8141c7f3e7
We don't want to get rid of the futexes just at exit() time, we want to drop them when doing an execve() too, since that gets rid of the previous VM image too. Doing it at mm_release() time means that we automatically always do it when we disassociate a VM map from the task. Reported-by: pageexec@freemail.hu Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: Hugh Dickins <hugh@veritas.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Brad Spengler <spender@grsecurity.net> Cc: Alex Efros <powerman@powerman.name> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1840 lines
46 KiB
C
1840 lines
46 KiB
C
/*
|
|
* linux/kernel/exit.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/mnt_namespace.h>
|
|
#include <linux/iocontext.h>
|
|
#include <linux/key.h>
|
|
#include <linux/security.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/acct.h>
|
|
#include <linux/tsacct_kern.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/taskstats_kern.h>
|
|
#include <linux/delayacct.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/futex.h>
|
|
#include <linux/pipe_fs_i.h>
|
|
#include <linux/audit.h> /* for audit_free() */
|
|
#include <linux/resource.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/tracehook.h>
|
|
#include <trace/sched.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
static void exit_mm(struct task_struct * tsk);
|
|
|
|
static inline int task_detached(struct task_struct *p)
|
|
{
|
|
return p->exit_signal == -1;
|
|
}
|
|
|
|
static void __unhash_process(struct task_struct *p)
|
|
{
|
|
nr_threads--;
|
|
detach_pid(p, PIDTYPE_PID);
|
|
if (thread_group_leader(p)) {
|
|
detach_pid(p, PIDTYPE_PGID);
|
|
detach_pid(p, PIDTYPE_SID);
|
|
|
|
list_del_rcu(&p->tasks);
|
|
__get_cpu_var(process_counts)--;
|
|
}
|
|
list_del_rcu(&p->thread_group);
|
|
list_del_init(&p->sibling);
|
|
}
|
|
|
|
/*
|
|
* This function expects the tasklist_lock write-locked.
|
|
*/
|
|
static void __exit_signal(struct task_struct *tsk)
|
|
{
|
|
struct signal_struct *sig = tsk->signal;
|
|
struct sighand_struct *sighand;
|
|
|
|
BUG_ON(!sig);
|
|
BUG_ON(!atomic_read(&sig->count));
|
|
|
|
sighand = rcu_dereference(tsk->sighand);
|
|
spin_lock(&sighand->siglock);
|
|
|
|
posix_cpu_timers_exit(tsk);
|
|
if (atomic_dec_and_test(&sig->count))
|
|
posix_cpu_timers_exit_group(tsk);
|
|
else {
|
|
/*
|
|
* If there is any task waiting for the group exit
|
|
* then notify it:
|
|
*/
|
|
if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
|
|
wake_up_process(sig->group_exit_task);
|
|
|
|
if (tsk == sig->curr_target)
|
|
sig->curr_target = next_thread(tsk);
|
|
/*
|
|
* Accumulate here the counters for all threads but the
|
|
* group leader as they die, so they can be added into
|
|
* the process-wide totals when those are taken.
|
|
* The group leader stays around as a zombie as long
|
|
* as there are other threads. When it gets reaped,
|
|
* the exit.c code will add its counts into these totals.
|
|
* We won't ever get here for the group leader, since it
|
|
* will have been the last reference on the signal_struct.
|
|
*/
|
|
sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
|
|
sig->min_flt += tsk->min_flt;
|
|
sig->maj_flt += tsk->maj_flt;
|
|
sig->nvcsw += tsk->nvcsw;
|
|
sig->nivcsw += tsk->nivcsw;
|
|
sig->inblock += task_io_get_inblock(tsk);
|
|
sig->oublock += task_io_get_oublock(tsk);
|
|
task_io_accounting_add(&sig->ioac, &tsk->ioac);
|
|
sig = NULL; /* Marker for below. */
|
|
}
|
|
|
|
__unhash_process(tsk);
|
|
|
|
/*
|
|
* Do this under ->siglock, we can race with another thread
|
|
* doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
|
|
*/
|
|
flush_sigqueue(&tsk->pending);
|
|
|
|
tsk->signal = NULL;
|
|
tsk->sighand = NULL;
|
|
spin_unlock(&sighand->siglock);
|
|
|
|
__cleanup_sighand(sighand);
|
|
clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
|
|
if (sig) {
|
|
flush_sigqueue(&sig->shared_pending);
|
|
taskstats_tgid_free(sig);
|
|
/*
|
|
* Make sure ->signal can't go away under rq->lock,
|
|
* see account_group_exec_runtime().
|
|
*/
|
|
task_rq_unlock_wait(tsk);
|
|
__cleanup_signal(sig);
|
|
}
|
|
}
|
|
|
|
static void delayed_put_task_struct(struct rcu_head *rhp)
|
|
{
|
|
struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
|
|
|
|
trace_sched_process_free(tsk);
|
|
put_task_struct(tsk);
|
|
}
|
|
|
|
|
|
void release_task(struct task_struct * p)
|
|
{
|
|
struct task_struct *leader;
|
|
int zap_leader;
|
|
repeat:
|
|
tracehook_prepare_release_task(p);
|
|
atomic_dec(&p->user->processes);
|
|
proc_flush_task(p);
|
|
write_lock_irq(&tasklist_lock);
|
|
tracehook_finish_release_task(p);
|
|
__exit_signal(p);
|
|
|
|
/*
|
|
* If we are the last non-leader member of the thread
|
|
* group, and the leader is zombie, then notify the
|
|
* group leader's parent process. (if it wants notification.)
|
|
*/
|
|
zap_leader = 0;
|
|
leader = p->group_leader;
|
|
if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
|
|
BUG_ON(task_detached(leader));
|
|
do_notify_parent(leader, leader->exit_signal);
|
|
/*
|
|
* If we were the last child thread and the leader has
|
|
* exited already, and the leader's parent ignores SIGCHLD,
|
|
* then we are the one who should release the leader.
|
|
*
|
|
* do_notify_parent() will have marked it self-reaping in
|
|
* that case.
|
|
*/
|
|
zap_leader = task_detached(leader);
|
|
|
|
/*
|
|
* This maintains the invariant that release_task()
|
|
* only runs on a task in EXIT_DEAD, just for sanity.
|
|
*/
|
|
if (zap_leader)
|
|
leader->exit_state = EXIT_DEAD;
|
|
}
|
|
|
|
write_unlock_irq(&tasklist_lock);
|
|
release_thread(p);
|
|
call_rcu(&p->rcu, delayed_put_task_struct);
|
|
|
|
p = leader;
|
|
if (unlikely(zap_leader))
|
|
goto repeat;
|
|
}
|
|
|
|
/*
|
|
* This checks not only the pgrp, but falls back on the pid if no
|
|
* satisfactory pgrp is found. I dunno - gdb doesn't work correctly
|
|
* without this...
|
|
*
|
|
* The caller must hold rcu lock or the tasklist lock.
|
|
*/
|
|
struct pid *session_of_pgrp(struct pid *pgrp)
|
|
{
|
|
struct task_struct *p;
|
|
struct pid *sid = NULL;
|
|
|
|
p = pid_task(pgrp, PIDTYPE_PGID);
|
|
if (p == NULL)
|
|
p = pid_task(pgrp, PIDTYPE_PID);
|
|
if (p != NULL)
|
|
sid = task_session(p);
|
|
|
|
return sid;
|
|
}
|
|
|
|
/*
|
|
* Determine if a process group is "orphaned", according to the POSIX
|
|
* definition in 2.2.2.52. Orphaned process groups are not to be affected
|
|
* by terminal-generated stop signals. Newly orphaned process groups are
|
|
* to receive a SIGHUP and a SIGCONT.
|
|
*
|
|
* "I ask you, have you ever known what it is to be an orphan?"
|
|
*/
|
|
static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
if ((p == ignored_task) ||
|
|
(p->exit_state && thread_group_empty(p)) ||
|
|
is_global_init(p->real_parent))
|
|
continue;
|
|
|
|
if (task_pgrp(p->real_parent) != pgrp &&
|
|
task_session(p->real_parent) == task_session(p))
|
|
return 0;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int is_current_pgrp_orphaned(void)
|
|
{
|
|
int retval;
|
|
|
|
read_lock(&tasklist_lock);
|
|
retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int has_stopped_jobs(struct pid *pgrp)
|
|
{
|
|
int retval = 0;
|
|
struct task_struct *p;
|
|
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
if (!task_is_stopped(p))
|
|
continue;
|
|
retval = 1;
|
|
break;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Check to see if any process groups have become orphaned as
|
|
* a result of our exiting, and if they have any stopped jobs,
|
|
* send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
|
|
*/
|
|
static void
|
|
kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
|
|
{
|
|
struct pid *pgrp = task_pgrp(tsk);
|
|
struct task_struct *ignored_task = tsk;
|
|
|
|
if (!parent)
|
|
/* exit: our father is in a different pgrp than
|
|
* we are and we were the only connection outside.
|
|
*/
|
|
parent = tsk->real_parent;
|
|
else
|
|
/* reparent: our child is in a different pgrp than
|
|
* we are, and it was the only connection outside.
|
|
*/
|
|
ignored_task = NULL;
|
|
|
|
if (task_pgrp(parent) != pgrp &&
|
|
task_session(parent) == task_session(tsk) &&
|
|
will_become_orphaned_pgrp(pgrp, ignored_task) &&
|
|
has_stopped_jobs(pgrp)) {
|
|
__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
|
|
__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
|
|
*
|
|
* If a kernel thread is launched as a result of a system call, or if
|
|
* it ever exits, it should generally reparent itself to kthreadd so it
|
|
* isn't in the way of other processes and is correctly cleaned up on exit.
|
|
*
|
|
* The various task state such as scheduling policy and priority may have
|
|
* been inherited from a user process, so we reset them to sane values here.
|
|
*
|
|
* NOTE that reparent_to_kthreadd() gives the caller full capabilities.
|
|
*/
|
|
static void reparent_to_kthreadd(void)
|
|
{
|
|
write_lock_irq(&tasklist_lock);
|
|
|
|
ptrace_unlink(current);
|
|
/* Reparent to init */
|
|
current->real_parent = current->parent = kthreadd_task;
|
|
list_move_tail(¤t->sibling, ¤t->real_parent->children);
|
|
|
|
/* Set the exit signal to SIGCHLD so we signal init on exit */
|
|
current->exit_signal = SIGCHLD;
|
|
|
|
if (task_nice(current) < 0)
|
|
set_user_nice(current, 0);
|
|
/* cpus_allowed? */
|
|
/* rt_priority? */
|
|
/* signals? */
|
|
security_task_reparent_to_init(current);
|
|
memcpy(current->signal->rlim, init_task.signal->rlim,
|
|
sizeof(current->signal->rlim));
|
|
atomic_inc(&(INIT_USER->__count));
|
|
write_unlock_irq(&tasklist_lock);
|
|
switch_uid(INIT_USER);
|
|
}
|
|
|
|
void __set_special_pids(struct pid *pid)
|
|
{
|
|
struct task_struct *curr = current->group_leader;
|
|
pid_t nr = pid_nr(pid);
|
|
|
|
if (task_session(curr) != pid) {
|
|
change_pid(curr, PIDTYPE_SID, pid);
|
|
set_task_session(curr, nr);
|
|
}
|
|
if (task_pgrp(curr) != pid) {
|
|
change_pid(curr, PIDTYPE_PGID, pid);
|
|
set_task_pgrp(curr, nr);
|
|
}
|
|
}
|
|
|
|
static void set_special_pids(struct pid *pid)
|
|
{
|
|
write_lock_irq(&tasklist_lock);
|
|
__set_special_pids(pid);
|
|
write_unlock_irq(&tasklist_lock);
|
|
}
|
|
|
|
/*
|
|
* Let kernel threads use this to say that they
|
|
* allow a certain signal (since daemonize() will
|
|
* have disabled all of them by default).
|
|
*/
|
|
int allow_signal(int sig)
|
|
{
|
|
if (!valid_signal(sig) || sig < 1)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sigdelset(¤t->blocked, sig);
|
|
if (!current->mm) {
|
|
/* Kernel threads handle their own signals.
|
|
Let the signal code know it'll be handled, so
|
|
that they don't get converted to SIGKILL or
|
|
just silently dropped */
|
|
current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
|
|
}
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(allow_signal);
|
|
|
|
int disallow_signal(int sig)
|
|
{
|
|
if (!valid_signal(sig) || sig < 1)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(disallow_signal);
|
|
|
|
/*
|
|
* Put all the gunge required to become a kernel thread without
|
|
* attached user resources in one place where it belongs.
|
|
*/
|
|
|
|
void daemonize(const char *name, ...)
|
|
{
|
|
va_list args;
|
|
struct fs_struct *fs;
|
|
sigset_t blocked;
|
|
|
|
va_start(args, name);
|
|
vsnprintf(current->comm, sizeof(current->comm), name, args);
|
|
va_end(args);
|
|
|
|
/*
|
|
* If we were started as result of loading a module, close all of the
|
|
* user space pages. We don't need them, and if we didn't close them
|
|
* they would be locked into memory.
|
|
*/
|
|
exit_mm(current);
|
|
/*
|
|
* We don't want to have TIF_FREEZE set if the system-wide hibernation
|
|
* or suspend transition begins right now.
|
|
*/
|
|
current->flags |= (PF_NOFREEZE | PF_KTHREAD);
|
|
|
|
if (current->nsproxy != &init_nsproxy) {
|
|
get_nsproxy(&init_nsproxy);
|
|
switch_task_namespaces(current, &init_nsproxy);
|
|
}
|
|
set_special_pids(&init_struct_pid);
|
|
proc_clear_tty(current);
|
|
|
|
/* Block and flush all signals */
|
|
sigfillset(&blocked);
|
|
sigprocmask(SIG_BLOCK, &blocked, NULL);
|
|
flush_signals(current);
|
|
|
|
/* Become as one with the init task */
|
|
|
|
exit_fs(current); /* current->fs->count--; */
|
|
fs = init_task.fs;
|
|
current->fs = fs;
|
|
atomic_inc(&fs->count);
|
|
|
|
exit_files(current);
|
|
current->files = init_task.files;
|
|
atomic_inc(¤t->files->count);
|
|
|
|
reparent_to_kthreadd();
|
|
}
|
|
|
|
EXPORT_SYMBOL(daemonize);
|
|
|
|
static void close_files(struct files_struct * files)
|
|
{
|
|
int i, j;
|
|
struct fdtable *fdt;
|
|
|
|
j = 0;
|
|
|
|
/*
|
|
* It is safe to dereference the fd table without RCU or
|
|
* ->file_lock because this is the last reference to the
|
|
* files structure.
|
|
*/
|
|
fdt = files_fdtable(files);
|
|
for (;;) {
|
|
unsigned long set;
|
|
i = j * __NFDBITS;
|
|
if (i >= fdt->max_fds)
|
|
break;
|
|
set = fdt->open_fds->fds_bits[j++];
|
|
while (set) {
|
|
if (set & 1) {
|
|
struct file * file = xchg(&fdt->fd[i], NULL);
|
|
if (file) {
|
|
filp_close(file, files);
|
|
cond_resched();
|
|
}
|
|
}
|
|
i++;
|
|
set >>= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct files_struct *get_files_struct(struct task_struct *task)
|
|
{
|
|
struct files_struct *files;
|
|
|
|
task_lock(task);
|
|
files = task->files;
|
|
if (files)
|
|
atomic_inc(&files->count);
|
|
task_unlock(task);
|
|
|
|
return files;
|
|
}
|
|
|
|
void put_files_struct(struct files_struct *files)
|
|
{
|
|
struct fdtable *fdt;
|
|
|
|
if (atomic_dec_and_test(&files->count)) {
|
|
close_files(files);
|
|
/*
|
|
* Free the fd and fdset arrays if we expanded them.
|
|
* If the fdtable was embedded, pass files for freeing
|
|
* at the end of the RCU grace period. Otherwise,
|
|
* you can free files immediately.
|
|
*/
|
|
fdt = files_fdtable(files);
|
|
if (fdt != &files->fdtab)
|
|
kmem_cache_free(files_cachep, files);
|
|
free_fdtable(fdt);
|
|
}
|
|
}
|
|
|
|
void reset_files_struct(struct files_struct *files)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct files_struct *old;
|
|
|
|
old = tsk->files;
|
|
task_lock(tsk);
|
|
tsk->files = files;
|
|
task_unlock(tsk);
|
|
put_files_struct(old);
|
|
}
|
|
|
|
void exit_files(struct task_struct *tsk)
|
|
{
|
|
struct files_struct * files = tsk->files;
|
|
|
|
if (files) {
|
|
task_lock(tsk);
|
|
tsk->files = NULL;
|
|
task_unlock(tsk);
|
|
put_files_struct(files);
|
|
}
|
|
}
|
|
|
|
void put_fs_struct(struct fs_struct *fs)
|
|
{
|
|
/* No need to hold fs->lock if we are killing it */
|
|
if (atomic_dec_and_test(&fs->count)) {
|
|
path_put(&fs->root);
|
|
path_put(&fs->pwd);
|
|
kmem_cache_free(fs_cachep, fs);
|
|
}
|
|
}
|
|
|
|
void exit_fs(struct task_struct *tsk)
|
|
{
|
|
struct fs_struct * fs = tsk->fs;
|
|
|
|
if (fs) {
|
|
task_lock(tsk);
|
|
tsk->fs = NULL;
|
|
task_unlock(tsk);
|
|
put_fs_struct(fs);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(exit_fs);
|
|
|
|
#ifdef CONFIG_MM_OWNER
|
|
/*
|
|
* Task p is exiting and it owned mm, lets find a new owner for it
|
|
*/
|
|
static inline int
|
|
mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
|
|
{
|
|
/*
|
|
* If there are other users of the mm and the owner (us) is exiting
|
|
* we need to find a new owner to take on the responsibility.
|
|
*/
|
|
if (atomic_read(&mm->mm_users) <= 1)
|
|
return 0;
|
|
if (mm->owner != p)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
void mm_update_next_owner(struct mm_struct *mm)
|
|
{
|
|
struct task_struct *c, *g, *p = current;
|
|
|
|
retry:
|
|
if (!mm_need_new_owner(mm, p))
|
|
return;
|
|
|
|
read_lock(&tasklist_lock);
|
|
/*
|
|
* Search in the children
|
|
*/
|
|
list_for_each_entry(c, &p->children, sibling) {
|
|
if (c->mm == mm)
|
|
goto assign_new_owner;
|
|
}
|
|
|
|
/*
|
|
* Search in the siblings
|
|
*/
|
|
list_for_each_entry(c, &p->parent->children, sibling) {
|
|
if (c->mm == mm)
|
|
goto assign_new_owner;
|
|
}
|
|
|
|
/*
|
|
* Search through everything else. We should not get
|
|
* here often
|
|
*/
|
|
do_each_thread(g, c) {
|
|
if (c->mm == mm)
|
|
goto assign_new_owner;
|
|
} while_each_thread(g, c);
|
|
|
|
read_unlock(&tasklist_lock);
|
|
/*
|
|
* We found no owner yet mm_users > 1: this implies that we are
|
|
* most likely racing with swapoff (try_to_unuse()) or /proc or
|
|
* ptrace or page migration (get_task_mm()). Mark owner as NULL,
|
|
* so that subsystems can understand the callback and take action.
|
|
*/
|
|
down_write(&mm->mmap_sem);
|
|
cgroup_mm_owner_callbacks(mm->owner, NULL);
|
|
mm->owner = NULL;
|
|
up_write(&mm->mmap_sem);
|
|
return;
|
|
|
|
assign_new_owner:
|
|
BUG_ON(c == p);
|
|
get_task_struct(c);
|
|
read_unlock(&tasklist_lock);
|
|
down_write(&mm->mmap_sem);
|
|
/*
|
|
* The task_lock protects c->mm from changing.
|
|
* We always want mm->owner->mm == mm
|
|
*/
|
|
task_lock(c);
|
|
if (c->mm != mm) {
|
|
task_unlock(c);
|
|
up_write(&mm->mmap_sem);
|
|
put_task_struct(c);
|
|
goto retry;
|
|
}
|
|
cgroup_mm_owner_callbacks(mm->owner, c);
|
|
mm->owner = c;
|
|
task_unlock(c);
|
|
up_write(&mm->mmap_sem);
|
|
put_task_struct(c);
|
|
}
|
|
#endif /* CONFIG_MM_OWNER */
|
|
|
|
/*
|
|
* Turn us into a lazy TLB process if we
|
|
* aren't already..
|
|
*/
|
|
static void exit_mm(struct task_struct * tsk)
|
|
{
|
|
struct mm_struct *mm = tsk->mm;
|
|
struct core_state *core_state;
|
|
|
|
mm_release(tsk, mm);
|
|
if (!mm)
|
|
return;
|
|
/*
|
|
* Serialize with any possible pending coredump.
|
|
* We must hold mmap_sem around checking core_state
|
|
* and clearing tsk->mm. The core-inducing thread
|
|
* will increment ->nr_threads for each thread in the
|
|
* group with ->mm != NULL.
|
|
*/
|
|
down_read(&mm->mmap_sem);
|
|
core_state = mm->core_state;
|
|
if (core_state) {
|
|
struct core_thread self;
|
|
up_read(&mm->mmap_sem);
|
|
|
|
self.task = tsk;
|
|
self.next = xchg(&core_state->dumper.next, &self);
|
|
/*
|
|
* Implies mb(), the result of xchg() must be visible
|
|
* to core_state->dumper.
|
|
*/
|
|
if (atomic_dec_and_test(&core_state->nr_threads))
|
|
complete(&core_state->startup);
|
|
|
|
for (;;) {
|
|
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
|
|
if (!self.task) /* see coredump_finish() */
|
|
break;
|
|
schedule();
|
|
}
|
|
__set_task_state(tsk, TASK_RUNNING);
|
|
down_read(&mm->mmap_sem);
|
|
}
|
|
atomic_inc(&mm->mm_count);
|
|
BUG_ON(mm != tsk->active_mm);
|
|
/* more a memory barrier than a real lock */
|
|
task_lock(tsk);
|
|
tsk->mm = NULL;
|
|
up_read(&mm->mmap_sem);
|
|
enter_lazy_tlb(mm, current);
|
|
/* We don't want this task to be frozen prematurely */
|
|
clear_freeze_flag(tsk);
|
|
task_unlock(tsk);
|
|
mm_update_next_owner(mm);
|
|
mmput(mm);
|
|
}
|
|
|
|
/*
|
|
* Return nonzero if @parent's children should reap themselves.
|
|
*
|
|
* Called with write_lock_irq(&tasklist_lock) held.
|
|
*/
|
|
static int ignoring_children(struct task_struct *parent)
|
|
{
|
|
int ret;
|
|
struct sighand_struct *psig = parent->sighand;
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&psig->siglock, flags);
|
|
ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
|
|
(psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
|
|
spin_unlock_irqrestore(&psig->siglock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Detach all tasks we were using ptrace on.
|
|
* Any that need to be release_task'd are put on the @dead list.
|
|
*
|
|
* Called with write_lock(&tasklist_lock) held.
|
|
*/
|
|
static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
|
|
{
|
|
struct task_struct *p, *n;
|
|
int ign = -1;
|
|
|
|
list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
|
|
__ptrace_unlink(p);
|
|
|
|
if (p->exit_state != EXIT_ZOMBIE)
|
|
continue;
|
|
|
|
/*
|
|
* If it's a zombie, our attachedness prevented normal
|
|
* parent notification or self-reaping. Do notification
|
|
* now if it would have happened earlier. If it should
|
|
* reap itself, add it to the @dead list. We can't call
|
|
* release_task() here because we already hold tasklist_lock.
|
|
*
|
|
* If it's our own child, there is no notification to do.
|
|
* But if our normal children self-reap, then this child
|
|
* was prevented by ptrace and we must reap it now.
|
|
*/
|
|
if (!task_detached(p) && thread_group_empty(p)) {
|
|
if (!same_thread_group(p->real_parent, parent))
|
|
do_notify_parent(p, p->exit_signal);
|
|
else {
|
|
if (ign < 0)
|
|
ign = ignoring_children(parent);
|
|
if (ign)
|
|
p->exit_signal = -1;
|
|
}
|
|
}
|
|
|
|
if (task_detached(p)) {
|
|
/*
|
|
* Mark it as in the process of being reaped.
|
|
*/
|
|
p->exit_state = EXIT_DEAD;
|
|
list_add(&p->ptrace_entry, dead);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finish up exit-time ptrace cleanup.
|
|
*
|
|
* Called without locks.
|
|
*/
|
|
static void ptrace_exit_finish(struct task_struct *parent,
|
|
struct list_head *dead)
|
|
{
|
|
struct task_struct *p, *n;
|
|
|
|
BUG_ON(!list_empty(&parent->ptraced));
|
|
|
|
list_for_each_entry_safe(p, n, dead, ptrace_entry) {
|
|
list_del_init(&p->ptrace_entry);
|
|
release_task(p);
|
|
}
|
|
}
|
|
|
|
static void reparent_thread(struct task_struct *p, struct task_struct *father)
|
|
{
|
|
if (p->pdeath_signal)
|
|
/* We already hold the tasklist_lock here. */
|
|
group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
|
|
|
|
list_move_tail(&p->sibling, &p->real_parent->children);
|
|
|
|
/* If this is a threaded reparent there is no need to
|
|
* notify anyone anything has happened.
|
|
*/
|
|
if (same_thread_group(p->real_parent, father))
|
|
return;
|
|
|
|
/* We don't want people slaying init. */
|
|
if (!task_detached(p))
|
|
p->exit_signal = SIGCHLD;
|
|
|
|
/* If we'd notified the old parent about this child's death,
|
|
* also notify the new parent.
|
|
*/
|
|
if (!ptrace_reparented(p) &&
|
|
p->exit_state == EXIT_ZOMBIE &&
|
|
!task_detached(p) && thread_group_empty(p))
|
|
do_notify_parent(p, p->exit_signal);
|
|
|
|
kill_orphaned_pgrp(p, father);
|
|
}
|
|
|
|
/*
|
|
* When we die, we re-parent all our children.
|
|
* Try to give them to another thread in our thread
|
|
* group, and if no such member exists, give it to
|
|
* the child reaper process (ie "init") in our pid
|
|
* space.
|
|
*/
|
|
static struct task_struct *find_new_reaper(struct task_struct *father)
|
|
{
|
|
struct pid_namespace *pid_ns = task_active_pid_ns(father);
|
|
struct task_struct *thread;
|
|
|
|
thread = father;
|
|
while_each_thread(father, thread) {
|
|
if (thread->flags & PF_EXITING)
|
|
continue;
|
|
if (unlikely(pid_ns->child_reaper == father))
|
|
pid_ns->child_reaper = thread;
|
|
return thread;
|
|
}
|
|
|
|
if (unlikely(pid_ns->child_reaper == father)) {
|
|
write_unlock_irq(&tasklist_lock);
|
|
if (unlikely(pid_ns == &init_pid_ns))
|
|
panic("Attempted to kill init!");
|
|
|
|
zap_pid_ns_processes(pid_ns);
|
|
write_lock_irq(&tasklist_lock);
|
|
/*
|
|
* We can not clear ->child_reaper or leave it alone.
|
|
* There may by stealth EXIT_DEAD tasks on ->children,
|
|
* forget_original_parent() must move them somewhere.
|
|
*/
|
|
pid_ns->child_reaper = init_pid_ns.child_reaper;
|
|
}
|
|
|
|
return pid_ns->child_reaper;
|
|
}
|
|
|
|
static void forget_original_parent(struct task_struct *father)
|
|
{
|
|
struct task_struct *p, *n, *reaper;
|
|
LIST_HEAD(ptrace_dead);
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
reaper = find_new_reaper(father);
|
|
/*
|
|
* First clean up ptrace if we were using it.
|
|
*/
|
|
ptrace_exit(father, &ptrace_dead);
|
|
|
|
list_for_each_entry_safe(p, n, &father->children, sibling) {
|
|
p->real_parent = reaper;
|
|
if (p->parent == father) {
|
|
BUG_ON(p->ptrace);
|
|
p->parent = p->real_parent;
|
|
}
|
|
reparent_thread(p, father);
|
|
}
|
|
|
|
write_unlock_irq(&tasklist_lock);
|
|
BUG_ON(!list_empty(&father->children));
|
|
|
|
ptrace_exit_finish(father, &ptrace_dead);
|
|
}
|
|
|
|
/*
|
|
* Send signals to all our closest relatives so that they know
|
|
* to properly mourn us..
|
|
*/
|
|
static void exit_notify(struct task_struct *tsk, int group_dead)
|
|
{
|
|
int signal;
|
|
void *cookie;
|
|
|
|
/*
|
|
* This does two things:
|
|
*
|
|
* A. Make init inherit all the child processes
|
|
* B. Check to see if any process groups have become orphaned
|
|
* as a result of our exiting, and if they have any stopped
|
|
* jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
|
|
*/
|
|
forget_original_parent(tsk);
|
|
exit_task_namespaces(tsk);
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
if (group_dead)
|
|
kill_orphaned_pgrp(tsk->group_leader, NULL);
|
|
|
|
/* Let father know we died
|
|
*
|
|
* Thread signals are configurable, but you aren't going to use
|
|
* that to send signals to arbitary processes.
|
|
* That stops right now.
|
|
*
|
|
* If the parent exec id doesn't match the exec id we saved
|
|
* when we started then we know the parent has changed security
|
|
* domain.
|
|
*
|
|
* If our self_exec id doesn't match our parent_exec_id then
|
|
* we have changed execution domain as these two values started
|
|
* the same after a fork.
|
|
*/
|
|
if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
|
|
(tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
|
|
tsk->self_exec_id != tsk->parent_exec_id) &&
|
|
!capable(CAP_KILL))
|
|
tsk->exit_signal = SIGCHLD;
|
|
|
|
signal = tracehook_notify_death(tsk, &cookie, group_dead);
|
|
if (signal >= 0)
|
|
signal = do_notify_parent(tsk, signal);
|
|
|
|
tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
|
|
|
|
/* mt-exec, de_thread() is waiting for us */
|
|
if (thread_group_leader(tsk) &&
|
|
tsk->signal->group_exit_task &&
|
|
tsk->signal->notify_count < 0)
|
|
wake_up_process(tsk->signal->group_exit_task);
|
|
|
|
write_unlock_irq(&tasklist_lock);
|
|
|
|
tracehook_report_death(tsk, signal, cookie, group_dead);
|
|
|
|
/* If the process is dead, release it - nobody will wait for it */
|
|
if (signal == DEATH_REAP)
|
|
release_task(tsk);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_STACK_USAGE
|
|
static void check_stack_usage(void)
|
|
{
|
|
static DEFINE_SPINLOCK(low_water_lock);
|
|
static int lowest_to_date = THREAD_SIZE;
|
|
unsigned long *n = end_of_stack(current);
|
|
unsigned long free;
|
|
|
|
while (*n == 0)
|
|
n++;
|
|
free = (unsigned long)n - (unsigned long)end_of_stack(current);
|
|
|
|
if (free >= lowest_to_date)
|
|
return;
|
|
|
|
spin_lock(&low_water_lock);
|
|
if (free < lowest_to_date) {
|
|
printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
|
|
"left\n",
|
|
current->comm, free);
|
|
lowest_to_date = free;
|
|
}
|
|
spin_unlock(&low_water_lock);
|
|
}
|
|
#else
|
|
static inline void check_stack_usage(void) {}
|
|
#endif
|
|
|
|
NORET_TYPE void do_exit(long code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int group_dead;
|
|
|
|
profile_task_exit(tsk);
|
|
|
|
WARN_ON(atomic_read(&tsk->fs_excl));
|
|
|
|
if (unlikely(in_interrupt()))
|
|
panic("Aiee, killing interrupt handler!");
|
|
if (unlikely(!tsk->pid))
|
|
panic("Attempted to kill the idle task!");
|
|
|
|
tracehook_report_exit(&code);
|
|
|
|
/*
|
|
* We're taking recursive faults here in do_exit. Safest is to just
|
|
* leave this task alone and wait for reboot.
|
|
*/
|
|
if (unlikely(tsk->flags & PF_EXITING)) {
|
|
printk(KERN_ALERT
|
|
"Fixing recursive fault but reboot is needed!\n");
|
|
/*
|
|
* We can do this unlocked here. The futex code uses
|
|
* this flag just to verify whether the pi state
|
|
* cleanup has been done or not. In the worst case it
|
|
* loops once more. We pretend that the cleanup was
|
|
* done as there is no way to return. Either the
|
|
* OWNER_DIED bit is set by now or we push the blocked
|
|
* task into the wait for ever nirwana as well.
|
|
*/
|
|
tsk->flags |= PF_EXITPIDONE;
|
|
if (tsk->io_context)
|
|
exit_io_context();
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule();
|
|
}
|
|
|
|
exit_signals(tsk); /* sets PF_EXITING */
|
|
/*
|
|
* tsk->flags are checked in the futex code to protect against
|
|
* an exiting task cleaning up the robust pi futexes.
|
|
*/
|
|
smp_mb();
|
|
spin_unlock_wait(&tsk->pi_lock);
|
|
|
|
if (unlikely(in_atomic()))
|
|
printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
|
|
current->comm, task_pid_nr(current),
|
|
preempt_count());
|
|
|
|
acct_update_integrals(tsk);
|
|
if (tsk->mm) {
|
|
update_hiwater_rss(tsk->mm);
|
|
update_hiwater_vm(tsk->mm);
|
|
}
|
|
group_dead = atomic_dec_and_test(&tsk->signal->live);
|
|
if (group_dead) {
|
|
hrtimer_cancel(&tsk->signal->real_timer);
|
|
exit_itimers(tsk->signal);
|
|
}
|
|
acct_collect(code, group_dead);
|
|
if (group_dead)
|
|
tty_audit_exit();
|
|
if (unlikely(tsk->audit_context))
|
|
audit_free(tsk);
|
|
|
|
tsk->exit_code = code;
|
|
taskstats_exit(tsk, group_dead);
|
|
|
|
exit_mm(tsk);
|
|
|
|
if (group_dead)
|
|
acct_process();
|
|
trace_sched_process_exit(tsk);
|
|
|
|
exit_sem(tsk);
|
|
exit_files(tsk);
|
|
exit_fs(tsk);
|
|
check_stack_usage();
|
|
exit_thread();
|
|
cgroup_exit(tsk, 1);
|
|
exit_keys(tsk);
|
|
|
|
if (group_dead && tsk->signal->leader)
|
|
disassociate_ctty(1);
|
|
|
|
module_put(task_thread_info(tsk)->exec_domain->module);
|
|
if (tsk->binfmt)
|
|
module_put(tsk->binfmt->module);
|
|
|
|
proc_exit_connector(tsk);
|
|
exit_notify(tsk, group_dead);
|
|
#ifdef CONFIG_NUMA
|
|
mpol_put(tsk->mempolicy);
|
|
tsk->mempolicy = NULL;
|
|
#endif
|
|
#ifdef CONFIG_FUTEX
|
|
/*
|
|
* This must happen late, after the PID is not
|
|
* hashed anymore:
|
|
*/
|
|
if (unlikely(!list_empty(&tsk->pi_state_list)))
|
|
exit_pi_state_list(tsk);
|
|
if (unlikely(current->pi_state_cache))
|
|
kfree(current->pi_state_cache);
|
|
#endif
|
|
/*
|
|
* Make sure we are holding no locks:
|
|
*/
|
|
debug_check_no_locks_held(tsk);
|
|
/*
|
|
* We can do this unlocked here. The futex code uses this flag
|
|
* just to verify whether the pi state cleanup has been done
|
|
* or not. In the worst case it loops once more.
|
|
*/
|
|
tsk->flags |= PF_EXITPIDONE;
|
|
|
|
if (tsk->io_context)
|
|
exit_io_context();
|
|
|
|
if (tsk->splice_pipe)
|
|
__free_pipe_info(tsk->splice_pipe);
|
|
|
|
preempt_disable();
|
|
/* causes final put_task_struct in finish_task_switch(). */
|
|
tsk->state = TASK_DEAD;
|
|
|
|
schedule();
|
|
BUG();
|
|
/* Avoid "noreturn function does return". */
|
|
for (;;)
|
|
cpu_relax(); /* For when BUG is null */
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(do_exit);
|
|
|
|
NORET_TYPE void complete_and_exit(struct completion *comp, long code)
|
|
{
|
|
if (comp)
|
|
complete(comp);
|
|
|
|
do_exit(code);
|
|
}
|
|
|
|
EXPORT_SYMBOL(complete_and_exit);
|
|
|
|
asmlinkage long sys_exit(int error_code)
|
|
{
|
|
do_exit((error_code&0xff)<<8);
|
|
}
|
|
|
|
/*
|
|
* Take down every thread in the group. This is called by fatal signals
|
|
* as well as by sys_exit_group (below).
|
|
*/
|
|
NORET_TYPE void
|
|
do_group_exit(int exit_code)
|
|
{
|
|
struct signal_struct *sig = current->signal;
|
|
|
|
BUG_ON(exit_code & 0x80); /* core dumps don't get here */
|
|
|
|
if (signal_group_exit(sig))
|
|
exit_code = sig->group_exit_code;
|
|
else if (!thread_group_empty(current)) {
|
|
struct sighand_struct *const sighand = current->sighand;
|
|
spin_lock_irq(&sighand->siglock);
|
|
if (signal_group_exit(sig))
|
|
/* Another thread got here before we took the lock. */
|
|
exit_code = sig->group_exit_code;
|
|
else {
|
|
sig->group_exit_code = exit_code;
|
|
sig->flags = SIGNAL_GROUP_EXIT;
|
|
zap_other_threads(current);
|
|
}
|
|
spin_unlock_irq(&sighand->siglock);
|
|
}
|
|
|
|
do_exit(exit_code);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* this kills every thread in the thread group. Note that any externally
|
|
* wait4()-ing process will get the correct exit code - even if this
|
|
* thread is not the thread group leader.
|
|
*/
|
|
asmlinkage void sys_exit_group(int error_code)
|
|
{
|
|
do_group_exit((error_code & 0xff) << 8);
|
|
}
|
|
|
|
static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid *pid = NULL;
|
|
if (type == PIDTYPE_PID)
|
|
pid = task->pids[type].pid;
|
|
else if (type < PIDTYPE_MAX)
|
|
pid = task->group_leader->pids[type].pid;
|
|
return pid;
|
|
}
|
|
|
|
static int eligible_child(enum pid_type type, struct pid *pid, int options,
|
|
struct task_struct *p)
|
|
{
|
|
int err;
|
|
|
|
if (type < PIDTYPE_MAX) {
|
|
if (task_pid_type(p, type) != pid)
|
|
return 0;
|
|
}
|
|
|
|
/* Wait for all children (clone and not) if __WALL is set;
|
|
* otherwise, wait for clone children *only* if __WCLONE is
|
|
* set; otherwise, wait for non-clone children *only*. (Note:
|
|
* A "clone" child here is one that reports to its parent
|
|
* using a signal other than SIGCHLD.) */
|
|
if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
|
|
&& !(options & __WALL))
|
|
return 0;
|
|
|
|
err = security_task_wait(p);
|
|
if (err)
|
|
return err;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
|
|
int why, int status,
|
|
struct siginfo __user *infop,
|
|
struct rusage __user *rusagep)
|
|
{
|
|
int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
|
|
|
|
put_task_struct(p);
|
|
if (!retval)
|
|
retval = put_user(SIGCHLD, &infop->si_signo);
|
|
if (!retval)
|
|
retval = put_user(0, &infop->si_errno);
|
|
if (!retval)
|
|
retval = put_user((short)why, &infop->si_code);
|
|
if (!retval)
|
|
retval = put_user(pid, &infop->si_pid);
|
|
if (!retval)
|
|
retval = put_user(uid, &infop->si_uid);
|
|
if (!retval)
|
|
retval = put_user(status, &infop->si_status);
|
|
if (!retval)
|
|
retval = pid;
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
|
|
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
|
|
* the lock and this task is uninteresting. If we return nonzero, we have
|
|
* released the lock and the system call should return.
|
|
*/
|
|
static int wait_task_zombie(struct task_struct *p, int options,
|
|
struct siginfo __user *infop,
|
|
int __user *stat_addr, struct rusage __user *ru)
|
|
{
|
|
unsigned long state;
|
|
int retval, status, traced;
|
|
pid_t pid = task_pid_vnr(p);
|
|
|
|
if (!likely(options & WEXITED))
|
|
return 0;
|
|
|
|
if (unlikely(options & WNOWAIT)) {
|
|
uid_t uid = p->uid;
|
|
int exit_code = p->exit_code;
|
|
int why, status;
|
|
|
|
get_task_struct(p);
|
|
read_unlock(&tasklist_lock);
|
|
if ((exit_code & 0x7f) == 0) {
|
|
why = CLD_EXITED;
|
|
status = exit_code >> 8;
|
|
} else {
|
|
why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
|
|
status = exit_code & 0x7f;
|
|
}
|
|
return wait_noreap_copyout(p, pid, uid, why,
|
|
status, infop, ru);
|
|
}
|
|
|
|
/*
|
|
* Try to move the task's state to DEAD
|
|
* only one thread is allowed to do this:
|
|
*/
|
|
state = xchg(&p->exit_state, EXIT_DEAD);
|
|
if (state != EXIT_ZOMBIE) {
|
|
BUG_ON(state != EXIT_DEAD);
|
|
return 0;
|
|
}
|
|
|
|
traced = ptrace_reparented(p);
|
|
|
|
if (likely(!traced)) {
|
|
struct signal_struct *psig;
|
|
struct signal_struct *sig;
|
|
struct task_cputime cputime;
|
|
|
|
/*
|
|
* The resource counters for the group leader are in its
|
|
* own task_struct. Those for dead threads in the group
|
|
* are in its signal_struct, as are those for the child
|
|
* processes it has previously reaped. All these
|
|
* accumulate in the parent's signal_struct c* fields.
|
|
*
|
|
* We don't bother to take a lock here to protect these
|
|
* p->signal fields, because they are only touched by
|
|
* __exit_signal, which runs with tasklist_lock
|
|
* write-locked anyway, and so is excluded here. We do
|
|
* need to protect the access to p->parent->signal fields,
|
|
* as other threads in the parent group can be right
|
|
* here reaping other children at the same time.
|
|
*
|
|
* We use thread_group_cputime() to get times for the thread
|
|
* group, which consolidates times for all threads in the
|
|
* group including the group leader.
|
|
*/
|
|
spin_lock_irq(&p->parent->sighand->siglock);
|
|
psig = p->parent->signal;
|
|
sig = p->signal;
|
|
thread_group_cputime(p, &cputime);
|
|
psig->cutime =
|
|
cputime_add(psig->cutime,
|
|
cputime_add(cputime.utime,
|
|
sig->cutime));
|
|
psig->cstime =
|
|
cputime_add(psig->cstime,
|
|
cputime_add(cputime.stime,
|
|
sig->cstime));
|
|
psig->cgtime =
|
|
cputime_add(psig->cgtime,
|
|
cputime_add(p->gtime,
|
|
cputime_add(sig->gtime,
|
|
sig->cgtime)));
|
|
psig->cmin_flt +=
|
|
p->min_flt + sig->min_flt + sig->cmin_flt;
|
|
psig->cmaj_flt +=
|
|
p->maj_flt + sig->maj_flt + sig->cmaj_flt;
|
|
psig->cnvcsw +=
|
|
p->nvcsw + sig->nvcsw + sig->cnvcsw;
|
|
psig->cnivcsw +=
|
|
p->nivcsw + sig->nivcsw + sig->cnivcsw;
|
|
psig->cinblock +=
|
|
task_io_get_inblock(p) +
|
|
sig->inblock + sig->cinblock;
|
|
psig->coublock +=
|
|
task_io_get_oublock(p) +
|
|
sig->oublock + sig->coublock;
|
|
task_io_accounting_add(&psig->ioac, &p->ioac);
|
|
task_io_accounting_add(&psig->ioac, &sig->ioac);
|
|
spin_unlock_irq(&p->parent->sighand->siglock);
|
|
}
|
|
|
|
/*
|
|
* Now we are sure this task is interesting, and no other
|
|
* thread can reap it because we set its state to EXIT_DEAD.
|
|
*/
|
|
read_unlock(&tasklist_lock);
|
|
|
|
retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
|
|
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
|
|
? p->signal->group_exit_code : p->exit_code;
|
|
if (!retval && stat_addr)
|
|
retval = put_user(status, stat_addr);
|
|
if (!retval && infop)
|
|
retval = put_user(SIGCHLD, &infop->si_signo);
|
|
if (!retval && infop)
|
|
retval = put_user(0, &infop->si_errno);
|
|
if (!retval && infop) {
|
|
int why;
|
|
|
|
if ((status & 0x7f) == 0) {
|
|
why = CLD_EXITED;
|
|
status >>= 8;
|
|
} else {
|
|
why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
|
|
status &= 0x7f;
|
|
}
|
|
retval = put_user((short)why, &infop->si_code);
|
|
if (!retval)
|
|
retval = put_user(status, &infop->si_status);
|
|
}
|
|
if (!retval && infop)
|
|
retval = put_user(pid, &infop->si_pid);
|
|
if (!retval && infop)
|
|
retval = put_user(p->uid, &infop->si_uid);
|
|
if (!retval)
|
|
retval = pid;
|
|
|
|
if (traced) {
|
|
write_lock_irq(&tasklist_lock);
|
|
/* We dropped tasklist, ptracer could die and untrace */
|
|
ptrace_unlink(p);
|
|
/*
|
|
* If this is not a detached task, notify the parent.
|
|
* If it's still not detached after that, don't release
|
|
* it now.
|
|
*/
|
|
if (!task_detached(p)) {
|
|
do_notify_parent(p, p->exit_signal);
|
|
if (!task_detached(p)) {
|
|
p->exit_state = EXIT_ZOMBIE;
|
|
p = NULL;
|
|
}
|
|
}
|
|
write_unlock_irq(&tasklist_lock);
|
|
}
|
|
if (p != NULL)
|
|
release_task(p);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
|
|
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
|
|
* the lock and this task is uninteresting. If we return nonzero, we have
|
|
* released the lock and the system call should return.
|
|
*/
|
|
static int wait_task_stopped(int ptrace, struct task_struct *p,
|
|
int options, struct siginfo __user *infop,
|
|
int __user *stat_addr, struct rusage __user *ru)
|
|
{
|
|
int retval, exit_code, why;
|
|
uid_t uid = 0; /* unneeded, required by compiler */
|
|
pid_t pid;
|
|
|
|
if (!(options & WUNTRACED))
|
|
return 0;
|
|
|
|
exit_code = 0;
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
|
|
if (unlikely(!task_is_stopped_or_traced(p)))
|
|
goto unlock_sig;
|
|
|
|
if (!ptrace && p->signal->group_stop_count > 0)
|
|
/*
|
|
* A group stop is in progress and this is the group leader.
|
|
* We won't report until all threads have stopped.
|
|
*/
|
|
goto unlock_sig;
|
|
|
|
exit_code = p->exit_code;
|
|
if (!exit_code)
|
|
goto unlock_sig;
|
|
|
|
if (!unlikely(options & WNOWAIT))
|
|
p->exit_code = 0;
|
|
|
|
uid = p->uid;
|
|
unlock_sig:
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
if (!exit_code)
|
|
return 0;
|
|
|
|
/*
|
|
* Now we are pretty sure this task is interesting.
|
|
* Make sure it doesn't get reaped out from under us while we
|
|
* give up the lock and then examine it below. We don't want to
|
|
* keep holding onto the tasklist_lock while we call getrusage and
|
|
* possibly take page faults for user memory.
|
|
*/
|
|
get_task_struct(p);
|
|
pid = task_pid_vnr(p);
|
|
why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
|
|
read_unlock(&tasklist_lock);
|
|
|
|
if (unlikely(options & WNOWAIT))
|
|
return wait_noreap_copyout(p, pid, uid,
|
|
why, exit_code,
|
|
infop, ru);
|
|
|
|
retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
|
|
if (!retval && stat_addr)
|
|
retval = put_user((exit_code << 8) | 0x7f, stat_addr);
|
|
if (!retval && infop)
|
|
retval = put_user(SIGCHLD, &infop->si_signo);
|
|
if (!retval && infop)
|
|
retval = put_user(0, &infop->si_errno);
|
|
if (!retval && infop)
|
|
retval = put_user((short)why, &infop->si_code);
|
|
if (!retval && infop)
|
|
retval = put_user(exit_code, &infop->si_status);
|
|
if (!retval && infop)
|
|
retval = put_user(pid, &infop->si_pid);
|
|
if (!retval && infop)
|
|
retval = put_user(uid, &infop->si_uid);
|
|
if (!retval)
|
|
retval = pid;
|
|
put_task_struct(p);
|
|
|
|
BUG_ON(!retval);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Handle do_wait work for one task in a live, non-stopped state.
|
|
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
|
|
* the lock and this task is uninteresting. If we return nonzero, we have
|
|
* released the lock and the system call should return.
|
|
*/
|
|
static int wait_task_continued(struct task_struct *p, int options,
|
|
struct siginfo __user *infop,
|
|
int __user *stat_addr, struct rusage __user *ru)
|
|
{
|
|
int retval;
|
|
pid_t pid;
|
|
uid_t uid;
|
|
|
|
if (!unlikely(options & WCONTINUED))
|
|
return 0;
|
|
|
|
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
|
|
return 0;
|
|
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
/* Re-check with the lock held. */
|
|
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
return 0;
|
|
}
|
|
if (!unlikely(options & WNOWAIT))
|
|
p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
|
|
pid = task_pid_vnr(p);
|
|
uid = p->uid;
|
|
get_task_struct(p);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
if (!infop) {
|
|
retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
|
|
put_task_struct(p);
|
|
if (!retval && stat_addr)
|
|
retval = put_user(0xffff, stat_addr);
|
|
if (!retval)
|
|
retval = pid;
|
|
} else {
|
|
retval = wait_noreap_copyout(p, pid, uid,
|
|
CLD_CONTINUED, SIGCONT,
|
|
infop, ru);
|
|
BUG_ON(retval == 0);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Consider @p for a wait by @parent.
|
|
*
|
|
* -ECHILD should be in *@notask_error before the first call.
|
|
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
|
|
* Returns zero if the search for a child should continue;
|
|
* then *@notask_error is 0 if @p is an eligible child,
|
|
* or another error from security_task_wait(), or still -ECHILD.
|
|
*/
|
|
static int wait_consider_task(struct task_struct *parent, int ptrace,
|
|
struct task_struct *p, int *notask_error,
|
|
enum pid_type type, struct pid *pid, int options,
|
|
struct siginfo __user *infop,
|
|
int __user *stat_addr, struct rusage __user *ru)
|
|
{
|
|
int ret = eligible_child(type, pid, options, p);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
if (unlikely(ret < 0)) {
|
|
/*
|
|
* If we have not yet seen any eligible child,
|
|
* then let this error code replace -ECHILD.
|
|
* A permission error will give the user a clue
|
|
* to look for security policy problems, rather
|
|
* than for mysterious wait bugs.
|
|
*/
|
|
if (*notask_error)
|
|
*notask_error = ret;
|
|
}
|
|
|
|
if (likely(!ptrace) && unlikely(p->ptrace)) {
|
|
/*
|
|
* This child is hidden by ptrace.
|
|
* We aren't allowed to see it now, but eventually we will.
|
|
*/
|
|
*notask_error = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (p->exit_state == EXIT_DEAD)
|
|
return 0;
|
|
|
|
/*
|
|
* We don't reap group leaders with subthreads.
|
|
*/
|
|
if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
|
|
return wait_task_zombie(p, options, infop, stat_addr, ru);
|
|
|
|
/*
|
|
* It's stopped or running now, so it might
|
|
* later continue, exit, or stop again.
|
|
*/
|
|
*notask_error = 0;
|
|
|
|
if (task_is_stopped_or_traced(p))
|
|
return wait_task_stopped(ptrace, p, options,
|
|
infop, stat_addr, ru);
|
|
|
|
return wait_task_continued(p, options, infop, stat_addr, ru);
|
|
}
|
|
|
|
/*
|
|
* Do the work of do_wait() for one thread in the group, @tsk.
|
|
*
|
|
* -ECHILD should be in *@notask_error before the first call.
|
|
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
|
|
* Returns zero if the search for a child should continue; then
|
|
* *@notask_error is 0 if there were any eligible children,
|
|
* or another error from security_task_wait(), or still -ECHILD.
|
|
*/
|
|
static int do_wait_thread(struct task_struct *tsk, int *notask_error,
|
|
enum pid_type type, struct pid *pid, int options,
|
|
struct siginfo __user *infop, int __user *stat_addr,
|
|
struct rusage __user *ru)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
list_for_each_entry(p, &tsk->children, sibling) {
|
|
/*
|
|
* Do not consider detached threads.
|
|
*/
|
|
if (!task_detached(p)) {
|
|
int ret = wait_consider_task(tsk, 0, p, notask_error,
|
|
type, pid, options,
|
|
infop, stat_addr, ru);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
|
|
enum pid_type type, struct pid *pid, int options,
|
|
struct siginfo __user *infop, int __user *stat_addr,
|
|
struct rusage __user *ru)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
/*
|
|
* Traditionally we see ptrace'd stopped tasks regardless of options.
|
|
*/
|
|
options |= WUNTRACED;
|
|
|
|
list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
|
|
int ret = wait_consider_task(tsk, 1, p, notask_error,
|
|
type, pid, options,
|
|
infop, stat_addr, ru);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long do_wait(enum pid_type type, struct pid *pid, int options,
|
|
struct siginfo __user *infop, int __user *stat_addr,
|
|
struct rusage __user *ru)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
struct task_struct *tsk;
|
|
int retval;
|
|
|
|
trace_sched_process_wait(pid);
|
|
|
|
add_wait_queue(¤t->signal->wait_chldexit,&wait);
|
|
repeat:
|
|
/*
|
|
* If there is nothing that can match our critiera just get out.
|
|
* We will clear @retval to zero if we see any child that might later
|
|
* match our criteria, even if we are not able to reap it yet.
|
|
*/
|
|
retval = -ECHILD;
|
|
if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
|
|
goto end;
|
|
|
|
current->state = TASK_INTERRUPTIBLE;
|
|
read_lock(&tasklist_lock);
|
|
tsk = current;
|
|
do {
|
|
int tsk_result = do_wait_thread(tsk, &retval,
|
|
type, pid, options,
|
|
infop, stat_addr, ru);
|
|
if (!tsk_result)
|
|
tsk_result = ptrace_do_wait(tsk, &retval,
|
|
type, pid, options,
|
|
infop, stat_addr, ru);
|
|
if (tsk_result) {
|
|
/*
|
|
* tasklist_lock is unlocked and we have a final result.
|
|
*/
|
|
retval = tsk_result;
|
|
goto end;
|
|
}
|
|
|
|
if (options & __WNOTHREAD)
|
|
break;
|
|
tsk = next_thread(tsk);
|
|
BUG_ON(tsk->signal != current->signal);
|
|
} while (tsk != current);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
if (!retval && !(options & WNOHANG)) {
|
|
retval = -ERESTARTSYS;
|
|
if (!signal_pending(current)) {
|
|
schedule();
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
end:
|
|
current->state = TASK_RUNNING;
|
|
remove_wait_queue(¤t->signal->wait_chldexit,&wait);
|
|
if (infop) {
|
|
if (retval > 0)
|
|
retval = 0;
|
|
else {
|
|
/*
|
|
* For a WNOHANG return, clear out all the fields
|
|
* we would set so the user can easily tell the
|
|
* difference.
|
|
*/
|
|
if (!retval)
|
|
retval = put_user(0, &infop->si_signo);
|
|
if (!retval)
|
|
retval = put_user(0, &infop->si_errno);
|
|
if (!retval)
|
|
retval = put_user(0, &infop->si_code);
|
|
if (!retval)
|
|
retval = put_user(0, &infop->si_pid);
|
|
if (!retval)
|
|
retval = put_user(0, &infop->si_uid);
|
|
if (!retval)
|
|
retval = put_user(0, &infop->si_status);
|
|
}
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
asmlinkage long sys_waitid(int which, pid_t upid,
|
|
struct siginfo __user *infop, int options,
|
|
struct rusage __user *ru)
|
|
{
|
|
struct pid *pid = NULL;
|
|
enum pid_type type;
|
|
long ret;
|
|
|
|
if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
|
|
return -EINVAL;
|
|
if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
|
|
return -EINVAL;
|
|
|
|
switch (which) {
|
|
case P_ALL:
|
|
type = PIDTYPE_MAX;
|
|
break;
|
|
case P_PID:
|
|
type = PIDTYPE_PID;
|
|
if (upid <= 0)
|
|
return -EINVAL;
|
|
break;
|
|
case P_PGID:
|
|
type = PIDTYPE_PGID;
|
|
if (upid <= 0)
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (type < PIDTYPE_MAX)
|
|
pid = find_get_pid(upid);
|
|
ret = do_wait(type, pid, options, infop, NULL, ru);
|
|
put_pid(pid);
|
|
|
|
/* avoid REGPARM breakage on x86: */
|
|
asmlinkage_protect(5, ret, which, upid, infop, options, ru);
|
|
return ret;
|
|
}
|
|
|
|
asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
|
|
int options, struct rusage __user *ru)
|
|
{
|
|
struct pid *pid = NULL;
|
|
enum pid_type type;
|
|
long ret;
|
|
|
|
if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
|
|
__WNOTHREAD|__WCLONE|__WALL))
|
|
return -EINVAL;
|
|
|
|
if (upid == -1)
|
|
type = PIDTYPE_MAX;
|
|
else if (upid < 0) {
|
|
type = PIDTYPE_PGID;
|
|
pid = find_get_pid(-upid);
|
|
} else if (upid == 0) {
|
|
type = PIDTYPE_PGID;
|
|
pid = get_pid(task_pgrp(current));
|
|
} else /* upid > 0 */ {
|
|
type = PIDTYPE_PID;
|
|
pid = find_get_pid(upid);
|
|
}
|
|
|
|
ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
|
|
put_pid(pid);
|
|
|
|
/* avoid REGPARM breakage on x86: */
|
|
asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_WAITPID
|
|
|
|
/*
|
|
* sys_waitpid() remains for compatibility. waitpid() should be
|
|
* implemented by calling sys_wait4() from libc.a.
|
|
*/
|
|
asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
|
|
{
|
|
return sys_wait4(pid, stat_addr, options, NULL);
|
|
}
|
|
|
|
#endif
|