android_kernel_motorola_sm6225/net/ipv4/af_inet.c
Herbert Xu 576a30eb64 [NET]: Added GSO header verification
When GSO packets come from an untrusted source (e.g., a Xen guest domain),
we need to verify the header integrity before passing it to the hardware.

Since the first step in GSO is to verify the header, we can reuse that
code by adding a new bit to gso_type: SKB_GSO_DODGY.  Packets with this
bit set can only be fed directly to devices with the corresponding bit
NETIF_F_GSO_ROBUST.  If the device doesn't have that bit, then the skb
is fed to the GSO engine which will allow the packet to be sent to the
hardware if it passes the header check.

This patch changes the sg flag to a full features flag.  The same method
can be used to implement TSO ECN support.  We simply have to mark packets
with CWR set with SKB_GSO_ECN so that only hardware with a corresponding
NETIF_F_TSO_ECN can accept them.  The GSO engine can either fully segment
the packet, or segment the first MTU and pass the rest to the hardware for
further segmentation.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-29 16:57:53 -07:00

1370 lines
32 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* PF_INET protocol family socket handler.
*
* Version: $Id: af_inet.c,v 1.137 2002/02/01 22:01:03 davem Exp $
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Florian La Roche, <flla@stud.uni-sb.de>
* Alan Cox, <A.Cox@swansea.ac.uk>
*
* Changes (see also sock.c)
*
* piggy,
* Karl Knutson : Socket protocol table
* A.N.Kuznetsov : Socket death error in accept().
* John Richardson : Fix non blocking error in connect()
* so sockets that fail to connect
* don't return -EINPROGRESS.
* Alan Cox : Asynchronous I/O support
* Alan Cox : Keep correct socket pointer on sock
* structures
* when accept() ed
* Alan Cox : Semantics of SO_LINGER aren't state
* moved to close when you look carefully.
* With this fixed and the accept bug fixed
* some RPC stuff seems happier.
* Niibe Yutaka : 4.4BSD style write async I/O
* Alan Cox,
* Tony Gale : Fixed reuse semantics.
* Alan Cox : bind() shouldn't abort existing but dead
* sockets. Stops FTP netin:.. I hope.
* Alan Cox : bind() works correctly for RAW sockets.
* Note that FreeBSD at least was broken
* in this respect so be careful with
* compatibility tests...
* Alan Cox : routing cache support
* Alan Cox : memzero the socket structure for
* compactness.
* Matt Day : nonblock connect error handler
* Alan Cox : Allow large numbers of pending sockets
* (eg for big web sites), but only if
* specifically application requested.
* Alan Cox : New buffering throughout IP. Used
* dumbly.
* Alan Cox : New buffering now used smartly.
* Alan Cox : BSD rather than common sense
* interpretation of listen.
* Germano Caronni : Assorted small races.
* Alan Cox : sendmsg/recvmsg basic support.
* Alan Cox : Only sendmsg/recvmsg now supported.
* Alan Cox : Locked down bind (see security list).
* Alan Cox : Loosened bind a little.
* Mike McLagan : ADD/DEL DLCI Ioctls
* Willy Konynenberg : Transparent proxying support.
* David S. Miller : New socket lookup architecture.
* Some other random speedups.
* Cyrus Durgin : Cleaned up file for kmod hacks.
* Andi Kleen : Fix inet_stream_connect TCP race.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/capability.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/netfilter_ipv4.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/smp_lock.h>
#include <linux/inet.h>
#include <linux/igmp.h>
#include <linux/inetdevice.h>
#include <linux/netdevice.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/arp.h>
#include <net/route.h>
#include <net/ip_fib.h>
#include <net/inet_connection_sock.h>
#include <net/tcp.h>
#include <net/udp.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/raw.h>
#include <net/icmp.h>
#include <net/ipip.h>
#include <net/inet_common.h>
#include <net/xfrm.h>
#ifdef CONFIG_IP_MROUTE
#include <linux/mroute.h>
#endif
DEFINE_SNMP_STAT(struct linux_mib, net_statistics) __read_mostly;
extern void ip_mc_drop_socket(struct sock *sk);
/* The inetsw table contains everything that inet_create needs to
* build a new socket.
*/
static struct list_head inetsw[SOCK_MAX];
static DEFINE_SPINLOCK(inetsw_lock);
/* New destruction routine */
void inet_sock_destruct(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
__skb_queue_purge(&sk->sk_receive_queue);
__skb_queue_purge(&sk->sk_error_queue);
if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) {
printk("Attempt to release TCP socket in state %d %p\n",
sk->sk_state, sk);
return;
}
if (!sock_flag(sk, SOCK_DEAD)) {
printk("Attempt to release alive inet socket %p\n", sk);
return;
}
BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
BUG_TRAP(!sk->sk_wmem_queued);
BUG_TRAP(!sk->sk_forward_alloc);
kfree(inet->opt);
dst_release(sk->sk_dst_cache);
sk_refcnt_debug_dec(sk);
}
/*
* The routines beyond this point handle the behaviour of an AF_INET
* socket object. Mostly it punts to the subprotocols of IP to do
* the work.
*/
/*
* Automatically bind an unbound socket.
*/
static int inet_autobind(struct sock *sk)
{
struct inet_sock *inet;
/* We may need to bind the socket. */
lock_sock(sk);
inet = inet_sk(sk);
if (!inet->num) {
if (sk->sk_prot->get_port(sk, 0)) {
release_sock(sk);
return -EAGAIN;
}
inet->sport = htons(inet->num);
}
release_sock(sk);
return 0;
}
/*
* Move a socket into listening state.
*/
int inet_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
unsigned char old_state;
int err;
lock_sock(sk);
err = -EINVAL;
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
goto out;
old_state = sk->sk_state;
if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))
goto out;
/* Really, if the socket is already in listen state
* we can only allow the backlog to be adjusted.
*/
if (old_state != TCP_LISTEN) {
err = inet_csk_listen_start(sk, TCP_SYNQ_HSIZE);
if (err)
goto out;
}
sk->sk_max_ack_backlog = backlog;
err = 0;
out:
release_sock(sk);
return err;
}
/*
* Create an inet socket.
*/
static int inet_create(struct socket *sock, int protocol)
{
struct sock *sk;
struct list_head *p;
struct inet_protosw *answer;
struct inet_sock *inet;
struct proto *answer_prot;
unsigned char answer_flags;
char answer_no_check;
int try_loading_module = 0;
int err;
sock->state = SS_UNCONNECTED;
/* Look for the requested type/protocol pair. */
answer = NULL;
lookup_protocol:
err = -ESOCKTNOSUPPORT;
rcu_read_lock();
list_for_each_rcu(p, &inetsw[sock->type]) {
answer = list_entry(p, struct inet_protosw, list);
/* Check the non-wild match. */
if (protocol == answer->protocol) {
if (protocol != IPPROTO_IP)
break;
} else {
/* Check for the two wild cases. */
if (IPPROTO_IP == protocol) {
protocol = answer->protocol;
break;
}
if (IPPROTO_IP == answer->protocol)
break;
}
err = -EPROTONOSUPPORT;
answer = NULL;
}
if (unlikely(answer == NULL)) {
if (try_loading_module < 2) {
rcu_read_unlock();
/*
* Be more specific, e.g. net-pf-2-proto-132-type-1
* (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
*/
if (++try_loading_module == 1)
request_module("net-pf-%d-proto-%d-type-%d",
PF_INET, protocol, sock->type);
/*
* Fall back to generic, e.g. net-pf-2-proto-132
* (net-pf-PF_INET-proto-IPPROTO_SCTP)
*/
else
request_module("net-pf-%d-proto-%d",
PF_INET, protocol);
goto lookup_protocol;
} else
goto out_rcu_unlock;
}
err = -EPERM;
if (answer->capability > 0 && !capable(answer->capability))
goto out_rcu_unlock;
sock->ops = answer->ops;
answer_prot = answer->prot;
answer_no_check = answer->no_check;
answer_flags = answer->flags;
rcu_read_unlock();
BUG_TRAP(answer_prot->slab != NULL);
err = -ENOBUFS;
sk = sk_alloc(PF_INET, GFP_KERNEL, answer_prot, 1);
if (sk == NULL)
goto out;
err = 0;
sk->sk_no_check = answer_no_check;
if (INET_PROTOSW_REUSE & answer_flags)
sk->sk_reuse = 1;
inet = inet_sk(sk);
inet->is_icsk = INET_PROTOSW_ICSK & answer_flags;
if (SOCK_RAW == sock->type) {
inet->num = protocol;
if (IPPROTO_RAW == protocol)
inet->hdrincl = 1;
}
if (ipv4_config.no_pmtu_disc)
inet->pmtudisc = IP_PMTUDISC_DONT;
else
inet->pmtudisc = IP_PMTUDISC_WANT;
inet->id = 0;
sock_init_data(sock, sk);
sk->sk_destruct = inet_sock_destruct;
sk->sk_family = PF_INET;
sk->sk_protocol = protocol;
sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
inet->uc_ttl = -1;
inet->mc_loop = 1;
inet->mc_ttl = 1;
inet->mc_index = 0;
inet->mc_list = NULL;
sk_refcnt_debug_inc(sk);
if (inet->num) {
/* It assumes that any protocol which allows
* the user to assign a number at socket
* creation time automatically
* shares.
*/
inet->sport = htons(inet->num);
/* Add to protocol hash chains. */
sk->sk_prot->hash(sk);
}
if (sk->sk_prot->init) {
err = sk->sk_prot->init(sk);
if (err)
sk_common_release(sk);
}
out:
return err;
out_rcu_unlock:
rcu_read_unlock();
goto out;
}
/*
* The peer socket should always be NULL (or else). When we call this
* function we are destroying the object and from then on nobody
* should refer to it.
*/
int inet_release(struct socket *sock)
{
struct sock *sk = sock->sk;
if (sk) {
long timeout;
/* Applications forget to leave groups before exiting */
ip_mc_drop_socket(sk);
/* If linger is set, we don't return until the close
* is complete. Otherwise we return immediately. The
* actually closing is done the same either way.
*
* If the close is due to the process exiting, we never
* linger..
*/
timeout = 0;
if (sock_flag(sk, SOCK_LINGER) &&
!(current->flags & PF_EXITING))
timeout = sk->sk_lingertime;
sock->sk = NULL;
sk->sk_prot->close(sk, timeout);
}
return 0;
}
/* It is off by default, see below. */
int sysctl_ip_nonlocal_bind;
int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
struct sock *sk = sock->sk;
struct inet_sock *inet = inet_sk(sk);
unsigned short snum;
int chk_addr_ret;
int err;
/* If the socket has its own bind function then use it. (RAW) */
if (sk->sk_prot->bind) {
err = sk->sk_prot->bind(sk, uaddr, addr_len);
goto out;
}
err = -EINVAL;
if (addr_len < sizeof(struct sockaddr_in))
goto out;
chk_addr_ret = inet_addr_type(addr->sin_addr.s_addr);
/* Not specified by any standard per-se, however it breaks too
* many applications when removed. It is unfortunate since
* allowing applications to make a non-local bind solves
* several problems with systems using dynamic addressing.
* (ie. your servers still start up even if your ISDN link
* is temporarily down)
*/
err = -EADDRNOTAVAIL;
if (!sysctl_ip_nonlocal_bind &&
!inet->freebind &&
addr->sin_addr.s_addr != INADDR_ANY &&
chk_addr_ret != RTN_LOCAL &&
chk_addr_ret != RTN_MULTICAST &&
chk_addr_ret != RTN_BROADCAST)
goto out;
snum = ntohs(addr->sin_port);
err = -EACCES;
if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
goto out;
/* We keep a pair of addresses. rcv_saddr is the one
* used by hash lookups, and saddr is used for transmit.
*
* In the BSD API these are the same except where it
* would be illegal to use them (multicast/broadcast) in
* which case the sending device address is used.
*/
lock_sock(sk);
/* Check these errors (active socket, double bind). */
err = -EINVAL;
if (sk->sk_state != TCP_CLOSE || inet->num)
goto out_release_sock;
inet->rcv_saddr = inet->saddr = addr->sin_addr.s_addr;
if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)
inet->saddr = 0; /* Use device */
/* Make sure we are allowed to bind here. */
if (sk->sk_prot->get_port(sk, snum)) {
inet->saddr = inet->rcv_saddr = 0;
err = -EADDRINUSE;
goto out_release_sock;
}
if (inet->rcv_saddr)
sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
if (snum)
sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
inet->sport = htons(inet->num);
inet->daddr = 0;
inet->dport = 0;
sk_dst_reset(sk);
err = 0;
out_release_sock:
release_sock(sk);
out:
return err;
}
int inet_dgram_connect(struct socket *sock, struct sockaddr * uaddr,
int addr_len, int flags)
{
struct sock *sk = sock->sk;
if (uaddr->sa_family == AF_UNSPEC)
return sk->sk_prot->disconnect(sk, flags);
if (!inet_sk(sk)->num && inet_autobind(sk))
return -EAGAIN;
return sk->sk_prot->connect(sk, (struct sockaddr *)uaddr, addr_len);
}
static long inet_wait_for_connect(struct sock *sk, long timeo)
{
DEFINE_WAIT(wait);
prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
/* Basic assumption: if someone sets sk->sk_err, he _must_
* change state of the socket from TCP_SYN_*.
* Connect() does not allow to get error notifications
* without closing the socket.
*/
while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
release_sock(sk);
timeo = schedule_timeout(timeo);
lock_sock(sk);
if (signal_pending(current) || !timeo)
break;
prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
}
finish_wait(sk->sk_sleep, &wait);
return timeo;
}
/*
* Connect to a remote host. There is regrettably still a little
* TCP 'magic' in here.
*/
int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
struct sock *sk = sock->sk;
int err;
long timeo;
lock_sock(sk);
if (uaddr->sa_family == AF_UNSPEC) {
err = sk->sk_prot->disconnect(sk, flags);
sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
goto out;
}
switch (sock->state) {
default:
err = -EINVAL;
goto out;
case SS_CONNECTED:
err = -EISCONN;
goto out;
case SS_CONNECTING:
err = -EALREADY;
/* Fall out of switch with err, set for this state */
break;
case SS_UNCONNECTED:
err = -EISCONN;
if (sk->sk_state != TCP_CLOSE)
goto out;
err = sk->sk_prot->connect(sk, uaddr, addr_len);
if (err < 0)
goto out;
sock->state = SS_CONNECTING;
/* Just entered SS_CONNECTING state; the only
* difference is that return value in non-blocking
* case is EINPROGRESS, rather than EALREADY.
*/
err = -EINPROGRESS;
break;
}
timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
/* Error code is set above */
if (!timeo || !inet_wait_for_connect(sk, timeo))
goto out;
err = sock_intr_errno(timeo);
if (signal_pending(current))
goto out;
}
/* Connection was closed by RST, timeout, ICMP error
* or another process disconnected us.
*/
if (sk->sk_state == TCP_CLOSE)
goto sock_error;
/* sk->sk_err may be not zero now, if RECVERR was ordered by user
* and error was received after socket entered established state.
* Hence, it is handled normally after connect() return successfully.
*/
sock->state = SS_CONNECTED;
err = 0;
out:
release_sock(sk);
return err;
sock_error:
err = sock_error(sk) ? : -ECONNABORTED;
sock->state = SS_UNCONNECTED;
if (sk->sk_prot->disconnect(sk, flags))
sock->state = SS_DISCONNECTING;
goto out;
}
/*
* Accept a pending connection. The TCP layer now gives BSD semantics.
*/
int inet_accept(struct socket *sock, struct socket *newsock, int flags)
{
struct sock *sk1 = sock->sk;
int err = -EINVAL;
struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err);
if (!sk2)
goto do_err;
lock_sock(sk2);
BUG_TRAP((1 << sk2->sk_state) &
(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_CLOSE));
sock_graft(sk2, newsock);
newsock->state = SS_CONNECTED;
err = 0;
release_sock(sk2);
do_err:
return err;
}
/*
* This does both peername and sockname.
*/
int inet_getname(struct socket *sock, struct sockaddr *uaddr,
int *uaddr_len, int peer)
{
struct sock *sk = sock->sk;
struct inet_sock *inet = inet_sk(sk);
struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
sin->sin_family = AF_INET;
if (peer) {
if (!inet->dport ||
(((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
peer == 1))
return -ENOTCONN;
sin->sin_port = inet->dport;
sin->sin_addr.s_addr = inet->daddr;
} else {
__u32 addr = inet->rcv_saddr;
if (!addr)
addr = inet->saddr;
sin->sin_port = inet->sport;
sin->sin_addr.s_addr = addr;
}
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
*uaddr_len = sizeof(*sin);
return 0;
}
int inet_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
size_t size)
{
struct sock *sk = sock->sk;
/* We may need to bind the socket. */
if (!inet_sk(sk)->num && inet_autobind(sk))
return -EAGAIN;
return sk->sk_prot->sendmsg(iocb, sk, msg, size);
}
static ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
{
struct sock *sk = sock->sk;
/* We may need to bind the socket. */
if (!inet_sk(sk)->num && inet_autobind(sk))
return -EAGAIN;
if (sk->sk_prot->sendpage)
return sk->sk_prot->sendpage(sk, page, offset, size, flags);
return sock_no_sendpage(sock, page, offset, size, flags);
}
int inet_shutdown(struct socket *sock, int how)
{
struct sock *sk = sock->sk;
int err = 0;
/* This should really check to make sure
* the socket is a TCP socket. (WHY AC...)
*/
how++; /* maps 0->1 has the advantage of making bit 1 rcvs and
1->2 bit 2 snds.
2->3 */
if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */
return -EINVAL;
lock_sock(sk);
if (sock->state == SS_CONNECTING) {
if ((1 << sk->sk_state) &
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
sock->state = SS_DISCONNECTING;
else
sock->state = SS_CONNECTED;
}
switch (sk->sk_state) {
case TCP_CLOSE:
err = -ENOTCONN;
/* Hack to wake up other listeners, who can poll for
POLLHUP, even on eg. unconnected UDP sockets -- RR */
default:
sk->sk_shutdown |= how;
if (sk->sk_prot->shutdown)
sk->sk_prot->shutdown(sk, how);
break;
/* Remaining two branches are temporary solution for missing
* close() in multithreaded environment. It is _not_ a good idea,
* but we have no choice until close() is repaired at VFS level.
*/
case TCP_LISTEN:
if (!(how & RCV_SHUTDOWN))
break;
/* Fall through */
case TCP_SYN_SENT:
err = sk->sk_prot->disconnect(sk, O_NONBLOCK);
sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
break;
}
/* Wake up anyone sleeping in poll. */
sk->sk_state_change(sk);
release_sock(sk);
return err;
}
/*
* ioctl() calls you can issue on an INET socket. Most of these are
* device configuration and stuff and very rarely used. Some ioctls
* pass on to the socket itself.
*
* NOTE: I like the idea of a module for the config stuff. ie ifconfig
* loads the devconfigure module does its configuring and unloads it.
* There's a good 20K of config code hanging around the kernel.
*/
int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
struct sock *sk = sock->sk;
int err = 0;
switch (cmd) {
case SIOCGSTAMP:
err = sock_get_timestamp(sk, (struct timeval __user *)arg);
break;
case SIOCADDRT:
case SIOCDELRT:
case SIOCRTMSG:
err = ip_rt_ioctl(cmd, (void __user *)arg);
break;
case SIOCDARP:
case SIOCGARP:
case SIOCSARP:
err = arp_ioctl(cmd, (void __user *)arg);
break;
case SIOCGIFADDR:
case SIOCSIFADDR:
case SIOCGIFBRDADDR:
case SIOCSIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
case SIOCSIFPFLAGS:
case SIOCGIFPFLAGS:
case SIOCSIFFLAGS:
err = devinet_ioctl(cmd, (void __user *)arg);
break;
default:
if (sk->sk_prot->ioctl)
err = sk->sk_prot->ioctl(sk, cmd, arg);
else
err = -ENOIOCTLCMD;
break;
}
return err;
}
const struct proto_ops inet_stream_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_stream_connect,
.socketpair = sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname,
.poll = tcp_poll,
.ioctl = inet_ioctl,
.listen = inet_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = tcp_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
const struct proto_ops inet_dgram_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = inet_getname,
.poll = udp_poll,
.ioctl = inet_ioctl,
.listen = sock_no_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
/*
* For SOCK_RAW sockets; should be the same as inet_dgram_ops but without
* udp_poll
*/
static const struct proto_ops inet_sockraw_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = inet_getname,
.poll = datagram_poll,
.ioctl = inet_ioctl,
.listen = sock_no_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
static struct net_proto_family inet_family_ops = {
.family = PF_INET,
.create = inet_create,
.owner = THIS_MODULE,
};
/* Upon startup we insert all the elements in inetsw_array[] into
* the linked list inetsw.
*/
static struct inet_protosw inetsw_array[] =
{
{
.type = SOCK_STREAM,
.protocol = IPPROTO_TCP,
.prot = &tcp_prot,
.ops = &inet_stream_ops,
.capability = -1,
.no_check = 0,
.flags = INET_PROTOSW_PERMANENT |
INET_PROTOSW_ICSK,
},
{
.type = SOCK_DGRAM,
.protocol = IPPROTO_UDP,
.prot = &udp_prot,
.ops = &inet_dgram_ops,
.capability = -1,
.no_check = UDP_CSUM_DEFAULT,
.flags = INET_PROTOSW_PERMANENT,
},
{
.type = SOCK_RAW,
.protocol = IPPROTO_IP, /* wild card */
.prot = &raw_prot,
.ops = &inet_sockraw_ops,
.capability = CAP_NET_RAW,
.no_check = UDP_CSUM_DEFAULT,
.flags = INET_PROTOSW_REUSE,
}
};
#define INETSW_ARRAY_LEN (sizeof(inetsw_array) / sizeof(struct inet_protosw))
void inet_register_protosw(struct inet_protosw *p)
{
struct list_head *lh;
struct inet_protosw *answer;
int protocol = p->protocol;
struct list_head *last_perm;
spin_lock_bh(&inetsw_lock);
if (p->type >= SOCK_MAX)
goto out_illegal;
/* If we are trying to override a permanent protocol, bail. */
answer = NULL;
last_perm = &inetsw[p->type];
list_for_each(lh, &inetsw[p->type]) {
answer = list_entry(lh, struct inet_protosw, list);
/* Check only the non-wild match. */
if (INET_PROTOSW_PERMANENT & answer->flags) {
if (protocol == answer->protocol)
break;
last_perm = lh;
}
answer = NULL;
}
if (answer)
goto out_permanent;
/* Add the new entry after the last permanent entry if any, so that
* the new entry does not override a permanent entry when matched with
* a wild-card protocol. But it is allowed to override any existing
* non-permanent entry. This means that when we remove this entry, the
* system automatically returns to the old behavior.
*/
list_add_rcu(&p->list, last_perm);
out:
spin_unlock_bh(&inetsw_lock);
synchronize_net();
return;
out_permanent:
printk(KERN_ERR "Attempt to override permanent protocol %d.\n",
protocol);
goto out;
out_illegal:
printk(KERN_ERR
"Ignoring attempt to register invalid socket type %d.\n",
p->type);
goto out;
}
void inet_unregister_protosw(struct inet_protosw *p)
{
if (INET_PROTOSW_PERMANENT & p->flags) {
printk(KERN_ERR
"Attempt to unregister permanent protocol %d.\n",
p->protocol);
} else {
spin_lock_bh(&inetsw_lock);
list_del_rcu(&p->list);
spin_unlock_bh(&inetsw_lock);
synchronize_net();
}
}
/*
* Shall we try to damage output packets if routing dev changes?
*/
int sysctl_ip_dynaddr;
static int inet_sk_reselect_saddr(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
int err;
struct rtable *rt;
__u32 old_saddr = inet->saddr;
__u32 new_saddr;
__u32 daddr = inet->daddr;
if (inet->opt && inet->opt->srr)
daddr = inet->opt->faddr;
/* Query new route. */
err = ip_route_connect(&rt, daddr, 0,
RT_CONN_FLAGS(sk),
sk->sk_bound_dev_if,
sk->sk_protocol,
inet->sport, inet->dport, sk);
if (err)
return err;
sk_setup_caps(sk, &rt->u.dst);
new_saddr = rt->rt_src;
if (new_saddr == old_saddr)
return 0;
if (sysctl_ip_dynaddr > 1) {
printk(KERN_INFO "%s(): shifting inet->"
"saddr from %d.%d.%d.%d to %d.%d.%d.%d\n",
__FUNCTION__,
NIPQUAD(old_saddr),
NIPQUAD(new_saddr));
}
inet->saddr = inet->rcv_saddr = new_saddr;
/*
* XXX The only one ugly spot where we need to
* XXX really change the sockets identity after
* XXX it has entered the hashes. -DaveM
*
* Besides that, it does not check for connection
* uniqueness. Wait for troubles.
*/
__sk_prot_rehash(sk);
return 0;
}
int inet_sk_rebuild_header(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
u32 daddr;
int err;
/* Route is OK, nothing to do. */
if (rt)
return 0;
/* Reroute. */
daddr = inet->daddr;
if (inet->opt && inet->opt->srr)
daddr = inet->opt->faddr;
{
struct flowi fl = {
.oif = sk->sk_bound_dev_if,
.nl_u = {
.ip4_u = {
.daddr = daddr,
.saddr = inet->saddr,
.tos = RT_CONN_FLAGS(sk),
},
},
.proto = sk->sk_protocol,
.uli_u = {
.ports = {
.sport = inet->sport,
.dport = inet->dport,
},
},
};
err = ip_route_output_flow(&rt, &fl, sk, 0);
}
if (!err)
sk_setup_caps(sk, &rt->u.dst);
else {
/* Routing failed... */
sk->sk_route_caps = 0;
/*
* Other protocols have to map its equivalent state to TCP_SYN_SENT.
* DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
*/
if (!sysctl_ip_dynaddr ||
sk->sk_state != TCP_SYN_SENT ||
(sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
(err = inet_sk_reselect_saddr(sk)) != 0)
sk->sk_err_soft = -err;
}
return err;
}
EXPORT_SYMBOL(inet_sk_rebuild_header);
static struct sk_buff *inet_gso_segment(struct sk_buff *skb, int features)
{
struct sk_buff *segs = ERR_PTR(-EINVAL);
struct iphdr *iph;
struct net_protocol *ops;
int proto;
int ihl;
int id;
if (!pskb_may_pull(skb, sizeof(*iph)))
goto out;
iph = skb->nh.iph;
ihl = iph->ihl * 4;
if (ihl < sizeof(*iph))
goto out;
if (!pskb_may_pull(skb, ihl))
goto out;
skb->h.raw = __skb_pull(skb, ihl);
iph = skb->nh.iph;
id = ntohs(iph->id);
proto = iph->protocol & (MAX_INET_PROTOS - 1);
segs = ERR_PTR(-EPROTONOSUPPORT);
rcu_read_lock();
ops = rcu_dereference(inet_protos[proto]);
if (ops && ops->gso_segment)
segs = ops->gso_segment(skb, features);
rcu_read_unlock();
if (!segs || unlikely(IS_ERR(segs)))
goto out;
skb = segs;
do {
iph = skb->nh.iph;
iph->id = htons(id++);
iph->tot_len = htons(skb->len - skb->mac_len);
iph->check = 0;
iph->check = ip_fast_csum(skb->nh.raw, iph->ihl);
} while ((skb = skb->next));
out:
return segs;
}
#ifdef CONFIG_IP_MULTICAST
static struct net_protocol igmp_protocol = {
.handler = igmp_rcv,
};
#endif
static struct net_protocol tcp_protocol = {
.handler = tcp_v4_rcv,
.err_handler = tcp_v4_err,
.gso_segment = tcp_tso_segment,
.no_policy = 1,
};
static struct net_protocol udp_protocol = {
.handler = udp_rcv,
.err_handler = udp_err,
.no_policy = 1,
};
static struct net_protocol icmp_protocol = {
.handler = icmp_rcv,
};
static int __init init_ipv4_mibs(void)
{
net_statistics[0] = alloc_percpu(struct linux_mib);
net_statistics[1] = alloc_percpu(struct linux_mib);
ip_statistics[0] = alloc_percpu(struct ipstats_mib);
ip_statistics[1] = alloc_percpu(struct ipstats_mib);
icmp_statistics[0] = alloc_percpu(struct icmp_mib);
icmp_statistics[1] = alloc_percpu(struct icmp_mib);
tcp_statistics[0] = alloc_percpu(struct tcp_mib);
tcp_statistics[1] = alloc_percpu(struct tcp_mib);
udp_statistics[0] = alloc_percpu(struct udp_mib);
udp_statistics[1] = alloc_percpu(struct udp_mib);
if (!
(net_statistics[0] && net_statistics[1] && ip_statistics[0]
&& ip_statistics[1] && tcp_statistics[0] && tcp_statistics[1]
&& udp_statistics[0] && udp_statistics[1]))
return -ENOMEM;
(void) tcp_mib_init();
return 0;
}
static int ipv4_proc_init(void);
/*
* IP protocol layer initialiser
*/
static struct packet_type ip_packet_type = {
.type = __constant_htons(ETH_P_IP),
.func = ip_rcv,
.gso_segment = inet_gso_segment,
};
static int __init inet_init(void)
{
struct sk_buff *dummy_skb;
struct inet_protosw *q;
struct list_head *r;
int rc = -EINVAL;
if (sizeof(struct inet_skb_parm) > sizeof(dummy_skb->cb)) {
printk(KERN_CRIT "%s: panic\n", __FUNCTION__);
goto out;
}
rc = proto_register(&tcp_prot, 1);
if (rc)
goto out;
rc = proto_register(&udp_prot, 1);
if (rc)
goto out_unregister_tcp_proto;
rc = proto_register(&raw_prot, 1);
if (rc)
goto out_unregister_udp_proto;
/*
* Tell SOCKET that we are alive...
*/
(void)sock_register(&inet_family_ops);
/*
* Add all the base protocols.
*/
if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
printk(KERN_CRIT "inet_init: Cannot add ICMP protocol\n");
if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
printk(KERN_CRIT "inet_init: Cannot add UDP protocol\n");
if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
printk(KERN_CRIT "inet_init: Cannot add TCP protocol\n");
#ifdef CONFIG_IP_MULTICAST
if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
printk(KERN_CRIT "inet_init: Cannot add IGMP protocol\n");
#endif
/* Register the socket-side information for inet_create. */
for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
INIT_LIST_HEAD(r);
for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
inet_register_protosw(q);
/*
* Set the ARP module up
*/
arp_init();
/*
* Set the IP module up
*/
ip_init();
tcp_v4_init(&inet_family_ops);
/* Setup TCP slab cache for open requests. */
tcp_init();
/*
* Set the ICMP layer up
*/
icmp_init(&inet_family_ops);
/*
* Initialise the multicast router
*/
#if defined(CONFIG_IP_MROUTE)
ip_mr_init();
#endif
/*
* Initialise per-cpu ipv4 mibs
*/
if(init_ipv4_mibs())
printk(KERN_CRIT "inet_init: Cannot init ipv4 mibs\n"); ;
ipv4_proc_init();
ipfrag_init();
dev_add_pack(&ip_packet_type);
rc = 0;
out:
return rc;
out_unregister_tcp_proto:
proto_unregister(&tcp_prot);
out_unregister_udp_proto:
proto_unregister(&udp_prot);
goto out;
}
fs_initcall(inet_init);
/* ------------------------------------------------------------------------ */
#ifdef CONFIG_PROC_FS
static int __init ipv4_proc_init(void)
{
int rc = 0;
if (raw_proc_init())
goto out_raw;
if (tcp4_proc_init())
goto out_tcp;
if (udp4_proc_init())
goto out_udp;
if (fib_proc_init())
goto out_fib;
if (ip_misc_proc_init())
goto out_misc;
out:
return rc;
out_misc:
fib_proc_exit();
out_fib:
udp4_proc_exit();
out_udp:
tcp4_proc_exit();
out_tcp:
raw_proc_exit();
out_raw:
rc = -ENOMEM;
goto out;
}
#else /* CONFIG_PROC_FS */
static int __init ipv4_proc_init(void)
{
return 0;
}
#endif /* CONFIG_PROC_FS */
MODULE_ALIAS_NETPROTO(PF_INET);
EXPORT_SYMBOL(inet_accept);
EXPORT_SYMBOL(inet_bind);
EXPORT_SYMBOL(inet_dgram_connect);
EXPORT_SYMBOL(inet_dgram_ops);
EXPORT_SYMBOL(inet_getname);
EXPORT_SYMBOL(inet_ioctl);
EXPORT_SYMBOL(inet_listen);
EXPORT_SYMBOL(inet_register_protosw);
EXPORT_SYMBOL(inet_release);
EXPORT_SYMBOL(inet_sendmsg);
EXPORT_SYMBOL(inet_shutdown);
EXPORT_SYMBOL(inet_sock_destruct);
EXPORT_SYMBOL(inet_stream_connect);
EXPORT_SYMBOL(inet_stream_ops);
EXPORT_SYMBOL(inet_unregister_protosw);
EXPORT_SYMBOL(net_statistics);
EXPORT_SYMBOL(sysctl_ip_nonlocal_bind);