_MASK)); } spin_unlock(&sb1250_imr_lock); spin_unlock_irqrestore(&desc->lock, flags); } #endif /*****************************************************************************/ static unsigned int startup_sb1250_irq(unsigned int irq) { sb1250_unmask_irq(sb1250_irq_owner[irq], irq); return 0; /* never anything pending */ } static void disable_sb1250_irq(unsigned int irq) { sb1250_mask_irq(sb1250_irq_owner[irq], irq); } static void enable_sb1250_irq(unsigned int irq) { sb1250_unmask_irq(sb1250_irq_owner[irq], irq); } static void ack_sb1250_irq(unsigned int irq) { #ifdef CONFIG_SIBYTE_HAS_LDT u64 pending; /* * If the interrupt was an HT interrupt, now is the time to * clear it. NOTE: we assume the HT bridge was set up to * deliver the interrupts to all CPUs (which makes affinity * changing easier for us) */ pending = __raw_readq(IOADDR(A_IMR_REGISTER(sb1250_irq_owner[irq], R_IMR_LDT_INTERRUPT))); pending &= ((u64)1 << (irq)); if (pending) { int i; for (i=0; i= SB1250_NR_IRQS) return -EINVAL; spin_lock_irqsave(&desc->lock,flags); /* Don't allow sharing at all for these */ if (desc->action != NULL) retval = -EBUSY; else { desc->action = &sb1250_dummy_action; desc->depth = 0; } spin_unlock_irqrestore(&desc->lock,flags); return 0; } /* * arch_init_irq is called early in the boot sequence from init/main.c via * init_IRQ. It is responsible for setting up the interrupt mapper and * installing the handler that will be responsible for dispatching interrupts * to the "right" place. */ /* * For now, map all interrupts to IP[2]. We could save * some cycles by parceling out system interrupts to different * IP lines, but keep it simple for bringup. We'll also direct * all interrupts to a single CPU; we should probably route * PCI and LDT to one cpu and everything else to the other * to balance the load a bit. * * On the second cpu, everything is set to IP5, which is * ignored, EXCEPT the mailbox interrupt. That one is * set to IP[2] so it is handled. This is needed so we * can do cross-cpu function calls, as requred by SMP */ #define IMR_IP2_VAL K_INT_MAP_I0 #define IMR_IP3_VAL K_INT_MAP_I1 #define IMR_IP4_VAL K_INT_MAP_I2 #define IMR_IP5_VAL K_INT_MAP_I3 #define IMR_IP6_VAL K_INT_MAP_I4 void __init arch_init_irq(void) { unsigned int i; u64 tmp; unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 | STATUSF_IP1 | STATUSF_IP0; /* Default everything to IP2 */ for (i = 0; i < SB1250_NR_IRQS; i++) { /* was I0 */ __raw_writeq(IMR_IP2_VAL, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE) + (i << 3))); __raw_writeq(IMR_IP2_VAL, IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MAP_BASE) + (i << 3))); } init_sb1250_irqs(); /* * Map the high 16 bits of the mailbox registers to IP[3], for * inter-cpu messages */ /* Was I1 */ __raw_writeq(IMR_IP3_VAL, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE) + (K_INT_MBOX_0 << 3))); __raw_writeq(IMR_IP3_VAL, IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MAP_BASE) + (K_INT_MBOX_0 << 3))); /* Clear the mailboxes. The firmware may leave them dirty */ __raw_writeq(0xffffffffffffffffULL, IOADDR(A_IMR_REGISTER(0, R_IMR_MAILBOX_CLR_CPU))); __raw_writeq(0xffffffffffffffffULL, IOADDR(A_IMR_REGISTER(1, R_IMR_MAILBOX_CLR_CPU))); /* Mask everything except the mailbox registers for both cpus */ tmp = ~((u64) 0) ^ (((u64) 1) << K_INT_MBOX_0); __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MASK))); __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MASK))); sb1250_steal_irq(K_INT_MBOX_0); /* * Note that the timer interrupts are also mapped, but this is * done in sb1250_time_init(). Also, the profiling driver * does its own management of IP7. */ #ifdef CONFIG_KGDB imask |= STATUSF_IP6; #endif /* Enable necessary IPs, disable the rest */ change_c0_status(ST0_IM, imask); #ifdef CONFIG_KGDB if (kgdb_flag) { kgdb_irq = K_INT_UART_0 + kgdb_port; #ifdef CONFIG_SIBYTE_SB1250_DUART sb1250_duart_present[kgdb_port] = 0; #endif /* Setup uart 1 settings, mapper */ __raw_writeq(M_DUART_IMR_BRK, IOADDR(A_DUART_IMRREG(kgdb_port))); sb1250_steal_irq(kgdb_irq); __raw_writeq(IMR_IP6_VAL, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE) + (kgdb_irq << 3))); sb1250_unmask_irq(0, kgdb_irq); } #endif } #ifdef CONFIG_KGDB #include #define duart_out(reg, val) csr_out32(val, IOADDR(A_DUART_CHANREG(kgdb_port,reg))) #define duart_in(reg) csr_in32(IOADDR(A_DUART_CHANREG(kgdb_port,reg))) static void sb1250_kgdb_interrupt(struct pt_regs *regs) { /* * Clear break-change status (allow some time for the remote * host to stop the break, since we would see another * interrupt on the end-of-break too) */ kstat_this_cpu.irqs[kgdb_irq]++; mdelay(500); duart_out(R_DUART_CMD, V_DUART_MISC_CMD_RESET_BREAK_INT | M_DUART_RX_EN | M_DUART_TX_EN); set_async_breakpoint(®s->cp0_epc); } #endif /* CONFIG_KGDB */ extern void sb1250_timer_interrupt(struct pt_regs *regs); extern void sb1250_mailbox_interrupt(struct pt_regs *regs); extern void sb1250_kgdb_interrupt(struct pt_regs *regs); asmlinkage void plat_irq_dispatch(struct pt_regs *regs) { unsigned int pending; #ifdef CONFIG_SIBYTE_SB1250_PROF /* Set compare to count to silence count/compare timer interrupts */ write_c0_compare(read_c0_count()); #endif /* * What a pain. We have to be really careful saving the upper 32 bits * of any * register across function calls if we don't want them * trashed--since were running in -o32, the calling routing never saves * the full 64 bits of a register across a function call. Being the * interrupt handler, we're guaranteed that interrupts are disabled * during this code so we don't have to worry about random interrupts * blasting the high 32 bits. */ pending = read_c0_cause() & read_c0_status(); #ifdef CONFIG_SIBYTE_SB1250_PROF if (pending & CAUSEF_IP7) /* Cpu performance counter interrupt */ sbprof_cpu_intr(exception_epc(regs)); else #endif if (pending & CAUSEF_IP4) sb1250_timer_interrupt(regs); #ifdef CONFIG_SMP else if (pending & CAUSEF_IP3) sb1250_mailbox_interrupt(regs); #endif #ifdef CONFIG_KGDB else if (pending & CAUSEF_IP6) /* KGDB (uart 1) */ sb1250_kgdb_interrupt(regs); #endif else if (pending & CAUSEF_IP2) { unsigned long long mask; /* * Default...we've hit an IP[2] interrupt, which means we've * got to check the 1250 interrupt registers to figure out what * to do. Need to detect which CPU we're on, now that * smp_affinity is supported. */ mask = __raw_readq(IOADDR(A_IMR_REGISTER(smp_processor_id(), R_IMR_INTERRUPT_STATUS_BASE))); if (mask) do_IRQ(fls64(mask) - 1, regs); else spurious_interrupt(regs); } else spurious_interrupt(regs); }