5acbc5cb50
Any tests using < TASK_STOPPED or the like are left over from the time when the TASK_ZOMBIE and TASK_DEAD bits were in the same word, and it served to check for "stopped or dead". I think this one in do_signal_stop is the only such case. It has been buggy ever since exit_state was separated, and isn't testing the exit_state value. Signed-off-by: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2663 lines
69 KiB
C
2663 lines
69 KiB
C
/*
|
|
* linux/kernel/signal.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
|
|
*
|
|
* 2003-06-02 Jim Houston - Concurrent Computer Corp.
|
|
* Changes to use preallocated sigqueue structures
|
|
* to allow signals to be sent reliably.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/audit.h>
|
|
#include <asm/param.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/siginfo.h>
|
|
|
|
/*
|
|
* SLAB caches for signal bits.
|
|
*/
|
|
|
|
static kmem_cache_t *sigqueue_cachep;
|
|
|
|
/*
|
|
* In POSIX a signal is sent either to a specific thread (Linux task)
|
|
* or to the process as a whole (Linux thread group). How the signal
|
|
* is sent determines whether it's to one thread or the whole group,
|
|
* which determines which signal mask(s) are involved in blocking it
|
|
* from being delivered until later. When the signal is delivered,
|
|
* either it's caught or ignored by a user handler or it has a default
|
|
* effect that applies to the whole thread group (POSIX process).
|
|
*
|
|
* The possible effects an unblocked signal set to SIG_DFL can have are:
|
|
* ignore - Nothing Happens
|
|
* terminate - kill the process, i.e. all threads in the group,
|
|
* similar to exit_group. The group leader (only) reports
|
|
* WIFSIGNALED status to its parent.
|
|
* coredump - write a core dump file describing all threads using
|
|
* the same mm and then kill all those threads
|
|
* stop - stop all the threads in the group, i.e. TASK_STOPPED state
|
|
*
|
|
* SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
|
|
* Other signals when not blocked and set to SIG_DFL behaves as follows.
|
|
* The job control signals also have other special effects.
|
|
*
|
|
* +--------------------+------------------+
|
|
* | POSIX signal | default action |
|
|
* +--------------------+------------------+
|
|
* | SIGHUP | terminate |
|
|
* | SIGINT | terminate |
|
|
* | SIGQUIT | coredump |
|
|
* | SIGILL | coredump |
|
|
* | SIGTRAP | coredump |
|
|
* | SIGABRT/SIGIOT | coredump |
|
|
* | SIGBUS | coredump |
|
|
* | SIGFPE | coredump |
|
|
* | SIGKILL | terminate(+) |
|
|
* | SIGUSR1 | terminate |
|
|
* | SIGSEGV | coredump |
|
|
* | SIGUSR2 | terminate |
|
|
* | SIGPIPE | terminate |
|
|
* | SIGALRM | terminate |
|
|
* | SIGTERM | terminate |
|
|
* | SIGCHLD | ignore |
|
|
* | SIGCONT | ignore(*) |
|
|
* | SIGSTOP | stop(*)(+) |
|
|
* | SIGTSTP | stop(*) |
|
|
* | SIGTTIN | stop(*) |
|
|
* | SIGTTOU | stop(*) |
|
|
* | SIGURG | ignore |
|
|
* | SIGXCPU | coredump |
|
|
* | SIGXFSZ | coredump |
|
|
* | SIGVTALRM | terminate |
|
|
* | SIGPROF | terminate |
|
|
* | SIGPOLL/SIGIO | terminate |
|
|
* | SIGSYS/SIGUNUSED | coredump |
|
|
* | SIGSTKFLT | terminate |
|
|
* | SIGWINCH | ignore |
|
|
* | SIGPWR | terminate |
|
|
* | SIGRTMIN-SIGRTMAX | terminate |
|
|
* +--------------------+------------------+
|
|
* | non-POSIX signal | default action |
|
|
* +--------------------+------------------+
|
|
* | SIGEMT | coredump |
|
|
* +--------------------+------------------+
|
|
*
|
|
* (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
|
|
* (*) Special job control effects:
|
|
* When SIGCONT is sent, it resumes the process (all threads in the group)
|
|
* from TASK_STOPPED state and also clears any pending/queued stop signals
|
|
* (any of those marked with "stop(*)"). This happens regardless of blocking,
|
|
* catching, or ignoring SIGCONT. When any stop signal is sent, it clears
|
|
* any pending/queued SIGCONT signals; this happens regardless of blocking,
|
|
* catching, or ignored the stop signal, though (except for SIGSTOP) the
|
|
* default action of stopping the process may happen later or never.
|
|
*/
|
|
|
|
#ifdef SIGEMT
|
|
#define M_SIGEMT M(SIGEMT)
|
|
#else
|
|
#define M_SIGEMT 0
|
|
#endif
|
|
|
|
#if SIGRTMIN > BITS_PER_LONG
|
|
#define M(sig) (1ULL << ((sig)-1))
|
|
#else
|
|
#define M(sig) (1UL << ((sig)-1))
|
|
#endif
|
|
#define T(sig, mask) (M(sig) & (mask))
|
|
|
|
#define SIG_KERNEL_ONLY_MASK (\
|
|
M(SIGKILL) | M(SIGSTOP) )
|
|
|
|
#define SIG_KERNEL_STOP_MASK (\
|
|
M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
|
|
|
|
#define SIG_KERNEL_COREDUMP_MASK (\
|
|
M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
|
|
M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
|
|
M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
|
|
|
|
#define SIG_KERNEL_IGNORE_MASK (\
|
|
M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
|
|
|
|
#define sig_kernel_only(sig) \
|
|
(((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
|
|
#define sig_kernel_coredump(sig) \
|
|
(((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
|
|
#define sig_kernel_ignore(sig) \
|
|
(((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
|
|
#define sig_kernel_stop(sig) \
|
|
(((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
|
|
|
|
#define sig_user_defined(t, signr) \
|
|
(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
|
|
((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
|
|
|
|
#define sig_fatal(t, signr) \
|
|
(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
|
|
(t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
|
|
|
|
static int sig_ignored(struct task_struct *t, int sig)
|
|
{
|
|
void __user * handler;
|
|
|
|
/*
|
|
* Tracers always want to know about signals..
|
|
*/
|
|
if (t->ptrace & PT_PTRACED)
|
|
return 0;
|
|
|
|
/*
|
|
* Blocked signals are never ignored, since the
|
|
* signal handler may change by the time it is
|
|
* unblocked.
|
|
*/
|
|
if (sigismember(&t->blocked, sig))
|
|
return 0;
|
|
|
|
/* Is it explicitly or implicitly ignored? */
|
|
handler = t->sighand->action[sig-1].sa.sa_handler;
|
|
return handler == SIG_IGN ||
|
|
(handler == SIG_DFL && sig_kernel_ignore(sig));
|
|
}
|
|
|
|
/*
|
|
* Re-calculate pending state from the set of locally pending
|
|
* signals, globally pending signals, and blocked signals.
|
|
*/
|
|
static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
|
|
{
|
|
unsigned long ready;
|
|
long i;
|
|
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
|
|
ready |= signal->sig[i] &~ blocked->sig[i];
|
|
break;
|
|
|
|
case 4: ready = signal->sig[3] &~ blocked->sig[3];
|
|
ready |= signal->sig[2] &~ blocked->sig[2];
|
|
ready |= signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 2: ready = signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 1: ready = signal->sig[0] &~ blocked->sig[0];
|
|
}
|
|
return ready != 0;
|
|
}
|
|
|
|
#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
|
|
|
|
fastcall void recalc_sigpending_tsk(struct task_struct *t)
|
|
{
|
|
if (t->signal->group_stop_count > 0 ||
|
|
(freezing(t)) ||
|
|
PENDING(&t->pending, &t->blocked) ||
|
|
PENDING(&t->signal->shared_pending, &t->blocked))
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
else
|
|
clear_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
}
|
|
|
|
void recalc_sigpending(void)
|
|
{
|
|
recalc_sigpending_tsk(current);
|
|
}
|
|
|
|
/* Given the mask, find the first available signal that should be serviced. */
|
|
|
|
static int
|
|
next_signal(struct sigpending *pending, sigset_t *mask)
|
|
{
|
|
unsigned long i, *s, *m, x;
|
|
int sig = 0;
|
|
|
|
s = pending->signal.sig;
|
|
m = mask->sig;
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
|
|
if ((x = *s &~ *m) != 0) {
|
|
sig = ffz(~x) + i*_NSIG_BPW + 1;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 2: if ((x = s[0] &~ m[0]) != 0)
|
|
sig = 1;
|
|
else if ((x = s[1] &~ m[1]) != 0)
|
|
sig = _NSIG_BPW + 1;
|
|
else
|
|
break;
|
|
sig += ffz(~x);
|
|
break;
|
|
|
|
case 1: if ((x = *s &~ *m) != 0)
|
|
sig = ffz(~x) + 1;
|
|
break;
|
|
}
|
|
|
|
return sig;
|
|
}
|
|
|
|
static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
|
|
int override_rlimit)
|
|
{
|
|
struct sigqueue *q = NULL;
|
|
|
|
atomic_inc(&t->user->sigpending);
|
|
if (override_rlimit ||
|
|
atomic_read(&t->user->sigpending) <=
|
|
t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
|
|
q = kmem_cache_alloc(sigqueue_cachep, flags);
|
|
if (unlikely(q == NULL)) {
|
|
atomic_dec(&t->user->sigpending);
|
|
} else {
|
|
INIT_LIST_HEAD(&q->list);
|
|
q->flags = 0;
|
|
q->lock = NULL;
|
|
q->user = get_uid(t->user);
|
|
}
|
|
return(q);
|
|
}
|
|
|
|
static inline void __sigqueue_free(struct sigqueue *q)
|
|
{
|
|
if (q->flags & SIGQUEUE_PREALLOC)
|
|
return;
|
|
atomic_dec(&q->user->sigpending);
|
|
free_uid(q->user);
|
|
kmem_cache_free(sigqueue_cachep, q);
|
|
}
|
|
|
|
static void flush_sigqueue(struct sigpending *queue)
|
|
{
|
|
struct sigqueue *q;
|
|
|
|
sigemptyset(&queue->signal);
|
|
while (!list_empty(&queue->list)) {
|
|
q = list_entry(queue->list.next, struct sigqueue , list);
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush all pending signals for a task.
|
|
*/
|
|
|
|
void
|
|
flush_signals(struct task_struct *t)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
clear_tsk_thread_flag(t,TIF_SIGPENDING);
|
|
flush_sigqueue(&t->pending);
|
|
flush_sigqueue(&t->signal->shared_pending);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
}
|
|
|
|
/*
|
|
* This function expects the tasklist_lock write-locked.
|
|
*/
|
|
void __exit_sighand(struct task_struct *tsk)
|
|
{
|
|
struct sighand_struct * sighand = tsk->sighand;
|
|
|
|
/* Ok, we're done with the signal handlers */
|
|
tsk->sighand = NULL;
|
|
if (atomic_dec_and_test(&sighand->count))
|
|
kmem_cache_free(sighand_cachep, sighand);
|
|
}
|
|
|
|
void exit_sighand(struct task_struct *tsk)
|
|
{
|
|
write_lock_irq(&tasklist_lock);
|
|
__exit_sighand(tsk);
|
|
write_unlock_irq(&tasklist_lock);
|
|
}
|
|
|
|
/*
|
|
* This function expects the tasklist_lock write-locked.
|
|
*/
|
|
void __exit_signal(struct task_struct *tsk)
|
|
{
|
|
struct signal_struct * sig = tsk->signal;
|
|
struct sighand_struct * sighand = tsk->sighand;
|
|
|
|
if (!sig)
|
|
BUG();
|
|
if (!atomic_read(&sig->count))
|
|
BUG();
|
|
spin_lock(&sighand->siglock);
|
|
posix_cpu_timers_exit(tsk);
|
|
if (atomic_dec_and_test(&sig->count)) {
|
|
posix_cpu_timers_exit_group(tsk);
|
|
if (tsk == sig->curr_target)
|
|
sig->curr_target = next_thread(tsk);
|
|
tsk->signal = NULL;
|
|
spin_unlock(&sighand->siglock);
|
|
flush_sigqueue(&sig->shared_pending);
|
|
} else {
|
|
/*
|
|
* If there is any task waiting for the group exit
|
|
* then notify it:
|
|
*/
|
|
if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
|
|
wake_up_process(sig->group_exit_task);
|
|
sig->group_exit_task = NULL;
|
|
}
|
|
if (tsk == sig->curr_target)
|
|
sig->curr_target = next_thread(tsk);
|
|
tsk->signal = NULL;
|
|
/*
|
|
* Accumulate here the counters for all threads but the
|
|
* group leader as they die, so they can be added into
|
|
* the process-wide totals when those are taken.
|
|
* The group leader stays around as a zombie as long
|
|
* as there are other threads. When it gets reaped,
|
|
* the exit.c code will add its counts into these totals.
|
|
* We won't ever get here for the group leader, since it
|
|
* will have been the last reference on the signal_struct.
|
|
*/
|
|
sig->utime = cputime_add(sig->utime, tsk->utime);
|
|
sig->stime = cputime_add(sig->stime, tsk->stime);
|
|
sig->min_flt += tsk->min_flt;
|
|
sig->maj_flt += tsk->maj_flt;
|
|
sig->nvcsw += tsk->nvcsw;
|
|
sig->nivcsw += tsk->nivcsw;
|
|
sig->sched_time += tsk->sched_time;
|
|
spin_unlock(&sighand->siglock);
|
|
sig = NULL; /* Marker for below. */
|
|
}
|
|
clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
|
|
flush_sigqueue(&tsk->pending);
|
|
if (sig) {
|
|
/*
|
|
* We are cleaning up the signal_struct here. We delayed
|
|
* calling exit_itimers until after flush_sigqueue, just in
|
|
* case our thread-local pending queue contained a queued
|
|
* timer signal that would have been cleared in
|
|
* exit_itimers. When that called sigqueue_free, it would
|
|
* attempt to re-take the tasklist_lock and deadlock. This
|
|
* can never happen if we ensure that all queues the
|
|
* timer's signal might be queued on have been flushed
|
|
* first. The shared_pending queue, and our own pending
|
|
* queue are the only queues the timer could be on, since
|
|
* there are no other threads left in the group and timer
|
|
* signals are constrained to threads inside the group.
|
|
*/
|
|
exit_itimers(sig);
|
|
exit_thread_group_keys(sig);
|
|
kmem_cache_free(signal_cachep, sig);
|
|
}
|
|
}
|
|
|
|
void exit_signal(struct task_struct *tsk)
|
|
{
|
|
write_lock_irq(&tasklist_lock);
|
|
__exit_signal(tsk);
|
|
write_unlock_irq(&tasklist_lock);
|
|
}
|
|
|
|
/*
|
|
* Flush all handlers for a task.
|
|
*/
|
|
|
|
void
|
|
flush_signal_handlers(struct task_struct *t, int force_default)
|
|
{
|
|
int i;
|
|
struct k_sigaction *ka = &t->sighand->action[0];
|
|
for (i = _NSIG ; i != 0 ; i--) {
|
|
if (force_default || ka->sa.sa_handler != SIG_IGN)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
ka->sa.sa_flags = 0;
|
|
sigemptyset(&ka->sa.sa_mask);
|
|
ka++;
|
|
}
|
|
}
|
|
|
|
|
|
/* Notify the system that a driver wants to block all signals for this
|
|
* process, and wants to be notified if any signals at all were to be
|
|
* sent/acted upon. If the notifier routine returns non-zero, then the
|
|
* signal will be acted upon after all. If the notifier routine returns 0,
|
|
* then then signal will be blocked. Only one block per process is
|
|
* allowed. priv is a pointer to private data that the notifier routine
|
|
* can use to determine if the signal should be blocked or not. */
|
|
|
|
void
|
|
block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(¤t->sighand->siglock, flags);
|
|
current->notifier_mask = mask;
|
|
current->notifier_data = priv;
|
|
current->notifier = notifier;
|
|
spin_unlock_irqrestore(¤t->sighand->siglock, flags);
|
|
}
|
|
|
|
/* Notify the system that blocking has ended. */
|
|
|
|
void
|
|
unblock_all_signals(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(¤t->sighand->siglock, flags);
|
|
current->notifier = NULL;
|
|
current->notifier_data = NULL;
|
|
recalc_sigpending();
|
|
spin_unlock_irqrestore(¤t->sighand->siglock, flags);
|
|
}
|
|
|
|
static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
|
|
{
|
|
struct sigqueue *q, *first = NULL;
|
|
int still_pending = 0;
|
|
|
|
if (unlikely(!sigismember(&list->signal, sig)))
|
|
return 0;
|
|
|
|
/*
|
|
* Collect the siginfo appropriate to this signal. Check if
|
|
* there is another siginfo for the same signal.
|
|
*/
|
|
list_for_each_entry(q, &list->list, list) {
|
|
if (q->info.si_signo == sig) {
|
|
if (first) {
|
|
still_pending = 1;
|
|
break;
|
|
}
|
|
first = q;
|
|
}
|
|
}
|
|
if (first) {
|
|
list_del_init(&first->list);
|
|
copy_siginfo(info, &first->info);
|
|
__sigqueue_free(first);
|
|
if (!still_pending)
|
|
sigdelset(&list->signal, sig);
|
|
} else {
|
|
|
|
/* Ok, it wasn't in the queue. This must be
|
|
a fast-pathed signal or we must have been
|
|
out of queue space. So zero out the info.
|
|
*/
|
|
sigdelset(&list->signal, sig);
|
|
info->si_signo = sig;
|
|
info->si_errno = 0;
|
|
info->si_code = 0;
|
|
info->si_pid = 0;
|
|
info->si_uid = 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
|
|
siginfo_t *info)
|
|
{
|
|
int sig = 0;
|
|
|
|
/* SIGKILL must have priority, otherwise it is quite easy
|
|
* to create an unkillable process, sending sig < SIGKILL
|
|
* to self */
|
|
if (unlikely(sigismember(&pending->signal, SIGKILL))) {
|
|
if (!sigismember(mask, SIGKILL))
|
|
sig = SIGKILL;
|
|
}
|
|
|
|
if (likely(!sig))
|
|
sig = next_signal(pending, mask);
|
|
if (sig) {
|
|
if (current->notifier) {
|
|
if (sigismember(current->notifier_mask, sig)) {
|
|
if (!(current->notifier)(current->notifier_data)) {
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!collect_signal(sig, pending, info))
|
|
sig = 0;
|
|
|
|
}
|
|
recalc_sigpending();
|
|
|
|
return sig;
|
|
}
|
|
|
|
/*
|
|
* Dequeue a signal and return the element to the caller, which is
|
|
* expected to free it.
|
|
*
|
|
* All callers have to hold the siglock.
|
|
*/
|
|
int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
|
|
{
|
|
int signr = __dequeue_signal(&tsk->pending, mask, info);
|
|
if (!signr)
|
|
signr = __dequeue_signal(&tsk->signal->shared_pending,
|
|
mask, info);
|
|
if (signr && unlikely(sig_kernel_stop(signr))) {
|
|
/*
|
|
* Set a marker that we have dequeued a stop signal. Our
|
|
* caller might release the siglock and then the pending
|
|
* stop signal it is about to process is no longer in the
|
|
* pending bitmasks, but must still be cleared by a SIGCONT
|
|
* (and overruled by a SIGKILL). So those cases clear this
|
|
* shared flag after we've set it. Note that this flag may
|
|
* remain set after the signal we return is ignored or
|
|
* handled. That doesn't matter because its only purpose
|
|
* is to alert stop-signal processing code when another
|
|
* processor has come along and cleared the flag.
|
|
*/
|
|
tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
|
|
}
|
|
if ( signr &&
|
|
((info->si_code & __SI_MASK) == __SI_TIMER) &&
|
|
info->si_sys_private){
|
|
/*
|
|
* Release the siglock to ensure proper locking order
|
|
* of timer locks outside of siglocks. Note, we leave
|
|
* irqs disabled here, since the posix-timers code is
|
|
* about to disable them again anyway.
|
|
*/
|
|
spin_unlock(&tsk->sighand->siglock);
|
|
do_schedule_next_timer(info);
|
|
spin_lock(&tsk->sighand->siglock);
|
|
}
|
|
return signr;
|
|
}
|
|
|
|
/*
|
|
* Tell a process that it has a new active signal..
|
|
*
|
|
* NOTE! we rely on the previous spin_lock to
|
|
* lock interrupts for us! We can only be called with
|
|
* "siglock" held, and the local interrupt must
|
|
* have been disabled when that got acquired!
|
|
*
|
|
* No need to set need_resched since signal event passing
|
|
* goes through ->blocked
|
|
*/
|
|
void signal_wake_up(struct task_struct *t, int resume)
|
|
{
|
|
unsigned int mask;
|
|
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
|
|
/*
|
|
* For SIGKILL, we want to wake it up in the stopped/traced case.
|
|
* We don't check t->state here because there is a race with it
|
|
* executing another processor and just now entering stopped state.
|
|
* By using wake_up_state, we ensure the process will wake up and
|
|
* handle its death signal.
|
|
*/
|
|
mask = TASK_INTERRUPTIBLE;
|
|
if (resume)
|
|
mask |= TASK_STOPPED | TASK_TRACED;
|
|
if (!wake_up_state(t, mask))
|
|
kick_process(t);
|
|
}
|
|
|
|
/*
|
|
* Remove signals in mask from the pending set and queue.
|
|
* Returns 1 if any signals were found.
|
|
*
|
|
* All callers must be holding the siglock.
|
|
*/
|
|
static int rm_from_queue(unsigned long mask, struct sigpending *s)
|
|
{
|
|
struct sigqueue *q, *n;
|
|
|
|
if (!sigtestsetmask(&s->signal, mask))
|
|
return 0;
|
|
|
|
sigdelsetmask(&s->signal, mask);
|
|
list_for_each_entry_safe(q, n, &s->list, list) {
|
|
if (q->info.si_signo < SIGRTMIN &&
|
|
(mask & sigmask(q->info.si_signo))) {
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Bad permissions for sending the signal
|
|
*/
|
|
static int check_kill_permission(int sig, struct siginfo *info,
|
|
struct task_struct *t)
|
|
{
|
|
int error = -EINVAL;
|
|
if (!valid_signal(sig))
|
|
return error;
|
|
error = -EPERM;
|
|
if ((!info || ((unsigned long)info != 1 &&
|
|
(unsigned long)info != 2 && SI_FROMUSER(info)))
|
|
&& ((sig != SIGCONT) ||
|
|
(current->signal->session != t->signal->session))
|
|
&& (current->euid ^ t->suid) && (current->euid ^ t->uid)
|
|
&& (current->uid ^ t->suid) && (current->uid ^ t->uid)
|
|
&& !capable(CAP_KILL))
|
|
return error;
|
|
|
|
error = security_task_kill(t, info, sig);
|
|
if (!error)
|
|
audit_signal_info(sig, t); /* Let audit system see the signal */
|
|
return error;
|
|
}
|
|
|
|
/* forward decl */
|
|
static void do_notify_parent_cldstop(struct task_struct *tsk,
|
|
int to_self,
|
|
int why);
|
|
|
|
/*
|
|
* Handle magic process-wide effects of stop/continue signals.
|
|
* Unlike the signal actions, these happen immediately at signal-generation
|
|
* time regardless of blocking, ignoring, or handling. This does the
|
|
* actual continuing for SIGCONT, but not the actual stopping for stop
|
|
* signals. The process stop is done as a signal action for SIG_DFL.
|
|
*/
|
|
static void handle_stop_signal(int sig, struct task_struct *p)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
if (p->signal->flags & SIGNAL_GROUP_EXIT)
|
|
/*
|
|
* The process is in the middle of dying already.
|
|
*/
|
|
return;
|
|
|
|
if (sig_kernel_stop(sig)) {
|
|
/*
|
|
* This is a stop signal. Remove SIGCONT from all queues.
|
|
*/
|
|
rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
|
|
t = p;
|
|
do {
|
|
rm_from_queue(sigmask(SIGCONT), &t->pending);
|
|
t = next_thread(t);
|
|
} while (t != p);
|
|
} else if (sig == SIGCONT) {
|
|
/*
|
|
* Remove all stop signals from all queues,
|
|
* and wake all threads.
|
|
*/
|
|
if (unlikely(p->signal->group_stop_count > 0)) {
|
|
/*
|
|
* There was a group stop in progress. We'll
|
|
* pretend it finished before we got here. We are
|
|
* obliged to report it to the parent: if the
|
|
* SIGSTOP happened "after" this SIGCONT, then it
|
|
* would have cleared this pending SIGCONT. If it
|
|
* happened "before" this SIGCONT, then the parent
|
|
* got the SIGCHLD about the stop finishing before
|
|
* the continue happened. We do the notification
|
|
* now, and it's as if the stop had finished and
|
|
* the SIGCHLD was pending on entry to this kill.
|
|
*/
|
|
p->signal->group_stop_count = 0;
|
|
p->signal->flags = SIGNAL_STOP_CONTINUED;
|
|
spin_unlock(&p->sighand->siglock);
|
|
do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
|
|
spin_lock(&p->sighand->siglock);
|
|
}
|
|
rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
|
|
t = p;
|
|
do {
|
|
unsigned int state;
|
|
rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
|
|
|
|
/*
|
|
* If there is a handler for SIGCONT, we must make
|
|
* sure that no thread returns to user mode before
|
|
* we post the signal, in case it was the only
|
|
* thread eligible to run the signal handler--then
|
|
* it must not do anything between resuming and
|
|
* running the handler. With the TIF_SIGPENDING
|
|
* flag set, the thread will pause and acquire the
|
|
* siglock that we hold now and until we've queued
|
|
* the pending signal.
|
|
*
|
|
* Wake up the stopped thread _after_ setting
|
|
* TIF_SIGPENDING
|
|
*/
|
|
state = TASK_STOPPED;
|
|
if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
state |= TASK_INTERRUPTIBLE;
|
|
}
|
|
wake_up_state(t, state);
|
|
|
|
t = next_thread(t);
|
|
} while (t != p);
|
|
|
|
if (p->signal->flags & SIGNAL_STOP_STOPPED) {
|
|
/*
|
|
* We were in fact stopped, and are now continued.
|
|
* Notify the parent with CLD_CONTINUED.
|
|
*/
|
|
p->signal->flags = SIGNAL_STOP_CONTINUED;
|
|
p->signal->group_exit_code = 0;
|
|
spin_unlock(&p->sighand->siglock);
|
|
do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
|
|
spin_lock(&p->sighand->siglock);
|
|
} else {
|
|
/*
|
|
* We are not stopped, but there could be a stop
|
|
* signal in the middle of being processed after
|
|
* being removed from the queue. Clear that too.
|
|
*/
|
|
p->signal->flags = 0;
|
|
}
|
|
} else if (sig == SIGKILL) {
|
|
/*
|
|
* Make sure that any pending stop signal already dequeued
|
|
* is undone by the wakeup for SIGKILL.
|
|
*/
|
|
p->signal->flags = 0;
|
|
}
|
|
}
|
|
|
|
static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
|
|
struct sigpending *signals)
|
|
{
|
|
struct sigqueue * q = NULL;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* fast-pathed signals for kernel-internal things like SIGSTOP
|
|
* or SIGKILL.
|
|
*/
|
|
if ((unsigned long)info == 2)
|
|
goto out_set;
|
|
|
|
/* Real-time signals must be queued if sent by sigqueue, or
|
|
some other real-time mechanism. It is implementation
|
|
defined whether kill() does so. We attempt to do so, on
|
|
the principle of least surprise, but since kill is not
|
|
allowed to fail with EAGAIN when low on memory we just
|
|
make sure at least one signal gets delivered and don't
|
|
pass on the info struct. */
|
|
|
|
q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
|
|
((unsigned long) info < 2 ||
|
|
info->si_code >= 0)));
|
|
if (q) {
|
|
list_add_tail(&q->list, &signals->list);
|
|
switch ((unsigned long) info) {
|
|
case 0:
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_USER;
|
|
q->info.si_pid = current->pid;
|
|
q->info.si_uid = current->uid;
|
|
break;
|
|
case 1:
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_KERNEL;
|
|
q->info.si_pid = 0;
|
|
q->info.si_uid = 0;
|
|
break;
|
|
default:
|
|
copy_siginfo(&q->info, info);
|
|
break;
|
|
}
|
|
} else {
|
|
if (sig >= SIGRTMIN && info && (unsigned long)info != 1
|
|
&& info->si_code != SI_USER)
|
|
/*
|
|
* Queue overflow, abort. We may abort if the signal was rt
|
|
* and sent by user using something other than kill().
|
|
*/
|
|
return -EAGAIN;
|
|
if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
|
|
/*
|
|
* Set up a return to indicate that we dropped
|
|
* the signal.
|
|
*/
|
|
ret = info->si_sys_private;
|
|
}
|
|
|
|
out_set:
|
|
sigaddset(&signals->signal, sig);
|
|
return ret;
|
|
}
|
|
|
|
#define LEGACY_QUEUE(sigptr, sig) \
|
|
(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
|
|
|
|
|
|
static int
|
|
specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!irqs_disabled())
|
|
BUG();
|
|
assert_spin_locked(&t->sighand->siglock);
|
|
|
|
if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
|
|
/*
|
|
* Set up a return to indicate that we dropped the signal.
|
|
*/
|
|
ret = info->si_sys_private;
|
|
|
|
/* Short-circuit ignored signals. */
|
|
if (sig_ignored(t, sig))
|
|
goto out;
|
|
|
|
/* Support queueing exactly one non-rt signal, so that we
|
|
can get more detailed information about the cause of
|
|
the signal. */
|
|
if (LEGACY_QUEUE(&t->pending, sig))
|
|
goto out;
|
|
|
|
ret = send_signal(sig, info, t, &t->pending);
|
|
if (!ret && !sigismember(&t->blocked, sig))
|
|
signal_wake_up(t, sig == SIGKILL);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Force a signal that the process can't ignore: if necessary
|
|
* we unblock the signal and change any SIG_IGN to SIG_DFL.
|
|
*/
|
|
|
|
int
|
|
force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
|
|
{
|
|
unsigned long int flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
|
|
t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
|
|
sigdelset(&t->blocked, sig);
|
|
recalc_sigpending_tsk(t);
|
|
}
|
|
ret = specific_send_sig_info(sig, info, t);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
force_sig_specific(int sig, struct task_struct *t)
|
|
{
|
|
unsigned long int flags;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
|
|
t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
|
|
sigdelset(&t->blocked, sig);
|
|
recalc_sigpending_tsk(t);
|
|
specific_send_sig_info(sig, (void *)2, t);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
}
|
|
|
|
/*
|
|
* Test if P wants to take SIG. After we've checked all threads with this,
|
|
* it's equivalent to finding no threads not blocking SIG. Any threads not
|
|
* blocking SIG were ruled out because they are not running and already
|
|
* have pending signals. Such threads will dequeue from the shared queue
|
|
* as soon as they're available, so putting the signal on the shared queue
|
|
* will be equivalent to sending it to one such thread.
|
|
*/
|
|
static inline int wants_signal(int sig, struct task_struct *p)
|
|
{
|
|
if (sigismember(&p->blocked, sig))
|
|
return 0;
|
|
if (p->flags & PF_EXITING)
|
|
return 0;
|
|
if (sig == SIGKILL)
|
|
return 1;
|
|
if (p->state & (TASK_STOPPED | TASK_TRACED))
|
|
return 0;
|
|
return task_curr(p) || !signal_pending(p);
|
|
}
|
|
|
|
static void
|
|
__group_complete_signal(int sig, struct task_struct *p)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
/*
|
|
* Now find a thread we can wake up to take the signal off the queue.
|
|
*
|
|
* If the main thread wants the signal, it gets first crack.
|
|
* Probably the least surprising to the average bear.
|
|
*/
|
|
if (wants_signal(sig, p))
|
|
t = p;
|
|
else if (thread_group_empty(p))
|
|
/*
|
|
* There is just one thread and it does not need to be woken.
|
|
* It will dequeue unblocked signals before it runs again.
|
|
*/
|
|
return;
|
|
else {
|
|
/*
|
|
* Otherwise try to find a suitable thread.
|
|
*/
|
|
t = p->signal->curr_target;
|
|
if (t == NULL)
|
|
/* restart balancing at this thread */
|
|
t = p->signal->curr_target = p;
|
|
BUG_ON(t->tgid != p->tgid);
|
|
|
|
while (!wants_signal(sig, t)) {
|
|
t = next_thread(t);
|
|
if (t == p->signal->curr_target)
|
|
/*
|
|
* No thread needs to be woken.
|
|
* Any eligible threads will see
|
|
* the signal in the queue soon.
|
|
*/
|
|
return;
|
|
}
|
|
p->signal->curr_target = t;
|
|
}
|
|
|
|
/*
|
|
* Found a killable thread. If the signal will be fatal,
|
|
* then start taking the whole group down immediately.
|
|
*/
|
|
if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
|
|
!sigismember(&t->real_blocked, sig) &&
|
|
(sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
|
|
/*
|
|
* This signal will be fatal to the whole group.
|
|
*/
|
|
if (!sig_kernel_coredump(sig)) {
|
|
/*
|
|
* Start a group exit and wake everybody up.
|
|
* This way we don't have other threads
|
|
* running and doing things after a slower
|
|
* thread has the fatal signal pending.
|
|
*/
|
|
p->signal->flags = SIGNAL_GROUP_EXIT;
|
|
p->signal->group_exit_code = sig;
|
|
p->signal->group_stop_count = 0;
|
|
t = p;
|
|
do {
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
t = next_thread(t);
|
|
} while (t != p);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* There will be a core dump. We make all threads other
|
|
* than the chosen one go into a group stop so that nothing
|
|
* happens until it gets scheduled, takes the signal off
|
|
* the shared queue, and does the core dump. This is a
|
|
* little more complicated than strictly necessary, but it
|
|
* keeps the signal state that winds up in the core dump
|
|
* unchanged from the death state, e.g. which thread had
|
|
* the core-dump signal unblocked.
|
|
*/
|
|
rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
|
|
rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
|
|
p->signal->group_stop_count = 0;
|
|
p->signal->group_exit_task = t;
|
|
t = p;
|
|
do {
|
|
p->signal->group_stop_count++;
|
|
signal_wake_up(t, 0);
|
|
t = next_thread(t);
|
|
} while (t != p);
|
|
wake_up_process(p->signal->group_exit_task);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The signal is already in the shared-pending queue.
|
|
* Tell the chosen thread to wake up and dequeue it.
|
|
*/
|
|
signal_wake_up(t, sig == SIGKILL);
|
|
return;
|
|
}
|
|
|
|
int
|
|
__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
int ret = 0;
|
|
|
|
assert_spin_locked(&p->sighand->siglock);
|
|
handle_stop_signal(sig, p);
|
|
|
|
if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
|
|
/*
|
|
* Set up a return to indicate that we dropped the signal.
|
|
*/
|
|
ret = info->si_sys_private;
|
|
|
|
/* Short-circuit ignored signals. */
|
|
if (sig_ignored(p, sig))
|
|
return ret;
|
|
|
|
if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
|
|
/* This is a non-RT signal and we already have one queued. */
|
|
return ret;
|
|
|
|
/*
|
|
* Put this signal on the shared-pending queue, or fail with EAGAIN.
|
|
* We always use the shared queue for process-wide signals,
|
|
* to avoid several races.
|
|
*/
|
|
ret = send_signal(sig, info, p, &p->signal->shared_pending);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
__group_complete_signal(sig, p);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Nuke all other threads in the group.
|
|
*/
|
|
void zap_other_threads(struct task_struct *p)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
p->signal->flags = SIGNAL_GROUP_EXIT;
|
|
p->signal->group_stop_count = 0;
|
|
|
|
if (thread_group_empty(p))
|
|
return;
|
|
|
|
for (t = next_thread(p); t != p; t = next_thread(t)) {
|
|
/*
|
|
* Don't bother with already dead threads
|
|
*/
|
|
if (t->exit_state)
|
|
continue;
|
|
|
|
/*
|
|
* We don't want to notify the parent, since we are
|
|
* killed as part of a thread group due to another
|
|
* thread doing an execve() or similar. So set the
|
|
* exit signal to -1 to allow immediate reaping of
|
|
* the process. But don't detach the thread group
|
|
* leader.
|
|
*/
|
|
if (t != p->group_leader)
|
|
t->exit_signal = -1;
|
|
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
|
|
signal_wake_up(t, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Must be called with the tasklist_lock held for reading!
|
|
*/
|
|
int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
ret = check_kill_permission(sig, info, p);
|
|
if (!ret && sig && p->sighand) {
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
ret = __group_send_sig_info(sig, info, p);
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* kill_pg_info() sends a signal to a process group: this is what the tty
|
|
* control characters do (^C, ^Z etc)
|
|
*/
|
|
|
|
int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
|
|
{
|
|
struct task_struct *p = NULL;
|
|
int retval, success;
|
|
|
|
if (pgrp <= 0)
|
|
return -EINVAL;
|
|
|
|
success = 0;
|
|
retval = -ESRCH;
|
|
do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
|
|
int err = group_send_sig_info(sig, info, p);
|
|
success |= !err;
|
|
retval = err;
|
|
} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
|
|
return success ? 0 : retval;
|
|
}
|
|
|
|
int
|
|
kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
|
|
{
|
|
int retval;
|
|
|
|
read_lock(&tasklist_lock);
|
|
retval = __kill_pg_info(sig, info, pgrp);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int
|
|
kill_proc_info(int sig, struct siginfo *info, pid_t pid)
|
|
{
|
|
int error;
|
|
struct task_struct *p;
|
|
|
|
read_lock(&tasklist_lock);
|
|
p = find_task_by_pid(pid);
|
|
error = -ESRCH;
|
|
if (p)
|
|
error = group_send_sig_info(sig, info, p);
|
|
read_unlock(&tasklist_lock);
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* kill_something_info() interprets pid in interesting ways just like kill(2).
|
|
*
|
|
* POSIX specifies that kill(-1,sig) is unspecified, but what we have
|
|
* is probably wrong. Should make it like BSD or SYSV.
|
|
*/
|
|
|
|
static int kill_something_info(int sig, struct siginfo *info, int pid)
|
|
{
|
|
if (!pid) {
|
|
return kill_pg_info(sig, info, process_group(current));
|
|
} else if (pid == -1) {
|
|
int retval = 0, count = 0;
|
|
struct task_struct * p;
|
|
|
|
read_lock(&tasklist_lock);
|
|
for_each_process(p) {
|
|
if (p->pid > 1 && p->tgid != current->tgid) {
|
|
int err = group_send_sig_info(sig, info, p);
|
|
++count;
|
|
if (err != -EPERM)
|
|
retval = err;
|
|
}
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
return count ? retval : -ESRCH;
|
|
} else if (pid < 0) {
|
|
return kill_pg_info(sig, info, -pid);
|
|
} else {
|
|
return kill_proc_info(sig, info, pid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* These are for backward compatibility with the rest of the kernel source.
|
|
*/
|
|
|
|
/*
|
|
* These two are the most common entry points. They send a signal
|
|
* just to the specific thread.
|
|
*/
|
|
int
|
|
send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Make sure legacy kernel users don't send in bad values
|
|
* (normal paths check this in check_kill_permission).
|
|
*/
|
|
if (!valid_signal(sig))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We need the tasklist lock even for the specific
|
|
* thread case (when we don't need to follow the group
|
|
* lists) in order to avoid races with "p->sighand"
|
|
* going away or changing from under us.
|
|
*/
|
|
read_lock(&tasklist_lock);
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
ret = specific_send_sig_info(sig, info, p);
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
read_unlock(&tasklist_lock);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
send_sig(int sig, struct task_struct *p, int priv)
|
|
{
|
|
return send_sig_info(sig, (void*)(long)(priv != 0), p);
|
|
}
|
|
|
|
/*
|
|
* This is the entry point for "process-wide" signals.
|
|
* They will go to an appropriate thread in the thread group.
|
|
*/
|
|
int
|
|
send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
int ret;
|
|
read_lock(&tasklist_lock);
|
|
ret = group_send_sig_info(sig, info, p);
|
|
read_unlock(&tasklist_lock);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
force_sig(int sig, struct task_struct *p)
|
|
{
|
|
force_sig_info(sig, (void*)1L, p);
|
|
}
|
|
|
|
/*
|
|
* When things go south during signal handling, we
|
|
* will force a SIGSEGV. And if the signal that caused
|
|
* the problem was already a SIGSEGV, we'll want to
|
|
* make sure we don't even try to deliver the signal..
|
|
*/
|
|
int
|
|
force_sigsegv(int sig, struct task_struct *p)
|
|
{
|
|
if (sig == SIGSEGV) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
}
|
|
force_sig(SIGSEGV, p);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
kill_pg(pid_t pgrp, int sig, int priv)
|
|
{
|
|
return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
|
|
}
|
|
|
|
int
|
|
kill_proc(pid_t pid, int sig, int priv)
|
|
{
|
|
return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
|
|
}
|
|
|
|
/*
|
|
* These functions support sending signals using preallocated sigqueue
|
|
* structures. This is needed "because realtime applications cannot
|
|
* afford to lose notifications of asynchronous events, like timer
|
|
* expirations or I/O completions". In the case of Posix Timers
|
|
* we allocate the sigqueue structure from the timer_create. If this
|
|
* allocation fails we are able to report the failure to the application
|
|
* with an EAGAIN error.
|
|
*/
|
|
|
|
struct sigqueue *sigqueue_alloc(void)
|
|
{
|
|
struct sigqueue *q;
|
|
|
|
if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
|
|
q->flags |= SIGQUEUE_PREALLOC;
|
|
return(q);
|
|
}
|
|
|
|
void sigqueue_free(struct sigqueue *q)
|
|
{
|
|
unsigned long flags;
|
|
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
|
|
/*
|
|
* If the signal is still pending remove it from the
|
|
* pending queue.
|
|
*/
|
|
if (unlikely(!list_empty(&q->list))) {
|
|
read_lock(&tasklist_lock);
|
|
spin_lock_irqsave(q->lock, flags);
|
|
if (!list_empty(&q->list))
|
|
list_del_init(&q->list);
|
|
spin_unlock_irqrestore(q->lock, flags);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
q->flags &= ~SIGQUEUE_PREALLOC;
|
|
__sigqueue_free(q);
|
|
}
|
|
|
|
int
|
|
send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
|
|
read_lock(&tasklist_lock);
|
|
|
|
if (unlikely(p->flags & PF_EXITING)) {
|
|
ret = -1;
|
|
goto out_err;
|
|
}
|
|
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
|
|
if (unlikely(!list_empty(&q->list))) {
|
|
/*
|
|
* If an SI_TIMER entry is already queue just increment
|
|
* the overrun count.
|
|
*/
|
|
if (q->info.si_code != SI_TIMER)
|
|
BUG();
|
|
q->info.si_overrun++;
|
|
goto out;
|
|
}
|
|
/* Short-circuit ignored signals. */
|
|
if (sig_ignored(p, sig)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
q->lock = &p->sighand->siglock;
|
|
list_add_tail(&q->list, &p->pending.list);
|
|
sigaddset(&p->pending.signal, sig);
|
|
if (!sigismember(&p->blocked, sig))
|
|
signal_wake_up(p, sig == SIGKILL);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
out_err:
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
|
|
read_lock(&tasklist_lock);
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
handle_stop_signal(sig, p);
|
|
|
|
/* Short-circuit ignored signals. */
|
|
if (sig_ignored(p, sig)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(!list_empty(&q->list))) {
|
|
/*
|
|
* If an SI_TIMER entry is already queue just increment
|
|
* the overrun count. Other uses should not try to
|
|
* send the signal multiple times.
|
|
*/
|
|
if (q->info.si_code != SI_TIMER)
|
|
BUG();
|
|
q->info.si_overrun++;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Put this signal on the shared-pending queue.
|
|
* We always use the shared queue for process-wide signals,
|
|
* to avoid several races.
|
|
*/
|
|
q->lock = &p->sighand->siglock;
|
|
list_add_tail(&q->list, &p->signal->shared_pending.list);
|
|
sigaddset(&p->signal->shared_pending.signal, sig);
|
|
|
|
__group_complete_signal(sig, p);
|
|
out:
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
read_unlock(&tasklist_lock);
|
|
return(ret);
|
|
}
|
|
|
|
/*
|
|
* Wake up any threads in the parent blocked in wait* syscalls.
|
|
*/
|
|
static inline void __wake_up_parent(struct task_struct *p,
|
|
struct task_struct *parent)
|
|
{
|
|
wake_up_interruptible_sync(&parent->signal->wait_chldexit);
|
|
}
|
|
|
|
/*
|
|
* Let a parent know about the death of a child.
|
|
* For a stopped/continued status change, use do_notify_parent_cldstop instead.
|
|
*/
|
|
|
|
void do_notify_parent(struct task_struct *tsk, int sig)
|
|
{
|
|
struct siginfo info;
|
|
unsigned long flags;
|
|
struct sighand_struct *psig;
|
|
|
|
BUG_ON(sig == -1);
|
|
|
|
/* do_notify_parent_cldstop should have been called instead. */
|
|
BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
|
|
|
|
BUG_ON(!tsk->ptrace &&
|
|
(tsk->group_leader != tsk || !thread_group_empty(tsk)));
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_pid = tsk->pid;
|
|
info.si_uid = tsk->uid;
|
|
|
|
/* FIXME: find out whether or not this is supposed to be c*time. */
|
|
info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
|
|
tsk->signal->utime));
|
|
info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
|
|
tsk->signal->stime));
|
|
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
if (tsk->exit_code & 0x80)
|
|
info.si_code = CLD_DUMPED;
|
|
else if (tsk->exit_code & 0x7f)
|
|
info.si_code = CLD_KILLED;
|
|
else {
|
|
info.si_code = CLD_EXITED;
|
|
info.si_status = tsk->exit_code >> 8;
|
|
}
|
|
|
|
psig = tsk->parent->sighand;
|
|
spin_lock_irqsave(&psig->siglock, flags);
|
|
if (sig == SIGCHLD &&
|
|
(psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
|
|
(psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
|
|
/*
|
|
* We are exiting and our parent doesn't care. POSIX.1
|
|
* defines special semantics for setting SIGCHLD to SIG_IGN
|
|
* or setting the SA_NOCLDWAIT flag: we should be reaped
|
|
* automatically and not left for our parent's wait4 call.
|
|
* Rather than having the parent do it as a magic kind of
|
|
* signal handler, we just set this to tell do_exit that we
|
|
* can be cleaned up without becoming a zombie. Note that
|
|
* we still call __wake_up_parent in this case, because a
|
|
* blocked sys_wait4 might now return -ECHILD.
|
|
*
|
|
* Whether we send SIGCHLD or not for SA_NOCLDWAIT
|
|
* is implementation-defined: we do (if you don't want
|
|
* it, just use SIG_IGN instead).
|
|
*/
|
|
tsk->exit_signal = -1;
|
|
if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
|
|
sig = 0;
|
|
}
|
|
if (valid_signal(sig) && sig > 0)
|
|
__group_send_sig_info(sig, &info, tsk->parent);
|
|
__wake_up_parent(tsk, tsk->parent);
|
|
spin_unlock_irqrestore(&psig->siglock, flags);
|
|
}
|
|
|
|
static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
|
|
{
|
|
struct siginfo info;
|
|
unsigned long flags;
|
|
struct task_struct *parent;
|
|
struct sighand_struct *sighand;
|
|
|
|
if (to_self)
|
|
parent = tsk->parent;
|
|
else {
|
|
tsk = tsk->group_leader;
|
|
parent = tsk->real_parent;
|
|
}
|
|
|
|
info.si_signo = SIGCHLD;
|
|
info.si_errno = 0;
|
|
info.si_pid = tsk->pid;
|
|
info.si_uid = tsk->uid;
|
|
|
|
/* FIXME: find out whether or not this is supposed to be c*time. */
|
|
info.si_utime = cputime_to_jiffies(tsk->utime);
|
|
info.si_stime = cputime_to_jiffies(tsk->stime);
|
|
|
|
info.si_code = why;
|
|
switch (why) {
|
|
case CLD_CONTINUED:
|
|
info.si_status = SIGCONT;
|
|
break;
|
|
case CLD_STOPPED:
|
|
info.si_status = tsk->signal->group_exit_code & 0x7f;
|
|
break;
|
|
case CLD_TRAPPED:
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
sighand = parent->sighand;
|
|
spin_lock_irqsave(&sighand->siglock, flags);
|
|
if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
|
|
!(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
|
|
__group_send_sig_info(SIGCHLD, &info, parent);
|
|
/*
|
|
* Even if SIGCHLD is not generated, we must wake up wait4 calls.
|
|
*/
|
|
__wake_up_parent(tsk, parent);
|
|
spin_unlock_irqrestore(&sighand->siglock, flags);
|
|
}
|
|
|
|
/*
|
|
* This must be called with current->sighand->siglock held.
|
|
*
|
|
* This should be the path for all ptrace stops.
|
|
* We always set current->last_siginfo while stopped here.
|
|
* That makes it a way to test a stopped process for
|
|
* being ptrace-stopped vs being job-control-stopped.
|
|
*
|
|
* If we actually decide not to stop at all because the tracer is gone,
|
|
* we leave nostop_code in current->exit_code.
|
|
*/
|
|
static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
|
|
{
|
|
/*
|
|
* If there is a group stop in progress,
|
|
* we must participate in the bookkeeping.
|
|
*/
|
|
if (current->signal->group_stop_count > 0)
|
|
--current->signal->group_stop_count;
|
|
|
|
current->last_siginfo = info;
|
|
current->exit_code = exit_code;
|
|
|
|
/* Let the debugger run. */
|
|
set_current_state(TASK_TRACED);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
read_lock(&tasklist_lock);
|
|
if (likely(current->ptrace & PT_PTRACED) &&
|
|
likely(current->parent != current->real_parent ||
|
|
!(current->ptrace & PT_ATTACHED)) &&
|
|
(likely(current->parent->signal != current->signal) ||
|
|
!unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
|
|
do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
|
|
read_unlock(&tasklist_lock);
|
|
schedule();
|
|
} else {
|
|
/*
|
|
* By the time we got the lock, our tracer went away.
|
|
* Don't stop here.
|
|
*/
|
|
read_unlock(&tasklist_lock);
|
|
set_current_state(TASK_RUNNING);
|
|
current->exit_code = nostop_code;
|
|
}
|
|
|
|
/*
|
|
* We are back. Now reacquire the siglock before touching
|
|
* last_siginfo, so that we are sure to have synchronized with
|
|
* any signal-sending on another CPU that wants to examine it.
|
|
*/
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
current->last_siginfo = NULL;
|
|
|
|
/*
|
|
* Queued signals ignored us while we were stopped for tracing.
|
|
* So check for any that we should take before resuming user mode.
|
|
*/
|
|
recalc_sigpending();
|
|
}
|
|
|
|
void ptrace_notify(int exit_code)
|
|
{
|
|
siginfo_t info;
|
|
|
|
BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
|
|
|
|
memset(&info, 0, sizeof info);
|
|
info.si_signo = SIGTRAP;
|
|
info.si_code = exit_code;
|
|
info.si_pid = current->pid;
|
|
info.si_uid = current->uid;
|
|
|
|
/* Let the debugger run. */
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
ptrace_stop(exit_code, 0, &info);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
static void
|
|
finish_stop(int stop_count)
|
|
{
|
|
int to_self;
|
|
|
|
/*
|
|
* If there are no other threads in the group, or if there is
|
|
* a group stop in progress and we are the last to stop,
|
|
* report to the parent. When ptraced, every thread reports itself.
|
|
*/
|
|
if (stop_count < 0 || (current->ptrace & PT_PTRACED))
|
|
to_self = 1;
|
|
else if (stop_count == 0)
|
|
to_self = 0;
|
|
else
|
|
goto out;
|
|
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
out:
|
|
schedule();
|
|
/*
|
|
* Now we don't run again until continued.
|
|
*/
|
|
current->exit_code = 0;
|
|
}
|
|
|
|
/*
|
|
* This performs the stopping for SIGSTOP and other stop signals.
|
|
* We have to stop all threads in the thread group.
|
|
* Returns nonzero if we've actually stopped and released the siglock.
|
|
* Returns zero if we didn't stop and still hold the siglock.
|
|
*/
|
|
static int
|
|
do_signal_stop(int signr)
|
|
{
|
|
struct signal_struct *sig = current->signal;
|
|
struct sighand_struct *sighand = current->sighand;
|
|
int stop_count = -1;
|
|
|
|
if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
|
|
return 0;
|
|
|
|
if (sig->group_stop_count > 0) {
|
|
/*
|
|
* There is a group stop in progress. We don't need to
|
|
* start another one.
|
|
*/
|
|
signr = sig->group_exit_code;
|
|
stop_count = --sig->group_stop_count;
|
|
current->exit_code = signr;
|
|
set_current_state(TASK_STOPPED);
|
|
if (stop_count == 0)
|
|
sig->flags = SIGNAL_STOP_STOPPED;
|
|
spin_unlock_irq(&sighand->siglock);
|
|
}
|
|
else if (thread_group_empty(current)) {
|
|
/*
|
|
* Lock must be held through transition to stopped state.
|
|
*/
|
|
current->exit_code = current->signal->group_exit_code = signr;
|
|
set_current_state(TASK_STOPPED);
|
|
sig->flags = SIGNAL_STOP_STOPPED;
|
|
spin_unlock_irq(&sighand->siglock);
|
|
}
|
|
else {
|
|
/*
|
|
* There is no group stop already in progress.
|
|
* We must initiate one now, but that requires
|
|
* dropping siglock to get both the tasklist lock
|
|
* and siglock again in the proper order. Note that
|
|
* this allows an intervening SIGCONT to be posted.
|
|
* We need to check for that and bail out if necessary.
|
|
*/
|
|
struct task_struct *t;
|
|
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/* signals can be posted during this window */
|
|
|
|
read_lock(&tasklist_lock);
|
|
spin_lock_irq(&sighand->siglock);
|
|
|
|
if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
|
|
/*
|
|
* Another stop or continue happened while we
|
|
* didn't have the lock. We can just swallow this
|
|
* signal now. If we raced with a SIGCONT, that
|
|
* should have just cleared it now. If we raced
|
|
* with another processor delivering a stop signal,
|
|
* then the SIGCONT that wakes us up should clear it.
|
|
*/
|
|
read_unlock(&tasklist_lock);
|
|
return 0;
|
|
}
|
|
|
|
if (sig->group_stop_count == 0) {
|
|
sig->group_exit_code = signr;
|
|
stop_count = 0;
|
|
for (t = next_thread(current); t != current;
|
|
t = next_thread(t))
|
|
/*
|
|
* Setting state to TASK_STOPPED for a group
|
|
* stop is always done with the siglock held,
|
|
* so this check has no races.
|
|
*/
|
|
if (!t->exit_state &&
|
|
!(t->state & (TASK_STOPPED|TASK_TRACED))) {
|
|
stop_count++;
|
|
signal_wake_up(t, 0);
|
|
}
|
|
sig->group_stop_count = stop_count;
|
|
}
|
|
else {
|
|
/* A race with another thread while unlocked. */
|
|
signr = sig->group_exit_code;
|
|
stop_count = --sig->group_stop_count;
|
|
}
|
|
|
|
current->exit_code = signr;
|
|
set_current_state(TASK_STOPPED);
|
|
if (stop_count == 0)
|
|
sig->flags = SIGNAL_STOP_STOPPED;
|
|
|
|
spin_unlock_irq(&sighand->siglock);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
finish_stop(stop_count);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Do appropriate magic when group_stop_count > 0.
|
|
* We return nonzero if we stopped, after releasing the siglock.
|
|
* We return zero if we still hold the siglock and should look
|
|
* for another signal without checking group_stop_count again.
|
|
*/
|
|
static inline int handle_group_stop(void)
|
|
{
|
|
int stop_count;
|
|
|
|
if (current->signal->group_exit_task == current) {
|
|
/*
|
|
* Group stop is so we can do a core dump,
|
|
* We are the initiating thread, so get on with it.
|
|
*/
|
|
current->signal->group_exit_task = NULL;
|
|
return 0;
|
|
}
|
|
|
|
if (current->signal->flags & SIGNAL_GROUP_EXIT)
|
|
/*
|
|
* Group stop is so another thread can do a core dump,
|
|
* or else we are racing against a death signal.
|
|
* Just punt the stop so we can get the next signal.
|
|
*/
|
|
return 0;
|
|
|
|
/*
|
|
* There is a group stop in progress. We stop
|
|
* without any associated signal being in our queue.
|
|
*/
|
|
stop_count = --current->signal->group_stop_count;
|
|
if (stop_count == 0)
|
|
current->signal->flags = SIGNAL_STOP_STOPPED;
|
|
current->exit_code = current->signal->group_exit_code;
|
|
set_current_state(TASK_STOPPED);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
finish_stop(stop_count);
|
|
return 1;
|
|
}
|
|
|
|
int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
|
|
struct pt_regs *regs, void *cookie)
|
|
{
|
|
sigset_t *mask = ¤t->blocked;
|
|
int signr = 0;
|
|
|
|
relock:
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
for (;;) {
|
|
struct k_sigaction *ka;
|
|
|
|
if (unlikely(current->signal->group_stop_count > 0) &&
|
|
handle_group_stop())
|
|
goto relock;
|
|
|
|
signr = dequeue_signal(current, mask, info);
|
|
|
|
if (!signr)
|
|
break; /* will return 0 */
|
|
|
|
if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
|
|
ptrace_signal_deliver(regs, cookie);
|
|
|
|
/* Let the debugger run. */
|
|
ptrace_stop(signr, signr, info);
|
|
|
|
/* We're back. Did the debugger cancel the sig? */
|
|
signr = current->exit_code;
|
|
if (signr == 0)
|
|
continue;
|
|
|
|
current->exit_code = 0;
|
|
|
|
/* Update the siginfo structure if the signal has
|
|
changed. If the debugger wanted something
|
|
specific in the siginfo structure then it should
|
|
have updated *info via PTRACE_SETSIGINFO. */
|
|
if (signr != info->si_signo) {
|
|
info->si_signo = signr;
|
|
info->si_errno = 0;
|
|
info->si_code = SI_USER;
|
|
info->si_pid = current->parent->pid;
|
|
info->si_uid = current->parent->uid;
|
|
}
|
|
|
|
/* If the (new) signal is now blocked, requeue it. */
|
|
if (sigismember(¤t->blocked, signr)) {
|
|
specific_send_sig_info(signr, info, current);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ka = ¤t->sighand->action[signr-1];
|
|
if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
|
|
continue;
|
|
if (ka->sa.sa_handler != SIG_DFL) {
|
|
/* Run the handler. */
|
|
*return_ka = *ka;
|
|
|
|
if (ka->sa.sa_flags & SA_ONESHOT)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
|
|
break; /* will return non-zero "signr" value */
|
|
}
|
|
|
|
/*
|
|
* Now we are doing the default action for this signal.
|
|
*/
|
|
if (sig_kernel_ignore(signr)) /* Default is nothing. */
|
|
continue;
|
|
|
|
/* Init gets no signals it doesn't want. */
|
|
if (current->pid == 1)
|
|
continue;
|
|
|
|
if (sig_kernel_stop(signr)) {
|
|
/*
|
|
* The default action is to stop all threads in
|
|
* the thread group. The job control signals
|
|
* do nothing in an orphaned pgrp, but SIGSTOP
|
|
* always works. Note that siglock needs to be
|
|
* dropped during the call to is_orphaned_pgrp()
|
|
* because of lock ordering with tasklist_lock.
|
|
* This allows an intervening SIGCONT to be posted.
|
|
* We need to check for that and bail out if necessary.
|
|
*/
|
|
if (signr != SIGSTOP) {
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/* signals can be posted during this window */
|
|
|
|
if (is_orphaned_pgrp(process_group(current)))
|
|
goto relock;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
if (likely(do_signal_stop(signr))) {
|
|
/* It released the siglock. */
|
|
goto relock;
|
|
}
|
|
|
|
/*
|
|
* We didn't actually stop, due to a race
|
|
* with SIGCONT or something like that.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/*
|
|
* Anything else is fatal, maybe with a core dump.
|
|
*/
|
|
current->flags |= PF_SIGNALED;
|
|
if (sig_kernel_coredump(signr)) {
|
|
/*
|
|
* If it was able to dump core, this kills all
|
|
* other threads in the group and synchronizes with
|
|
* their demise. If we lost the race with another
|
|
* thread getting here, it set group_exit_code
|
|
* first and our do_group_exit call below will use
|
|
* that value and ignore the one we pass it.
|
|
*/
|
|
do_coredump((long)signr, signr, regs);
|
|
}
|
|
|
|
/*
|
|
* Death signals, no core dump.
|
|
*/
|
|
do_group_exit(signr);
|
|
/* NOTREACHED */
|
|
}
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return signr;
|
|
}
|
|
|
|
EXPORT_SYMBOL(recalc_sigpending);
|
|
EXPORT_SYMBOL_GPL(dequeue_signal);
|
|
EXPORT_SYMBOL(flush_signals);
|
|
EXPORT_SYMBOL(force_sig);
|
|
EXPORT_SYMBOL(kill_pg);
|
|
EXPORT_SYMBOL(kill_proc);
|
|
EXPORT_SYMBOL(ptrace_notify);
|
|
EXPORT_SYMBOL(send_sig);
|
|
EXPORT_SYMBOL(send_sig_info);
|
|
EXPORT_SYMBOL(sigprocmask);
|
|
EXPORT_SYMBOL(block_all_signals);
|
|
EXPORT_SYMBOL(unblock_all_signals);
|
|
|
|
|
|
/*
|
|
* System call entry points.
|
|
*/
|
|
|
|
asmlinkage long sys_restart_syscall(void)
|
|
{
|
|
struct restart_block *restart = ¤t_thread_info()->restart_block;
|
|
return restart->fn(restart);
|
|
}
|
|
|
|
long do_no_restart_syscall(struct restart_block *param)
|
|
{
|
|
return -EINTR;
|
|
}
|
|
|
|
/*
|
|
* We don't need to get the kernel lock - this is all local to this
|
|
* particular thread.. (and that's good, because this is _heavily_
|
|
* used by various programs)
|
|
*/
|
|
|
|
/*
|
|
* This is also useful for kernel threads that want to temporarily
|
|
* (or permanently) block certain signals.
|
|
*
|
|
* NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
|
|
* interface happily blocks "unblockable" signals like SIGKILL
|
|
* and friends.
|
|
*/
|
|
int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
|
|
{
|
|
int error;
|
|
sigset_t old_block;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
old_block = current->blocked;
|
|
error = 0;
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigorsets(¤t->blocked, ¤t->blocked, set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
signandsets(¤t->blocked, ¤t->blocked, set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
current->blocked = *set;
|
|
break;
|
|
default:
|
|
error = -EINVAL;
|
|
}
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
if (oldset)
|
|
*oldset = old_block;
|
|
return error;
|
|
}
|
|
|
|
asmlinkage long
|
|
sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
|
|
{
|
|
int error = -EINVAL;
|
|
sigset_t old_set, new_set;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
goto out;
|
|
|
|
if (set) {
|
|
error = -EFAULT;
|
|
if (copy_from_user(&new_set, set, sizeof(*set)))
|
|
goto out;
|
|
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
error = sigprocmask(how, &new_set, &old_set);
|
|
if (error)
|
|
goto out;
|
|
if (oset)
|
|
goto set_old;
|
|
} else if (oset) {
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
old_set = current->blocked;
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
set_old:
|
|
error = -EFAULT;
|
|
if (copy_to_user(oset, &old_set, sizeof(*oset)))
|
|
goto out;
|
|
}
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
long do_sigpending(void __user *set, unsigned long sigsetsize)
|
|
{
|
|
long error = -EINVAL;
|
|
sigset_t pending;
|
|
|
|
if (sigsetsize > sizeof(sigset_t))
|
|
goto out;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sigorsets(&pending, ¤t->pending.signal,
|
|
¤t->signal->shared_pending.signal);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/* Outside the lock because only this thread touches it. */
|
|
sigandsets(&pending, ¤t->blocked, &pending);
|
|
|
|
error = -EFAULT;
|
|
if (!copy_to_user(set, &pending, sigsetsize))
|
|
error = 0;
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
asmlinkage long
|
|
sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
|
|
{
|
|
return do_sigpending(set, sigsetsize);
|
|
}
|
|
|
|
#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
|
|
|
|
int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
|
|
{
|
|
int err;
|
|
|
|
if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
|
|
return -EFAULT;
|
|
if (from->si_code < 0)
|
|
return __copy_to_user(to, from, sizeof(siginfo_t))
|
|
? -EFAULT : 0;
|
|
/*
|
|
* If you change siginfo_t structure, please be sure
|
|
* this code is fixed accordingly.
|
|
* It should never copy any pad contained in the structure
|
|
* to avoid security leaks, but must copy the generic
|
|
* 3 ints plus the relevant union member.
|
|
*/
|
|
err = __put_user(from->si_signo, &to->si_signo);
|
|
err |= __put_user(from->si_errno, &to->si_errno);
|
|
err |= __put_user((short)from->si_code, &to->si_code);
|
|
switch (from->si_code & __SI_MASK) {
|
|
case __SI_KILL:
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
break;
|
|
case __SI_TIMER:
|
|
err |= __put_user(from->si_tid, &to->si_tid);
|
|
err |= __put_user(from->si_overrun, &to->si_overrun);
|
|
err |= __put_user(from->si_ptr, &to->si_ptr);
|
|
break;
|
|
case __SI_POLL:
|
|
err |= __put_user(from->si_band, &to->si_band);
|
|
err |= __put_user(from->si_fd, &to->si_fd);
|
|
break;
|
|
case __SI_FAULT:
|
|
err |= __put_user(from->si_addr, &to->si_addr);
|
|
#ifdef __ARCH_SI_TRAPNO
|
|
err |= __put_user(from->si_trapno, &to->si_trapno);
|
|
#endif
|
|
break;
|
|
case __SI_CHLD:
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
err |= __put_user(from->si_status, &to->si_status);
|
|
err |= __put_user(from->si_utime, &to->si_utime);
|
|
err |= __put_user(from->si_stime, &to->si_stime);
|
|
break;
|
|
case __SI_RT: /* This is not generated by the kernel as of now. */
|
|
case __SI_MESGQ: /* But this is */
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
err |= __put_user(from->si_ptr, &to->si_ptr);
|
|
break;
|
|
default: /* this is just in case for now ... */
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
#endif
|
|
|
|
asmlinkage long
|
|
sys_rt_sigtimedwait(const sigset_t __user *uthese,
|
|
siginfo_t __user *uinfo,
|
|
const struct timespec __user *uts,
|
|
size_t sigsetsize)
|
|
{
|
|
int ret, sig;
|
|
sigset_t these;
|
|
struct timespec ts;
|
|
siginfo_t info;
|
|
long timeout = 0;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&these, uthese, sizeof(these)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Invert the set of allowed signals to get those we
|
|
* want to block.
|
|
*/
|
|
sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
signotset(&these);
|
|
|
|
if (uts) {
|
|
if (copy_from_user(&ts, uts, sizeof(ts)))
|
|
return -EFAULT;
|
|
if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
|
|
|| ts.tv_sec < 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sig = dequeue_signal(current, &these, &info);
|
|
if (!sig) {
|
|
timeout = MAX_SCHEDULE_TIMEOUT;
|
|
if (uts)
|
|
timeout = (timespec_to_jiffies(&ts)
|
|
+ (ts.tv_sec || ts.tv_nsec));
|
|
|
|
if (timeout) {
|
|
/* None ready -- temporarily unblock those we're
|
|
* interested while we are sleeping in so that we'll
|
|
* be awakened when they arrive. */
|
|
current->real_blocked = current->blocked;
|
|
sigandsets(¤t->blocked, ¤t->blocked, &these);
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
timeout = schedule_timeout_interruptible(timeout);
|
|
|
|
try_to_freeze();
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sig = dequeue_signal(current, &these, &info);
|
|
current->blocked = current->real_blocked;
|
|
siginitset(¤t->real_blocked, 0);
|
|
recalc_sigpending();
|
|
}
|
|
}
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
if (sig) {
|
|
ret = sig;
|
|
if (uinfo) {
|
|
if (copy_siginfo_to_user(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
} else {
|
|
ret = -EAGAIN;
|
|
if (timeout)
|
|
ret = -EINTR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
asmlinkage long
|
|
sys_kill(int pid, int sig)
|
|
{
|
|
struct siginfo info;
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_USER;
|
|
info.si_pid = current->tgid;
|
|
info.si_uid = current->uid;
|
|
|
|
return kill_something_info(sig, &info, pid);
|
|
}
|
|
|
|
/**
|
|
* sys_tgkill - send signal to one specific thread
|
|
* @tgid: the thread group ID of the thread
|
|
* @pid: the PID of the thread
|
|
* @sig: signal to be sent
|
|
*
|
|
* This syscall also checks the tgid and returns -ESRCH even if the PID
|
|
* exists but it's not belonging to the target process anymore. This
|
|
* method solves the problem of threads exiting and PIDs getting reused.
|
|
*/
|
|
asmlinkage long sys_tgkill(int tgid, int pid, int sig)
|
|
{
|
|
struct siginfo info;
|
|
int error;
|
|
struct task_struct *p;
|
|
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0 || tgid <= 0)
|
|
return -EINVAL;
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_TKILL;
|
|
info.si_pid = current->tgid;
|
|
info.si_uid = current->uid;
|
|
|
|
read_lock(&tasklist_lock);
|
|
p = find_task_by_pid(pid);
|
|
error = -ESRCH;
|
|
if (p && (p->tgid == tgid)) {
|
|
error = check_kill_permission(sig, &info, p);
|
|
/*
|
|
* The null signal is a permissions and process existence
|
|
* probe. No signal is actually delivered.
|
|
*/
|
|
if (!error && sig && p->sighand) {
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
handle_stop_signal(sig, p);
|
|
error = specific_send_sig_info(sig, &info, p);
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
}
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Send a signal to only one task, even if it's a CLONE_THREAD task.
|
|
*/
|
|
asmlinkage long
|
|
sys_tkill(int pid, int sig)
|
|
{
|
|
struct siginfo info;
|
|
int error;
|
|
struct task_struct *p;
|
|
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0)
|
|
return -EINVAL;
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_TKILL;
|
|
info.si_pid = current->tgid;
|
|
info.si_uid = current->uid;
|
|
|
|
read_lock(&tasklist_lock);
|
|
p = find_task_by_pid(pid);
|
|
error = -ESRCH;
|
|
if (p) {
|
|
error = check_kill_permission(sig, &info, p);
|
|
/*
|
|
* The null signal is a permissions and process existence
|
|
* probe. No signal is actually delivered.
|
|
*/
|
|
if (!error && sig && p->sighand) {
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
handle_stop_signal(sig, p);
|
|
error = specific_send_sig_info(sig, &info, p);
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
}
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
return error;
|
|
}
|
|
|
|
asmlinkage long
|
|
sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
|
|
return -EFAULT;
|
|
|
|
/* Not even root can pretend to send signals from the kernel.
|
|
Nor can they impersonate a kill(), which adds source info. */
|
|
if (info.si_code >= 0)
|
|
return -EPERM;
|
|
info.si_signo = sig;
|
|
|
|
/* POSIX.1b doesn't mention process groups. */
|
|
return kill_proc_info(sig, &info, pid);
|
|
}
|
|
|
|
int
|
|
do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
|
|
{
|
|
struct k_sigaction *k;
|
|
|
|
if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
|
|
return -EINVAL;
|
|
|
|
k = ¤t->sighand->action[sig-1];
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
if (signal_pending(current)) {
|
|
/*
|
|
* If there might be a fatal signal pending on multiple
|
|
* threads, make sure we take it before changing the action.
|
|
*/
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return -ERESTARTNOINTR;
|
|
}
|
|
|
|
if (oact)
|
|
*oact = *k;
|
|
|
|
if (act) {
|
|
/*
|
|
* POSIX 3.3.1.3:
|
|
* "Setting a signal action to SIG_IGN for a signal that is
|
|
* pending shall cause the pending signal to be discarded,
|
|
* whether or not it is blocked."
|
|
*
|
|
* "Setting a signal action to SIG_DFL for a signal that is
|
|
* pending and whose default action is to ignore the signal
|
|
* (for example, SIGCHLD), shall cause the pending signal to
|
|
* be discarded, whether or not it is blocked"
|
|
*/
|
|
if (act->sa.sa_handler == SIG_IGN ||
|
|
(act->sa.sa_handler == SIG_DFL &&
|
|
sig_kernel_ignore(sig))) {
|
|
/*
|
|
* This is a fairly rare case, so we only take the
|
|
* tasklist_lock once we're sure we'll need it.
|
|
* Now we must do this little unlock and relock
|
|
* dance to maintain the lock hierarchy.
|
|
*/
|
|
struct task_struct *t = current;
|
|
spin_unlock_irq(&t->sighand->siglock);
|
|
read_lock(&tasklist_lock);
|
|
spin_lock_irq(&t->sighand->siglock);
|
|
*k = *act;
|
|
sigdelsetmask(&k->sa.sa_mask,
|
|
sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
rm_from_queue(sigmask(sig), &t->signal->shared_pending);
|
|
do {
|
|
rm_from_queue(sigmask(sig), &t->pending);
|
|
recalc_sigpending_tsk(t);
|
|
t = next_thread(t);
|
|
} while (t != current);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
read_unlock(&tasklist_lock);
|
|
return 0;
|
|
}
|
|
|
|
*k = *act;
|
|
sigdelsetmask(&k->sa.sa_mask,
|
|
sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
}
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
|
|
{
|
|
stack_t oss;
|
|
int error;
|
|
|
|
if (uoss) {
|
|
oss.ss_sp = (void __user *) current->sas_ss_sp;
|
|
oss.ss_size = current->sas_ss_size;
|
|
oss.ss_flags = sas_ss_flags(sp);
|
|
}
|
|
|
|
if (uss) {
|
|
void __user *ss_sp;
|
|
size_t ss_size;
|
|
int ss_flags;
|
|
|
|
error = -EFAULT;
|
|
if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
|
|
|| __get_user(ss_sp, &uss->ss_sp)
|
|
|| __get_user(ss_flags, &uss->ss_flags)
|
|
|| __get_user(ss_size, &uss->ss_size))
|
|
goto out;
|
|
|
|
error = -EPERM;
|
|
if (on_sig_stack(sp))
|
|
goto out;
|
|
|
|
error = -EINVAL;
|
|
/*
|
|
*
|
|
* Note - this code used to test ss_flags incorrectly
|
|
* old code may have been written using ss_flags==0
|
|
* to mean ss_flags==SS_ONSTACK (as this was the only
|
|
* way that worked) - this fix preserves that older
|
|
* mechanism
|
|
*/
|
|
if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
|
|
goto out;
|
|
|
|
if (ss_flags == SS_DISABLE) {
|
|
ss_size = 0;
|
|
ss_sp = NULL;
|
|
} else {
|
|
error = -ENOMEM;
|
|
if (ss_size < MINSIGSTKSZ)
|
|
goto out;
|
|
}
|
|
|
|
current->sas_ss_sp = (unsigned long) ss_sp;
|
|
current->sas_ss_size = ss_size;
|
|
}
|
|
|
|
if (uoss) {
|
|
error = -EFAULT;
|
|
if (copy_to_user(uoss, &oss, sizeof(oss)))
|
|
goto out;
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPENDING
|
|
|
|
asmlinkage long
|
|
sys_sigpending(old_sigset_t __user *set)
|
|
{
|
|
return do_sigpending(set, sizeof(*set));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPROCMASK
|
|
/* Some platforms have their own version with special arguments others
|
|
support only sys_rt_sigprocmask. */
|
|
|
|
asmlinkage long
|
|
sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
|
|
{
|
|
int error;
|
|
old_sigset_t old_set, new_set;
|
|
|
|
if (set) {
|
|
error = -EFAULT;
|
|
if (copy_from_user(&new_set, set, sizeof(*set)))
|
|
goto out;
|
|
new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
old_set = current->blocked.sig[0];
|
|
|
|
error = 0;
|
|
switch (how) {
|
|
default:
|
|
error = -EINVAL;
|
|
break;
|
|
case SIG_BLOCK:
|
|
sigaddsetmask(¤t->blocked, new_set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigdelsetmask(¤t->blocked, new_set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
current->blocked.sig[0] = new_set;
|
|
break;
|
|
}
|
|
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
if (error)
|
|
goto out;
|
|
if (oset)
|
|
goto set_old;
|
|
} else if (oset) {
|
|
old_set = current->blocked.sig[0];
|
|
set_old:
|
|
error = -EFAULT;
|
|
if (copy_to_user(oset, &old_set, sizeof(*oset)))
|
|
goto out;
|
|
}
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
|
|
|
|
#ifdef __ARCH_WANT_SYS_RT_SIGACTION
|
|
asmlinkage long
|
|
sys_rt_sigaction(int sig,
|
|
const struct sigaction __user *act,
|
|
struct sigaction __user *oact,
|
|
size_t sigsetsize)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret = -EINVAL;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
goto out;
|
|
|
|
if (act) {
|
|
if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
|
|
|
|
if (!ret && oact) {
|
|
if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
|
|
return -EFAULT;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
|
|
|
|
#ifdef __ARCH_WANT_SYS_SGETMASK
|
|
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigprocmask.
|
|
*/
|
|
asmlinkage long
|
|
sys_sgetmask(void)
|
|
{
|
|
/* SMP safe */
|
|
return current->blocked.sig[0];
|
|
}
|
|
|
|
asmlinkage long
|
|
sys_ssetmask(int newmask)
|
|
{
|
|
int old;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
old = current->blocked.sig[0];
|
|
|
|
siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
|
|
sigmask(SIGSTOP)));
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
return old;
|
|
}
|
|
#endif /* __ARCH_WANT_SGETMASK */
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGNAL
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigaction.
|
|
*/
|
|
asmlinkage unsigned long
|
|
sys_signal(int sig, __sighandler_t handler)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret;
|
|
|
|
new_sa.sa.sa_handler = handler;
|
|
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
|
|
|
|
ret = do_sigaction(sig, &new_sa, &old_sa);
|
|
|
|
return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGNAL */
|
|
|
|
#ifdef __ARCH_WANT_SYS_PAUSE
|
|
|
|
asmlinkage long
|
|
sys_pause(void)
|
|
{
|
|
current->state = TASK_INTERRUPTIBLE;
|
|
schedule();
|
|
return -ERESTARTNOHAND;
|
|
}
|
|
|
|
#endif
|
|
|
|
void __init signals_init(void)
|
|
{
|
|
sigqueue_cachep =
|
|
kmem_cache_create("sigqueue",
|
|
sizeof(struct sigqueue),
|
|
__alignof__(struct sigqueue),
|
|
SLAB_PANIC, NULL, NULL);
|
|
}
|