06d67d5474
Signed-off-by: Paul Mackerras <paulus@samba.org>
915 lines
22 KiB
C
915 lines
22 KiB
C
/*
|
|
* arch/ppc/kernel/process.c
|
|
*
|
|
* Derived from "arch/i386/kernel/process.c"
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
|
|
* Paul Mackerras (paulus@cs.anu.edu.au)
|
|
*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/init.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/kprobes.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/prom.h>
|
|
#ifdef CONFIG_PPC64
|
|
#include <asm/firmware.h>
|
|
#include <asm/plpar_wrappers.h>
|
|
#include <asm/time.h>
|
|
#endif
|
|
|
|
extern unsigned long _get_SP(void);
|
|
|
|
#ifndef CONFIG_SMP
|
|
struct task_struct *last_task_used_math = NULL;
|
|
struct task_struct *last_task_used_altivec = NULL;
|
|
struct task_struct *last_task_used_spe = NULL;
|
|
#endif
|
|
|
|
/*
|
|
* Make sure the floating-point register state in the
|
|
* the thread_struct is up to date for task tsk.
|
|
*/
|
|
void flush_fp_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
/*
|
|
* We need to disable preemption here because if we didn't,
|
|
* another process could get scheduled after the regs->msr
|
|
* test but before we have finished saving the FP registers
|
|
* to the thread_struct. That process could take over the
|
|
* FPU, and then when we get scheduled again we would store
|
|
* bogus values for the remaining FP registers.
|
|
*/
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_FP) {
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* This should only ever be called for current or
|
|
* for a stopped child process. Since we save away
|
|
* the FP register state on context switch on SMP,
|
|
* there is something wrong if a stopped child appears
|
|
* to still have its FP state in the CPU registers.
|
|
*/
|
|
BUG_ON(tsk != current);
|
|
#endif
|
|
giveup_fpu(current);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
|
|
void enable_kernel_fp(void)
|
|
{
|
|
WARN_ON(preemptible());
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
|
|
giveup_fpu(current);
|
|
else
|
|
giveup_fpu(NULL); /* just enables FP for kernel */
|
|
#else
|
|
giveup_fpu(last_task_used_math);
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_fp);
|
|
|
|
int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
|
|
{
|
|
if (!tsk->thread.regs)
|
|
return 0;
|
|
flush_fp_to_thread(current);
|
|
|
|
memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
void enable_kernel_altivec(void)
|
|
{
|
|
WARN_ON(preemptible());
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
|
|
giveup_altivec(current);
|
|
else
|
|
giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
|
|
#else
|
|
giveup_altivec(last_task_used_altivec);
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_altivec);
|
|
|
|
/*
|
|
* Make sure the VMX/Altivec register state in the
|
|
* the thread_struct is up to date for task tsk.
|
|
*/
|
|
void flush_altivec_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_VEC) {
|
|
#ifdef CONFIG_SMP
|
|
BUG_ON(tsk != current);
|
|
#endif
|
|
giveup_altivec(current);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
|
|
int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
|
|
{
|
|
flush_altivec_to_thread(current);
|
|
memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs));
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
#ifdef CONFIG_SPE
|
|
|
|
void enable_kernel_spe(void)
|
|
{
|
|
WARN_ON(preemptible());
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
|
|
giveup_spe(current);
|
|
else
|
|
giveup_spe(NULL); /* just enable SPE for kernel - force */
|
|
#else
|
|
giveup_spe(last_task_used_spe);
|
|
#endif /* __SMP __ */
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_spe);
|
|
|
|
void flush_spe_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_SPE) {
|
|
#ifdef CONFIG_SMP
|
|
BUG_ON(tsk != current);
|
|
#endif
|
|
giveup_spe(current);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
|
|
int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
|
|
{
|
|
flush_spe_to_thread(current);
|
|
/* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
|
|
memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35);
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_SPE */
|
|
|
|
static void set_dabr_spr(unsigned long val)
|
|
{
|
|
mtspr(SPRN_DABR, val);
|
|
}
|
|
|
|
int set_dabr(unsigned long dabr)
|
|
{
|
|
int ret = 0;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
if (firmware_has_feature(FW_FEATURE_XDABR)) {
|
|
/* We want to catch accesses from kernel and userspace */
|
|
unsigned long flags = H_DABRX_KERNEL|H_DABRX_USER;
|
|
ret = plpar_set_xdabr(dabr, flags);
|
|
} else if (firmware_has_feature(FW_FEATURE_DABR)) {
|
|
ret = plpar_set_dabr(dabr);
|
|
} else
|
|
#endif
|
|
set_dabr_spr(dabr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
|
|
static DEFINE_PER_CPU(unsigned long, current_dabr);
|
|
#endif
|
|
|
|
struct task_struct *__switch_to(struct task_struct *prev,
|
|
struct task_struct *new)
|
|
{
|
|
struct thread_struct *new_thread, *old_thread;
|
|
unsigned long flags;
|
|
struct task_struct *last;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* avoid complexity of lazy save/restore of fpu
|
|
* by just saving it every time we switch out if
|
|
* this task used the fpu during the last quantum.
|
|
*
|
|
* If it tries to use the fpu again, it'll trap and
|
|
* reload its fp regs. So we don't have to do a restore
|
|
* every switch, just a save.
|
|
* -- Cort
|
|
*/
|
|
if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
|
|
giveup_fpu(prev);
|
|
#ifdef CONFIG_ALTIVEC
|
|
/*
|
|
* If the previous thread used altivec in the last quantum
|
|
* (thus changing altivec regs) then save them.
|
|
* We used to check the VRSAVE register but not all apps
|
|
* set it, so we don't rely on it now (and in fact we need
|
|
* to save & restore VSCR even if VRSAVE == 0). -- paulus
|
|
*
|
|
* On SMP we always save/restore altivec regs just to avoid the
|
|
* complexity of changing processors.
|
|
* -- Cort
|
|
*/
|
|
if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
|
|
giveup_altivec(prev);
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_SPE
|
|
/*
|
|
* If the previous thread used spe in the last quantum
|
|
* (thus changing spe regs) then save them.
|
|
*
|
|
* On SMP we always save/restore spe regs just to avoid the
|
|
* complexity of changing processors.
|
|
*/
|
|
if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
|
|
giveup_spe(prev);
|
|
#endif /* CONFIG_SPE */
|
|
|
|
#else /* CONFIG_SMP */
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* Avoid the trap. On smp this this never happens since
|
|
* we don't set last_task_used_altivec -- Cort
|
|
*/
|
|
if (new->thread.regs && last_task_used_altivec == new)
|
|
new->thread.regs->msr |= MSR_VEC;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_SPE
|
|
/* Avoid the trap. On smp this this never happens since
|
|
* we don't set last_task_used_spe
|
|
*/
|
|
if (new->thread.regs && last_task_used_spe == new)
|
|
new->thread.regs->msr |= MSR_SPE;
|
|
#endif /* CONFIG_SPE */
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_PPC64 /* for now */
|
|
if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
|
|
set_dabr(new->thread.dabr);
|
|
__get_cpu_var(current_dabr) = new->thread.dabr;
|
|
}
|
|
|
|
flush_tlb_pending();
|
|
#endif
|
|
|
|
new_thread = &new->thread;
|
|
old_thread = ¤t->thread;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/*
|
|
* Collect processor utilization data per process
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
|
|
struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
|
|
long unsigned start_tb, current_tb;
|
|
start_tb = old_thread->start_tb;
|
|
cu->current_tb = current_tb = mfspr(SPRN_PURR);
|
|
old_thread->accum_tb += (current_tb - start_tb);
|
|
new_thread->start_tb = current_tb;
|
|
}
|
|
#endif
|
|
|
|
local_irq_save(flags);
|
|
last = _switch(old_thread, new_thread);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return last;
|
|
}
|
|
|
|
static int instructions_to_print = 16;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
#define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \
|
|
(REGION_ID(pc) != VMALLOC_REGION_ID))
|
|
#else
|
|
#define BAD_PC(pc) ((pc) < KERNELBASE)
|
|
#endif
|
|
|
|
static void show_instructions(struct pt_regs *regs)
|
|
{
|
|
int i;
|
|
unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
|
|
sizeof(int));
|
|
|
|
printk("Instruction dump:");
|
|
|
|
for (i = 0; i < instructions_to_print; i++) {
|
|
int instr;
|
|
|
|
if (!(i % 8))
|
|
printk("\n");
|
|
|
|
if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
|
|
printk("XXXXXXXX ");
|
|
} else {
|
|
if (regs->nip == pc)
|
|
printk("<%08x> ", instr);
|
|
else
|
|
printk("%08x ", instr);
|
|
}
|
|
|
|
pc += sizeof(int);
|
|
}
|
|
|
|
printk("\n");
|
|
}
|
|
|
|
static struct regbit {
|
|
unsigned long bit;
|
|
const char *name;
|
|
} msr_bits[] = {
|
|
{MSR_EE, "EE"},
|
|
{MSR_PR, "PR"},
|
|
{MSR_FP, "FP"},
|
|
{MSR_ME, "ME"},
|
|
{MSR_IR, "IR"},
|
|
{MSR_DR, "DR"},
|
|
{0, NULL}
|
|
};
|
|
|
|
static void printbits(unsigned long val, struct regbit *bits)
|
|
{
|
|
const char *sep = "";
|
|
|
|
printk("<");
|
|
for (; bits->bit; ++bits)
|
|
if (val & bits->bit) {
|
|
printk("%s%s", sep, bits->name);
|
|
sep = ",";
|
|
}
|
|
printk(">");
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
#define REG "%016lX"
|
|
#define REGS_PER_LINE 4
|
|
#define LAST_VOLATILE 13
|
|
#else
|
|
#define REG "%08lX"
|
|
#define REGS_PER_LINE 8
|
|
#define LAST_VOLATILE 12
|
|
#endif
|
|
|
|
void show_regs(struct pt_regs * regs)
|
|
{
|
|
int i, trap;
|
|
|
|
printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
|
|
regs->nip, regs->link, regs->ctr);
|
|
printk("REGS: %p TRAP: %04lx %s (%s)\n",
|
|
regs, regs->trap, print_tainted(), system_utsname.release);
|
|
printk("MSR: "REG" ", regs->msr);
|
|
printbits(regs->msr, msr_bits);
|
|
printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
|
|
trap = TRAP(regs);
|
|
if (trap == 0x300 || trap == 0x600)
|
|
printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
|
|
printk("TASK = %p[%d] '%s' THREAD: %p",
|
|
current, current->pid, current->comm, current->thread_info);
|
|
|
|
#ifdef CONFIG_SMP
|
|
printk(" CPU: %d", smp_processor_id());
|
|
#endif /* CONFIG_SMP */
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
if ((i % REGS_PER_LINE) == 0)
|
|
printk("\n" KERN_INFO "GPR%02d: ", i);
|
|
printk(REG " ", regs->gpr[i]);
|
|
if (i == LAST_VOLATILE && !FULL_REGS(regs))
|
|
break;
|
|
}
|
|
printk("\n");
|
|
#ifdef CONFIG_KALLSYMS
|
|
/*
|
|
* Lookup NIP late so we have the best change of getting the
|
|
* above info out without failing
|
|
*/
|
|
printk("NIP ["REG"] ", regs->nip);
|
|
print_symbol("%s\n", regs->nip);
|
|
printk("LR ["REG"] ", regs->link);
|
|
print_symbol("%s\n", regs->link);
|
|
#endif
|
|
show_stack(current, (unsigned long *) regs->gpr[1]);
|
|
if (!user_mode(regs))
|
|
show_instructions(regs);
|
|
}
|
|
|
|
void exit_thread(void)
|
|
{
|
|
kprobe_flush_task(current);
|
|
|
|
#ifndef CONFIG_SMP
|
|
if (last_task_used_math == current)
|
|
last_task_used_math = NULL;
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (last_task_used_altivec == current)
|
|
last_task_used_altivec = NULL;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_SPE
|
|
if (last_task_used_spe == current)
|
|
last_task_used_spe = NULL;
|
|
#endif
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
struct thread_info *t = current_thread_info();
|
|
|
|
if (t->flags & _TIF_ABI_PENDING)
|
|
t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
|
|
#endif
|
|
kprobe_flush_task(current);
|
|
|
|
#ifndef CONFIG_SMP
|
|
if (last_task_used_math == current)
|
|
last_task_used_math = NULL;
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (last_task_used_altivec == current)
|
|
last_task_used_altivec = NULL;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_SPE
|
|
if (last_task_used_spe == current)
|
|
last_task_used_spe = NULL;
|
|
#endif
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_PPC64 /* for now */
|
|
if (current->thread.dabr) {
|
|
current->thread.dabr = 0;
|
|
set_dabr(0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
release_thread(struct task_struct *t)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This gets called before we allocate a new thread and copy
|
|
* the current task into it.
|
|
*/
|
|
void prepare_to_copy(struct task_struct *tsk)
|
|
{
|
|
flush_fp_to_thread(current);
|
|
flush_altivec_to_thread(current);
|
|
flush_spe_to_thread(current);
|
|
}
|
|
|
|
/*
|
|
* Copy a thread..
|
|
*/
|
|
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
|
|
unsigned long unused, struct task_struct *p,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *childregs, *kregs;
|
|
extern void ret_from_fork(void);
|
|
unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
|
|
|
|
CHECK_FULL_REGS(regs);
|
|
/* Copy registers */
|
|
sp -= sizeof(struct pt_regs);
|
|
childregs = (struct pt_regs *) sp;
|
|
*childregs = *regs;
|
|
if ((childregs->msr & MSR_PR) == 0) {
|
|
/* for kernel thread, set `current' and stackptr in new task */
|
|
childregs->gpr[1] = sp + sizeof(struct pt_regs);
|
|
#ifdef CONFIG_PPC32
|
|
childregs->gpr[2] = (unsigned long) p;
|
|
#else
|
|
clear_ti_thread_flag(p->thread_info, TIF_32BIT);
|
|
#endif
|
|
p->thread.regs = NULL; /* no user register state */
|
|
} else {
|
|
childregs->gpr[1] = usp;
|
|
p->thread.regs = childregs;
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
#ifdef CONFIG_PPC64
|
|
if (!test_thread_flag(TIF_32BIT))
|
|
childregs->gpr[13] = childregs->gpr[6];
|
|
else
|
|
#endif
|
|
childregs->gpr[2] = childregs->gpr[6];
|
|
}
|
|
}
|
|
childregs->gpr[3] = 0; /* Result from fork() */
|
|
sp -= STACK_FRAME_OVERHEAD;
|
|
|
|
/*
|
|
* The way this works is that at some point in the future
|
|
* some task will call _switch to switch to the new task.
|
|
* That will pop off the stack frame created below and start
|
|
* the new task running at ret_from_fork. The new task will
|
|
* do some house keeping and then return from the fork or clone
|
|
* system call, using the stack frame created above.
|
|
*/
|
|
sp -= sizeof(struct pt_regs);
|
|
kregs = (struct pt_regs *) sp;
|
|
sp -= STACK_FRAME_OVERHEAD;
|
|
p->thread.ksp = sp;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
if (cpu_has_feature(CPU_FTR_SLB)) {
|
|
unsigned long sp_vsid = get_kernel_vsid(sp);
|
|
|
|
sp_vsid <<= SLB_VSID_SHIFT;
|
|
sp_vsid |= SLB_VSID_KERNEL;
|
|
if (cpu_has_feature(CPU_FTR_16M_PAGE))
|
|
sp_vsid |= SLB_VSID_L;
|
|
|
|
p->thread.ksp_vsid = sp_vsid;
|
|
}
|
|
|
|
/*
|
|
* The PPC64 ABI makes use of a TOC to contain function
|
|
* pointers. The function (ret_from_except) is actually a pointer
|
|
* to the TOC entry. The first entry is a pointer to the actual
|
|
* function.
|
|
*/
|
|
kregs->nip = *((unsigned long *)ret_from_fork);
|
|
#else
|
|
kregs->nip = (unsigned long)ret_from_fork;
|
|
p->thread.last_syscall = -1;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up a thread for executing a new program
|
|
*/
|
|
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
|
|
{
|
|
set_fs(USER_DS);
|
|
|
|
/*
|
|
* If we exec out of a kernel thread then thread.regs will not be
|
|
* set. Do it now.
|
|
*/
|
|
if (!current->thread.regs) {
|
|
unsigned long childregs = (unsigned long)current->thread_info +
|
|
THREAD_SIZE;
|
|
childregs -= sizeof(struct pt_regs);
|
|
current->thread.regs = (struct pt_regs *)childregs;
|
|
}
|
|
|
|
memset(regs->gpr, 0, sizeof(regs->gpr));
|
|
regs->ctr = 0;
|
|
regs->link = 0;
|
|
regs->xer = 0;
|
|
regs->ccr = 0;
|
|
regs->gpr[1] = sp;
|
|
|
|
#ifdef CONFIG_PPC32
|
|
regs->mq = 0;
|
|
regs->nip = start;
|
|
regs->msr = MSR_USER;
|
|
#else
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
unsigned long entry, toc, load_addr = regs->gpr[2];
|
|
|
|
/* start is a relocated pointer to the function descriptor for
|
|
* the elf _start routine. The first entry in the function
|
|
* descriptor is the entry address of _start and the second
|
|
* entry is the TOC value we need to use.
|
|
*/
|
|
__get_user(entry, (unsigned long __user *)start);
|
|
__get_user(toc, (unsigned long __user *)start+1);
|
|
|
|
/* Check whether the e_entry function descriptor entries
|
|
* need to be relocated before we can use them.
|
|
*/
|
|
if (load_addr != 0) {
|
|
entry += load_addr;
|
|
toc += load_addr;
|
|
}
|
|
regs->nip = entry;
|
|
regs->gpr[2] = toc;
|
|
regs->msr = MSR_USER64;
|
|
} else {
|
|
regs->nip = start;
|
|
regs->gpr[2] = 0;
|
|
regs->msr = MSR_USER32;
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_SMP
|
|
if (last_task_used_math == current)
|
|
last_task_used_math = NULL;
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (last_task_used_altivec == current)
|
|
last_task_used_altivec = NULL;
|
|
#endif
|
|
#ifdef CONFIG_SPE
|
|
if (last_task_used_spe == current)
|
|
last_task_used_spe = NULL;
|
|
#endif
|
|
#endif /* CONFIG_SMP */
|
|
memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
|
|
current->thread.fpscr = 0;
|
|
#ifdef CONFIG_ALTIVEC
|
|
memset(current->thread.vr, 0, sizeof(current->thread.vr));
|
|
memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr));
|
|
current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
|
|
current->thread.vrsave = 0;
|
|
current->thread.used_vr = 0;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_SPE
|
|
memset(current->thread.evr, 0, sizeof(current->thread.evr));
|
|
current->thread.acc = 0;
|
|
current->thread.spefscr = 0;
|
|
current->thread.used_spe = 0;
|
|
#endif /* CONFIG_SPE */
|
|
}
|
|
|
|
#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
|
|
| PR_FP_EXC_RES | PR_FP_EXC_INV)
|
|
|
|
int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
|
|
/* This is a bit hairy. If we are an SPE enabled processor
|
|
* (have embedded fp) we store the IEEE exception enable flags in
|
|
* fpexc_mode. fpexc_mode is also used for setting FP exception
|
|
* mode (asyn, precise, disabled) for 'Classic' FP. */
|
|
if (val & PR_FP_EXC_SW_ENABLE) {
|
|
#ifdef CONFIG_SPE
|
|
tsk->thread.fpexc_mode = val &
|
|
(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
|
|
return 0;
|
|
#else
|
|
return -EINVAL;
|
|
#endif
|
|
}
|
|
|
|
/* on a CONFIG_SPE this does not hurt us. The bits that
|
|
* __pack_fe01 use do not overlap with bits used for
|
|
* PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
|
|
* on CONFIG_SPE implementations are reserved so writing to
|
|
* them does not change anything */
|
|
if (val > PR_FP_EXC_PRECISE)
|
|
return -EINVAL;
|
|
tsk->thread.fpexc_mode = __pack_fe01(val);
|
|
if (regs != NULL && (regs->msr & MSR_FP) != 0)
|
|
regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
|
|
| tsk->thread.fpexc_mode;
|
|
return 0;
|
|
}
|
|
|
|
int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
|
|
#ifdef CONFIG_SPE
|
|
val = tsk->thread.fpexc_mode;
|
|
#else
|
|
return -EINVAL;
|
|
#endif
|
|
else
|
|
val = __unpack_fe01(tsk->thread.fpexc_mode);
|
|
return put_user(val, (unsigned int __user *) adr);
|
|
}
|
|
|
|
#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
|
|
|
|
int sys_clone(unsigned long clone_flags, unsigned long usp,
|
|
int __user *parent_tidp, void __user *child_threadptr,
|
|
int __user *child_tidp, int p6,
|
|
struct pt_regs *regs)
|
|
{
|
|
CHECK_FULL_REGS(regs);
|
|
if (usp == 0)
|
|
usp = regs->gpr[1]; /* stack pointer for child */
|
|
#ifdef CONFIG_PPC64
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
parent_tidp = TRUNC_PTR(parent_tidp);
|
|
child_tidp = TRUNC_PTR(child_tidp);
|
|
}
|
|
#endif
|
|
return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
|
|
}
|
|
|
|
int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
|
|
unsigned long p4, unsigned long p5, unsigned long p6,
|
|
struct pt_regs *regs)
|
|
{
|
|
CHECK_FULL_REGS(regs);
|
|
return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
|
|
}
|
|
|
|
int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
|
|
unsigned long p4, unsigned long p5, unsigned long p6,
|
|
struct pt_regs *regs)
|
|
{
|
|
CHECK_FULL_REGS(regs);
|
|
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
|
|
regs, 0, NULL, NULL);
|
|
}
|
|
|
|
int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
|
|
unsigned long a3, unsigned long a4, unsigned long a5,
|
|
struct pt_regs *regs)
|
|
{
|
|
int error;
|
|
char *filename;
|
|
|
|
filename = getname((char __user *) a0);
|
|
error = PTR_ERR(filename);
|
|
if (IS_ERR(filename))
|
|
goto out;
|
|
flush_fp_to_thread(current);
|
|
flush_altivec_to_thread(current);
|
|
flush_spe_to_thread(current);
|
|
error = do_execve(filename, (char __user * __user *) a1,
|
|
(char __user * __user *) a2, regs);
|
|
if (error == 0) {
|
|
task_lock(current);
|
|
current->ptrace &= ~PT_DTRACE;
|
|
task_unlock(current);
|
|
}
|
|
putname(filename);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
static int validate_sp(unsigned long sp, struct task_struct *p,
|
|
unsigned long nbytes)
|
|
{
|
|
unsigned long stack_page = (unsigned long)p->thread_info;
|
|
|
|
if (sp >= stack_page + sizeof(struct thread_struct)
|
|
&& sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
#ifdef CONFIG_IRQSTACKS
|
|
stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
|
|
if (sp >= stack_page + sizeof(struct thread_struct)
|
|
&& sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
|
|
if (sp >= stack_page + sizeof(struct thread_struct)
|
|
&& sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
#define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
|
|
#define FRAME_LR_SAVE 2
|
|
#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
|
|
#define REGS_MARKER 0x7265677368657265ul
|
|
#define FRAME_MARKER 12
|
|
#else
|
|
#define MIN_STACK_FRAME 16
|
|
#define FRAME_LR_SAVE 1
|
|
#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
|
|
#define REGS_MARKER 0x72656773ul
|
|
#define FRAME_MARKER 2
|
|
#endif
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long ip, sp;
|
|
int count = 0;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
sp = p->thread.ksp;
|
|
if (!validate_sp(sp, p, MIN_STACK_FRAME))
|
|
return 0;
|
|
|
|
do {
|
|
sp = *(unsigned long *)sp;
|
|
if (!validate_sp(sp, p, MIN_STACK_FRAME))
|
|
return 0;
|
|
if (count > 0) {
|
|
ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
|
|
if (!in_sched_functions(ip))
|
|
return ip;
|
|
}
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(get_wchan);
|
|
|
|
static int kstack_depth_to_print = 64;
|
|
|
|
void show_stack(struct task_struct *tsk, unsigned long *stack)
|
|
{
|
|
unsigned long sp, ip, lr, newsp;
|
|
int count = 0;
|
|
int firstframe = 1;
|
|
|
|
sp = (unsigned long) stack;
|
|
if (tsk == NULL)
|
|
tsk = current;
|
|
if (sp == 0) {
|
|
if (tsk == current)
|
|
asm("mr %0,1" : "=r" (sp));
|
|
else
|
|
sp = tsk->thread.ksp;
|
|
}
|
|
|
|
lr = 0;
|
|
printk("Call Trace:\n");
|
|
do {
|
|
if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
|
|
return;
|
|
|
|
stack = (unsigned long *) sp;
|
|
newsp = stack[0];
|
|
ip = stack[FRAME_LR_SAVE];
|
|
if (!firstframe || ip != lr) {
|
|
printk("["REG"] ["REG"] ", sp, ip);
|
|
print_symbol("%s", ip);
|
|
if (firstframe)
|
|
printk(" (unreliable)");
|
|
printk("\n");
|
|
}
|
|
firstframe = 0;
|
|
|
|
/*
|
|
* See if this is an exception frame.
|
|
* We look for the "regshere" marker in the current frame.
|
|
*/
|
|
if (validate_sp(sp, tsk, INT_FRAME_SIZE)
|
|
&& stack[FRAME_MARKER] == REGS_MARKER) {
|
|
struct pt_regs *regs = (struct pt_regs *)
|
|
(sp + STACK_FRAME_OVERHEAD);
|
|
printk("--- Exception: %lx", regs->trap);
|
|
print_symbol(" at %s\n", regs->nip);
|
|
lr = regs->link;
|
|
print_symbol(" LR = %s\n", lr);
|
|
firstframe = 1;
|
|
}
|
|
|
|
sp = newsp;
|
|
} while (count++ < kstack_depth_to_print);
|
|
}
|
|
|
|
void dump_stack(void)
|
|
{
|
|
show_stack(current, NULL);
|
|
}
|
|
EXPORT_SYMBOL(dump_stack);
|