7e85ee0c1d
As explained by Benjamin Herrenschmidt: Oh and btw, your patch alone doesn't fix powerpc, because it's missing a whole bunch of GFP_KERNEL's in the arch code... You would have to grep the entire kernel for things that check slab_is_available() and even then you'll be missing some. For example, slab_is_available() didn't always exist, and so in the early days on powerpc, we used a mem_init_done global that is set form mem_init() (not perfect but works in practice). And we still have code using that to do the test. Therefore, mask out __GFP_WAIT, __GFP_IO, and __GFP_FS in the slab allocators in early boot code to avoid enabling interrupts. Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
307 lines
8.2 KiB
C
307 lines
8.2 KiB
C
#ifndef _LINUX_SLUB_DEF_H
|
|
#define _LINUX_SLUB_DEF_H
|
|
|
|
/*
|
|
* SLUB : A Slab allocator without object queues.
|
|
*
|
|
* (C) 2007 SGI, Christoph Lameter
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/kmemtrace.h>
|
|
|
|
enum stat_item {
|
|
ALLOC_FASTPATH, /* Allocation from cpu slab */
|
|
ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
|
|
FREE_FASTPATH, /* Free to cpu slub */
|
|
FREE_SLOWPATH, /* Freeing not to cpu slab */
|
|
FREE_FROZEN, /* Freeing to frozen slab */
|
|
FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
|
|
FREE_REMOVE_PARTIAL, /* Freeing removes last object */
|
|
ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
|
|
ALLOC_SLAB, /* Cpu slab acquired from page allocator */
|
|
ALLOC_REFILL, /* Refill cpu slab from slab freelist */
|
|
FREE_SLAB, /* Slab freed to the page allocator */
|
|
CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
|
|
DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
|
|
DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
|
|
DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
|
|
DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
|
|
DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
|
|
ORDER_FALLBACK, /* Number of times fallback was necessary */
|
|
NR_SLUB_STAT_ITEMS };
|
|
|
|
struct kmem_cache_cpu {
|
|
void **freelist; /* Pointer to first free per cpu object */
|
|
struct page *page; /* The slab from which we are allocating */
|
|
int node; /* The node of the page (or -1 for debug) */
|
|
unsigned int offset; /* Freepointer offset (in word units) */
|
|
unsigned int objsize; /* Size of an object (from kmem_cache) */
|
|
#ifdef CONFIG_SLUB_STATS
|
|
unsigned stat[NR_SLUB_STAT_ITEMS];
|
|
#endif
|
|
};
|
|
|
|
struct kmem_cache_node {
|
|
spinlock_t list_lock; /* Protect partial list and nr_partial */
|
|
unsigned long nr_partial;
|
|
struct list_head partial;
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
atomic_long_t nr_slabs;
|
|
atomic_long_t total_objects;
|
|
struct list_head full;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Word size structure that can be atomically updated or read and that
|
|
* contains both the order and the number of objects that a slab of the
|
|
* given order would contain.
|
|
*/
|
|
struct kmem_cache_order_objects {
|
|
unsigned long x;
|
|
};
|
|
|
|
/*
|
|
* Slab cache management.
|
|
*/
|
|
struct kmem_cache {
|
|
/* Used for retriving partial slabs etc */
|
|
unsigned long flags;
|
|
int size; /* The size of an object including meta data */
|
|
int objsize; /* The size of an object without meta data */
|
|
int offset; /* Free pointer offset. */
|
|
struct kmem_cache_order_objects oo;
|
|
|
|
/*
|
|
* Avoid an extra cache line for UP, SMP and for the node local to
|
|
* struct kmem_cache.
|
|
*/
|
|
struct kmem_cache_node local_node;
|
|
|
|
/* Allocation and freeing of slabs */
|
|
struct kmem_cache_order_objects max;
|
|
struct kmem_cache_order_objects min;
|
|
gfp_t allocflags; /* gfp flags to use on each alloc */
|
|
int refcount; /* Refcount for slab cache destroy */
|
|
void (*ctor)(void *);
|
|
int inuse; /* Offset to metadata */
|
|
int align; /* Alignment */
|
|
unsigned long min_partial;
|
|
const char *name; /* Name (only for display!) */
|
|
struct list_head list; /* List of slab caches */
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
struct kobject kobj; /* For sysfs */
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Defragmentation by allocating from a remote node.
|
|
*/
|
|
int remote_node_defrag_ratio;
|
|
struct kmem_cache_node *node[MAX_NUMNODES];
|
|
#endif
|
|
#ifdef CONFIG_SMP
|
|
struct kmem_cache_cpu *cpu_slab[NR_CPUS];
|
|
#else
|
|
struct kmem_cache_cpu cpu_slab;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Kmalloc subsystem.
|
|
*/
|
|
#if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
|
|
#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
|
|
#else
|
|
#define KMALLOC_MIN_SIZE 8
|
|
#endif
|
|
|
|
#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
|
|
|
|
/*
|
|
* Maximum kmalloc object size handled by SLUB. Larger object allocations
|
|
* are passed through to the page allocator. The page allocator "fastpath"
|
|
* is relatively slow so we need this value sufficiently high so that
|
|
* performance critical objects are allocated through the SLUB fastpath.
|
|
*
|
|
* This should be dropped to PAGE_SIZE / 2 once the page allocator
|
|
* "fastpath" becomes competitive with the slab allocator fastpaths.
|
|
*/
|
|
#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
|
|
|
|
#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
|
|
|
|
/*
|
|
* We keep the general caches in an array of slab caches that are used for
|
|
* 2^x bytes of allocations.
|
|
*/
|
|
extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];
|
|
|
|
/*
|
|
* Sorry that the following has to be that ugly but some versions of GCC
|
|
* have trouble with constant propagation and loops.
|
|
*/
|
|
static __always_inline int kmalloc_index(size_t size)
|
|
{
|
|
if (!size)
|
|
return 0;
|
|
|
|
if (size <= KMALLOC_MIN_SIZE)
|
|
return KMALLOC_SHIFT_LOW;
|
|
|
|
#if KMALLOC_MIN_SIZE <= 64
|
|
if (size > 64 && size <= 96)
|
|
return 1;
|
|
if (size > 128 && size <= 192)
|
|
return 2;
|
|
#endif
|
|
if (size <= 8) return 3;
|
|
if (size <= 16) return 4;
|
|
if (size <= 32) return 5;
|
|
if (size <= 64) return 6;
|
|
if (size <= 128) return 7;
|
|
if (size <= 256) return 8;
|
|
if (size <= 512) return 9;
|
|
if (size <= 1024) return 10;
|
|
if (size <= 2 * 1024) return 11;
|
|
if (size <= 4 * 1024) return 12;
|
|
/*
|
|
* The following is only needed to support architectures with a larger page
|
|
* size than 4k.
|
|
*/
|
|
if (size <= 8 * 1024) return 13;
|
|
if (size <= 16 * 1024) return 14;
|
|
if (size <= 32 * 1024) return 15;
|
|
if (size <= 64 * 1024) return 16;
|
|
if (size <= 128 * 1024) return 17;
|
|
if (size <= 256 * 1024) return 18;
|
|
if (size <= 512 * 1024) return 19;
|
|
if (size <= 1024 * 1024) return 20;
|
|
if (size <= 2 * 1024 * 1024) return 21;
|
|
return -1;
|
|
|
|
/*
|
|
* What we really wanted to do and cannot do because of compiler issues is:
|
|
* int i;
|
|
* for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
|
|
* if (size <= (1 << i))
|
|
* return i;
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Find the slab cache for a given combination of allocation flags and size.
|
|
*
|
|
* This ought to end up with a global pointer to the right cache
|
|
* in kmalloc_caches.
|
|
*/
|
|
static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
|
|
{
|
|
int index = kmalloc_index(size);
|
|
|
|
if (index == 0)
|
|
return NULL;
|
|
|
|
return &kmalloc_caches[index];
|
|
}
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
#define SLUB_DMA __GFP_DMA
|
|
#else
|
|
/* Disable DMA functionality */
|
|
#define SLUB_DMA (__force gfp_t)0
|
|
#endif
|
|
|
|
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
|
|
void *__kmalloc(size_t size, gfp_t flags);
|
|
|
|
#ifdef CONFIG_KMEMTRACE
|
|
extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
|
|
#else
|
|
static __always_inline void *
|
|
kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
|
|
{
|
|
return kmem_cache_alloc(s, gfpflags);
|
|
}
|
|
#endif
|
|
|
|
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
|
|
{
|
|
unsigned int order = get_order(size);
|
|
void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
|
|
|
|
trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __always_inline void *kmalloc(size_t size, gfp_t flags)
|
|
{
|
|
void *ret;
|
|
|
|
if (__builtin_constant_p(size)) {
|
|
if (size > SLUB_MAX_SIZE)
|
|
return kmalloc_large(size, flags);
|
|
|
|
if (!(flags & SLUB_DMA)) {
|
|
struct kmem_cache *s = kmalloc_slab(size);
|
|
|
|
if (!s)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
ret = kmem_cache_alloc_notrace(s, flags);
|
|
|
|
trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
return __kmalloc(size, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
void *__kmalloc_node(size_t size, gfp_t flags, int node);
|
|
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
|
|
|
|
#ifdef CONFIG_KMEMTRACE
|
|
extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
|
|
gfp_t gfpflags,
|
|
int node);
|
|
#else
|
|
static __always_inline void *
|
|
kmem_cache_alloc_node_notrace(struct kmem_cache *s,
|
|
gfp_t gfpflags,
|
|
int node)
|
|
{
|
|
return kmem_cache_alloc_node(s, gfpflags, node);
|
|
}
|
|
#endif
|
|
|
|
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
void *ret;
|
|
|
|
if (__builtin_constant_p(size) &&
|
|
size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
|
|
struct kmem_cache *s = kmalloc_slab(size);
|
|
|
|
if (!s)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
ret = kmem_cache_alloc_node_notrace(s, flags, node);
|
|
|
|
trace_kmalloc_node(_THIS_IP_, ret,
|
|
size, s->size, flags, node);
|
|
|
|
return ret;
|
|
}
|
|
return __kmalloc_node(size, flags, node);
|
|
}
|
|
#endif
|
|
|
|
void __init kmem_cache_init_late(void);
|
|
|
|
#endif /* _LINUX_SLUB_DEF_H */
|