android_kernel_motorola_sm6225/drivers/net/wireless/iwlwifi/iwl-prph.h
Zhu Yi b481de9ca0 [IWLWIFI]: add iwlwifi wireless drivers
This patch adds the mac80211 based wireless drivers for the Intel
PRO/Wireless 3945ABG/BG Network Connection and Intel Wireless WiFi
Link AGN (4965) adapters.

[ Move driver into it's own directory -DaveM ]

Signed-off-by: Zhu Yi <yi.zhu@intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-10 16:51:39 -07:00

229 lines
10 KiB
C

/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU Geeral Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#ifndef __iwl_prph_h__
#define __iwl_prph_h__
#define PRPH_BASE (0x00000)
#define PRPH_END (0xFFFFF)
/* APMG (power management) constants */
#define APMG_BASE (PRPH_BASE + 0x3000)
#define APMG_CLK_CTRL_REG (APMG_BASE + 0x0000)
#define APMG_CLK_EN_REG (APMG_BASE + 0x0004)
#define APMG_CLK_DIS_REG (APMG_BASE + 0x0008)
#define APMG_PS_CTRL_REG (APMG_BASE + 0x000c)
#define APMG_PCIDEV_STT_REG (APMG_BASE + 0x0010)
#define APMG_RFKILL_REG (APMG_BASE + 0x0014)
#define APMG_RTC_INT_STT_REG (APMG_BASE + 0x001c)
#define APMG_RTC_INT_MSK_REG (APMG_BASE + 0x0020)
#define APMG_CLK_VAL_DMA_CLK_RQT (0x00000200)
#define APMG_CLK_VAL_BSM_CLK_RQT (0x00000800)
#define APMG_PS_CTRL_VAL_RESET_REQ (0x04000000)
#define APMG_PCIDEV_STT_VAL_L1_ACT_DIS (0x00000800)
#define APMG_PS_CTRL_MSK_PWR_SRC (0x03000000)
#define APMG_PS_CTRL_VAL_PWR_SRC_VMAIN (0x00000000)
#define APMG_PS_CTRL_VAL_PWR_SRC_VAUX (0x01000000)
/**
* BSM (Bootstrap State Machine)
*
* The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
* in special SRAM that does not power down when the embedded control
* processor is sleeping (e.g. for periodic power-saving shutdowns of radio).
*
* When powering back up after sleeps (or during initial uCode load), the BSM
* internally loads the short bootstrap program from the special SRAM into the
* embedded processor's instruction SRAM, and starts the processor so it runs
* the bootstrap program.
*
* This bootstrap program loads (via PCI busmaster DMA) instructions and data
* images for a uCode program from host DRAM locations. The host driver
* indicates DRAM locations and sizes for instruction and data images via the
* four BSM_DRAM_* registers. Once the bootstrap program loads the new program,
* the new program starts automatically.
*
* The uCode used for open-source drivers includes two programs:
*
* 1) Initialization -- performs hardware calibration and sets up some
* internal data, then notifies host via "initialize alive" notification
* (struct iwl_init_alive_resp) that it has completed all of its work.
* After signal from host, it then loads and starts the runtime program.
* The initialization program must be used when initially setting up the
* NIC after loading the driver.
*
* 2) Runtime/Protocol -- performs all normal runtime operations. This
* notifies host via "alive" notification (struct iwl_alive_resp) that it
* is ready to be used.
*
* When initializing the NIC, the host driver does the following procedure:
*
* 1) Load bootstrap program (instructions only, no data image for bootstrap)
* into bootstrap memory. Use dword writes starting at BSM_SRAM_LOWER_BOUND
*
* 2) Point (via BSM_DRAM_*) to the "initialize" uCode data and instruction
* images in host DRAM.
*
* 3) Set up BSM to copy from BSM SRAM into uCode instruction SRAM when asked:
* BSM_WR_MEM_SRC_REG = 0
* BSM_WR_MEM_DST_REG = RTC_INST_LOWER_BOUND
* BSM_WR_MEM_DWCOUNT_REG = # dwords in bootstrap instruction image
*
* 4) Load bootstrap into instruction SRAM:
* BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START
*
* 5) Wait for load completion:
* Poll BSM_WR_CTRL_REG for BSM_WR_CTRL_REG_BIT_START = 0
*
* 6) Enable future boot loads whenever NIC's power management triggers it:
* BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START_EN
*
* 7) Start the NIC by removing all reset bits:
* CSR_RESET = 0
*
* The bootstrap uCode (already in instruction SRAM) loads initialization
* uCode. Initialization uCode performs data initialization, sends
* "initialize alive" notification to host, and waits for a signal from
* host to load runtime code.
*
* 4) Point (via BSM_DRAM_*) to the "runtime" uCode data and instruction
* images in host DRAM. The last register loaded must be the instruction
* bytecount register ("1" in MSbit tells initialization uCode to load
* the runtime uCode):
* BSM_DRAM_INST_BYTECOUNT_REG = bytecount | BSM_DRAM_INST_LOAD
*
* 5) Wait for "alive" notification, then issue normal runtime commands.
*
* Data caching during power-downs:
*
* Just before the embedded controller powers down (e.g for automatic
* power-saving modes, or for RFKILL), uCode stores (via PCI busmaster DMA)
* a current snapshot of the embedded processor's data SRAM into host DRAM.
* This caches the data while the embedded processor's memory is powered down.
* Location and size are controlled by BSM_DRAM_DATA_* registers.
*
* NOTE: Instruction SRAM does not need to be saved, since that doesn't
* change during operation; the original image (from uCode distribution
* file) can be used for reload.
*
* When powering back up, the BSM loads the bootstrap program. Bootstrap looks
* at the BSM_DRAM_* registers, which now point to the runtime instruction
* image and the cached (modified) runtime data (*not* the initialization
* uCode). Bootstrap reloads these runtime images into SRAM, and restarts the
* uCode from where it left off before the power-down.
*
* NOTE: Initialization uCode does *not* run as part of the save/restore
* procedure.
*
* This save/restore method is mostly for autonomous power management during
* normal operation (result of POWER_TABLE_CMD). Platform suspend/resume and
* RFKILL should use complete restarts (with total re-initialization) of uCode,
* allowing total shutdown (including BSM memory).
*
* Note that, during normal operation, the host DRAM that held the initial
* startup data for the runtime code is now being used as a backup data cache
* for modified data! If you need to completely re-initialize the NIC, make
* sure that you use the runtime data image from the uCode distribution file,
* not the modified/saved runtime data. You may want to store a separate
* "clean" runtime data image in DRAM to avoid disk reads of distribution file.
*/
/* BSM bit fields */
#define BSM_WR_CTRL_REG_BIT_START (0x80000000) /* start boot load now */
#define BSM_WR_CTRL_REG_BIT_START_EN (0x40000000) /* enable boot after pwrup*/
#define BSM_DRAM_INST_LOAD (0x80000000) /* start program load now */
/* BSM addresses */
#define BSM_BASE (PRPH_BASE + 0x3400)
#define BSM_END (PRPH_BASE + 0x3800)
#define BSM_WR_CTRL_REG (BSM_BASE + 0x000) /* ctl and status */
#define BSM_WR_MEM_SRC_REG (BSM_BASE + 0x004) /* source in BSM mem */
#define BSM_WR_MEM_DST_REG (BSM_BASE + 0x008) /* dest in SRAM mem */
#define BSM_WR_DWCOUNT_REG (BSM_BASE + 0x00C) /* bytes */
#define BSM_WR_STATUS_REG (BSM_BASE + 0x010) /* bit 0: 1 == done */
/*
* Pointers and size regs for bootstrap load and data SRAM save/restore.
* NOTE: 3945 pointers use bits 31:0 of DRAM address.
* 4965 pointers use bits 35:4 of DRAM address.
*/
#define BSM_DRAM_INST_PTR_REG (BSM_BASE + 0x090)
#define BSM_DRAM_INST_BYTECOUNT_REG (BSM_BASE + 0x094)
#define BSM_DRAM_DATA_PTR_REG (BSM_BASE + 0x098)
#define BSM_DRAM_DATA_BYTECOUNT_REG (BSM_BASE + 0x09C)
/*
* BSM special memory, stays powered on during power-save sleeps.
* Read/write, address range from LOWER_BOUND to (LOWER_BOUND + SIZE -1)
*/
#define BSM_SRAM_LOWER_BOUND (PRPH_BASE + 0x3800)
#define BSM_SRAM_SIZE (1024) /* bytes */
#endif /* __iwl_prph_h__ */