67cddd9479
With that an L3 cache is correctly reported in the cache information in /sys With fixes from Andreas Herrmann and Dean Gaudet and Joachim Deguara Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1114 lines
28 KiB
C
1114 lines
28 KiB
C
/*
|
|
* linux/arch/x86-64/kernel/setup.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Nov 2001 Dave Jones <davej@suse.de>
|
|
* Forked from i386 setup code.
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of initialization
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/a.out.h>
|
|
#include <linux/screen_info.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <asm/processor.h>
|
|
#include <linux/console.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/edd.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/ctype.h>
|
|
|
|
#include <asm/mtrr.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <asm/io.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/desc.h>
|
|
#include <video/edid.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/mpspec.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/bootsetup.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/mach_apic.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/dmi.h>
|
|
|
|
/*
|
|
* Machine setup..
|
|
*/
|
|
|
|
struct cpuinfo_x86 boot_cpu_data __read_mostly;
|
|
EXPORT_SYMBOL(boot_cpu_data);
|
|
|
|
unsigned long mmu_cr4_features;
|
|
|
|
/* Boot loader ID as an integer, for the benefit of proc_dointvec */
|
|
int bootloader_type;
|
|
|
|
unsigned long saved_video_mode;
|
|
|
|
int force_mwait __cpuinitdata;
|
|
|
|
/*
|
|
* Early DMI memory
|
|
*/
|
|
int dmi_alloc_index;
|
|
char dmi_alloc_data[DMI_MAX_DATA];
|
|
|
|
/*
|
|
* Setup options
|
|
*/
|
|
struct screen_info screen_info;
|
|
EXPORT_SYMBOL(screen_info);
|
|
struct sys_desc_table_struct {
|
|
unsigned short length;
|
|
unsigned char table[0];
|
|
};
|
|
|
|
struct edid_info edid_info;
|
|
EXPORT_SYMBOL_GPL(edid_info);
|
|
|
|
extern int root_mountflags;
|
|
|
|
char __initdata command_line[COMMAND_LINE_SIZE];
|
|
|
|
struct resource standard_io_resources[] = {
|
|
{ .name = "dma1", .start = 0x00, .end = 0x1f,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "pic1", .start = 0x20, .end = 0x21,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "timer0", .start = 0x40, .end = 0x43,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "timer1", .start = 0x50, .end = 0x53,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "keyboard", .start = 0x60, .end = 0x6f,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "pic2", .start = 0xa0, .end = 0xa1,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "dma2", .start = 0xc0, .end = 0xdf,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "fpu", .start = 0xf0, .end = 0xff,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO }
|
|
};
|
|
|
|
#define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
|
|
|
|
struct resource data_resource = {
|
|
.name = "Kernel data",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_RAM,
|
|
};
|
|
struct resource code_resource = {
|
|
.name = "Kernel code",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_RAM,
|
|
};
|
|
|
|
#ifdef CONFIG_PROC_VMCORE
|
|
/* elfcorehdr= specifies the location of elf core header
|
|
* stored by the crashed kernel. This option will be passed
|
|
* by kexec loader to the capture kernel.
|
|
*/
|
|
static int __init setup_elfcorehdr(char *arg)
|
|
{
|
|
char *end;
|
|
if (!arg)
|
|
return -EINVAL;
|
|
elfcorehdr_addr = memparse(arg, &end);
|
|
return end > arg ? 0 : -EINVAL;
|
|
}
|
|
early_param("elfcorehdr", setup_elfcorehdr);
|
|
#endif
|
|
|
|
#ifndef CONFIG_NUMA
|
|
static void __init
|
|
contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long bootmap_size, bootmap;
|
|
|
|
bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
|
|
bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
|
|
if (bootmap == -1L)
|
|
panic("Cannot find bootmem map of size %ld\n",bootmap_size);
|
|
bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
|
|
e820_register_active_regions(0, start_pfn, end_pfn);
|
|
free_bootmem_with_active_regions(0, end_pfn);
|
|
reserve_bootmem(bootmap, bootmap_size);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
|
|
struct edd edd;
|
|
#ifdef CONFIG_EDD_MODULE
|
|
EXPORT_SYMBOL(edd);
|
|
#endif
|
|
/**
|
|
* copy_edd() - Copy the BIOS EDD information
|
|
* from boot_params into a safe place.
|
|
*
|
|
*/
|
|
static inline void copy_edd(void)
|
|
{
|
|
memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
|
|
memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
|
|
edd.mbr_signature_nr = EDD_MBR_SIG_NR;
|
|
edd.edd_info_nr = EDD_NR;
|
|
}
|
|
#else
|
|
static inline void copy_edd(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#define EBDA_ADDR_POINTER 0x40E
|
|
|
|
unsigned __initdata ebda_addr;
|
|
unsigned __initdata ebda_size;
|
|
|
|
static void discover_ebda(void)
|
|
{
|
|
/*
|
|
* there is a real-mode segmented pointer pointing to the
|
|
* 4K EBDA area at 0x40E
|
|
*/
|
|
ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
|
|
ebda_addr <<= 4;
|
|
|
|
ebda_size = *(unsigned short *)__va(ebda_addr);
|
|
|
|
/* Round EBDA up to pages */
|
|
if (ebda_size == 0)
|
|
ebda_size = 1;
|
|
ebda_size <<= 10;
|
|
ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
|
|
if (ebda_size > 64*1024)
|
|
ebda_size = 64*1024;
|
|
}
|
|
|
|
void __init setup_arch(char **cmdline_p)
|
|
{
|
|
printk(KERN_INFO "Command line: %s\n", boot_command_line);
|
|
|
|
ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
|
|
screen_info = SCREEN_INFO;
|
|
edid_info = EDID_INFO;
|
|
saved_video_mode = SAVED_VIDEO_MODE;
|
|
bootloader_type = LOADER_TYPE;
|
|
|
|
#ifdef CONFIG_BLK_DEV_RAM
|
|
rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
|
|
rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
|
|
rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
|
|
#endif
|
|
setup_memory_region();
|
|
copy_edd();
|
|
|
|
if (!MOUNT_ROOT_RDONLY)
|
|
root_mountflags &= ~MS_RDONLY;
|
|
init_mm.start_code = (unsigned long) &_text;
|
|
init_mm.end_code = (unsigned long) &_etext;
|
|
init_mm.end_data = (unsigned long) &_edata;
|
|
init_mm.brk = (unsigned long) &_end;
|
|
|
|
code_resource.start = virt_to_phys(&_text);
|
|
code_resource.end = virt_to_phys(&_etext)-1;
|
|
data_resource.start = virt_to_phys(&_etext);
|
|
data_resource.end = virt_to_phys(&_edata)-1;
|
|
|
|
early_identify_cpu(&boot_cpu_data);
|
|
|
|
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
|
|
*cmdline_p = command_line;
|
|
|
|
parse_early_param();
|
|
|
|
finish_e820_parsing();
|
|
|
|
e820_register_active_regions(0, 0, -1UL);
|
|
/*
|
|
* partially used pages are not usable - thus
|
|
* we are rounding upwards:
|
|
*/
|
|
end_pfn = e820_end_of_ram();
|
|
num_physpages = end_pfn;
|
|
|
|
check_efer();
|
|
|
|
discover_ebda();
|
|
|
|
init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
|
|
|
|
dmi_scan_machine();
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
|
|
* Call this early for SRAT node setup.
|
|
*/
|
|
acpi_boot_table_init();
|
|
#endif
|
|
|
|
/* How many end-of-memory variables you have, grandma! */
|
|
max_low_pfn = end_pfn;
|
|
max_pfn = end_pfn;
|
|
high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
|
|
|
|
/* Remove active ranges so rediscovery with NUMA-awareness happens */
|
|
remove_all_active_ranges();
|
|
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
/*
|
|
* Parse SRAT to discover nodes.
|
|
*/
|
|
acpi_numa_init();
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA
|
|
numa_initmem_init(0, end_pfn);
|
|
#else
|
|
contig_initmem_init(0, end_pfn);
|
|
#endif
|
|
|
|
/* Reserve direct mapping */
|
|
reserve_bootmem_generic(table_start << PAGE_SHIFT,
|
|
(table_end - table_start) << PAGE_SHIFT);
|
|
|
|
/* reserve kernel */
|
|
reserve_bootmem_generic(__pa_symbol(&_text),
|
|
__pa_symbol(&_end) - __pa_symbol(&_text));
|
|
|
|
/*
|
|
* reserve physical page 0 - it's a special BIOS page on many boxes,
|
|
* enabling clean reboots, SMP operation, laptop functions.
|
|
*/
|
|
reserve_bootmem_generic(0, PAGE_SIZE);
|
|
|
|
/* reserve ebda region */
|
|
if (ebda_addr)
|
|
reserve_bootmem_generic(ebda_addr, ebda_size);
|
|
#ifdef CONFIG_NUMA
|
|
/* reserve nodemap region */
|
|
if (nodemap_addr)
|
|
reserve_bootmem_generic(nodemap_addr, nodemap_size);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Reserve SMP trampoline */
|
|
reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACPI_SLEEP
|
|
/*
|
|
* Reserve low memory region for sleep support.
|
|
*/
|
|
acpi_reserve_bootmem();
|
|
#endif
|
|
/*
|
|
* Find and reserve possible boot-time SMP configuration:
|
|
*/
|
|
find_smp_config();
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (LOADER_TYPE && INITRD_START) {
|
|
if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
|
|
reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
|
|
initrd_start = INITRD_START + PAGE_OFFSET;
|
|
initrd_end = initrd_start+INITRD_SIZE;
|
|
}
|
|
else {
|
|
printk(KERN_ERR "initrd extends beyond end of memory "
|
|
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
|
|
(unsigned long)(INITRD_START + INITRD_SIZE),
|
|
(unsigned long)(end_pfn << PAGE_SHIFT));
|
|
initrd_start = 0;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_KEXEC
|
|
if (crashk_res.start != crashk_res.end) {
|
|
reserve_bootmem_generic(crashk_res.start,
|
|
crashk_res.end - crashk_res.start + 1);
|
|
}
|
|
#endif
|
|
|
|
paging_init();
|
|
|
|
#ifdef CONFIG_PCI
|
|
early_quirks();
|
|
#endif
|
|
|
|
/*
|
|
* set this early, so we dont allocate cpu0
|
|
* if MADT list doesnt list BSP first
|
|
* mpparse.c/MP_processor_info() allocates logical cpu numbers.
|
|
*/
|
|
cpu_set(0, cpu_present_map);
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* Read APIC and some other early information from ACPI tables.
|
|
*/
|
|
acpi_boot_init();
|
|
#endif
|
|
|
|
init_cpu_to_node();
|
|
|
|
/*
|
|
* get boot-time SMP configuration:
|
|
*/
|
|
if (smp_found_config)
|
|
get_smp_config();
|
|
init_apic_mappings();
|
|
|
|
/*
|
|
* We trust e820 completely. No explicit ROM probing in memory.
|
|
*/
|
|
e820_reserve_resources();
|
|
e820_mark_nosave_regions();
|
|
|
|
{
|
|
unsigned i;
|
|
/* request I/O space for devices used on all i[345]86 PCs */
|
|
for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
|
|
request_resource(&ioport_resource, &standard_io_resources[i]);
|
|
}
|
|
|
|
e820_setup_gap();
|
|
|
|
#ifdef CONFIG_VT
|
|
#if defined(CONFIG_VGA_CONSOLE)
|
|
conswitchp = &vga_con;
|
|
#elif defined(CONFIG_DUMMY_CONSOLE)
|
|
conswitchp = &dummy_con;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int *v;
|
|
|
|
if (c->extended_cpuid_level < 0x80000004)
|
|
return 0;
|
|
|
|
v = (unsigned int *) c->x86_model_id;
|
|
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
|
|
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
|
|
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
|
|
c->x86_model_id[48] = 0;
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int n, dummy, eax, ebx, ecx, edx;
|
|
|
|
n = c->extended_cpuid_level;
|
|
|
|
if (n >= 0x80000005) {
|
|
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
|
|
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
|
|
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
|
|
c->x86_cache_size=(ecx>>24)+(edx>>24);
|
|
/* On K8 L1 TLB is inclusive, so don't count it */
|
|
c->x86_tlbsize = 0;
|
|
}
|
|
|
|
if (n >= 0x80000006) {
|
|
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
|
|
ecx = cpuid_ecx(0x80000006);
|
|
c->x86_cache_size = ecx >> 16;
|
|
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
|
|
|
|
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
|
|
c->x86_cache_size, ecx & 0xFF);
|
|
}
|
|
|
|
if (n >= 0x80000007)
|
|
cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
|
|
if (n >= 0x80000008) {
|
|
cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
|
|
c->x86_virt_bits = (eax >> 8) & 0xff;
|
|
c->x86_phys_bits = eax & 0xff;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static int nearby_node(int apicid)
|
|
{
|
|
int i;
|
|
for (i = apicid - 1; i >= 0; i--) {
|
|
int node = apicid_to_node[i];
|
|
if (node != NUMA_NO_NODE && node_online(node))
|
|
return node;
|
|
}
|
|
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
|
|
int node = apicid_to_node[i];
|
|
if (node != NUMA_NO_NODE && node_online(node))
|
|
return node;
|
|
}
|
|
return first_node(node_online_map); /* Shouldn't happen */
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* On a AMD dual core setup the lower bits of the APIC id distingush the cores.
|
|
* Assumes number of cores is a power of two.
|
|
*/
|
|
static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned bits;
|
|
#ifdef CONFIG_NUMA
|
|
int cpu = smp_processor_id();
|
|
int node = 0;
|
|
unsigned apicid = hard_smp_processor_id();
|
|
#endif
|
|
unsigned ecx = cpuid_ecx(0x80000008);
|
|
|
|
c->x86_max_cores = (ecx & 0xff) + 1;
|
|
|
|
/* CPU telling us the core id bits shift? */
|
|
bits = (ecx >> 12) & 0xF;
|
|
|
|
/* Otherwise recompute */
|
|
if (bits == 0) {
|
|
while ((1 << bits) < c->x86_max_cores)
|
|
bits++;
|
|
}
|
|
|
|
/* Low order bits define the core id (index of core in socket) */
|
|
c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
|
|
/* Convert the APIC ID into the socket ID */
|
|
c->phys_proc_id = phys_pkg_id(bits);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
node = c->phys_proc_id;
|
|
if (apicid_to_node[apicid] != NUMA_NO_NODE)
|
|
node = apicid_to_node[apicid];
|
|
if (!node_online(node)) {
|
|
/* Two possibilities here:
|
|
- The CPU is missing memory and no node was created.
|
|
In that case try picking one from a nearby CPU
|
|
- The APIC IDs differ from the HyperTransport node IDs
|
|
which the K8 northbridge parsing fills in.
|
|
Assume they are all increased by a constant offset,
|
|
but in the same order as the HT nodeids.
|
|
If that doesn't result in a usable node fall back to the
|
|
path for the previous case. */
|
|
int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
|
|
if (ht_nodeid >= 0 &&
|
|
apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
|
|
node = apicid_to_node[ht_nodeid];
|
|
/* Pick a nearby node */
|
|
if (!node_online(node))
|
|
node = nearby_node(apicid);
|
|
}
|
|
numa_set_node(cpu, node);
|
|
|
|
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static void __cpuinit init_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned level;
|
|
|
|
#ifdef CONFIG_SMP
|
|
unsigned long value;
|
|
|
|
/*
|
|
* Disable TLB flush filter by setting HWCR.FFDIS on K8
|
|
* bit 6 of msr C001_0015
|
|
*
|
|
* Errata 63 for SH-B3 steppings
|
|
* Errata 122 for all steppings (F+ have it disabled by default)
|
|
*/
|
|
if (c->x86 == 15) {
|
|
rdmsrl(MSR_K8_HWCR, value);
|
|
value |= 1 << 6;
|
|
wrmsrl(MSR_K8_HWCR, value);
|
|
}
|
|
#endif
|
|
|
|
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
|
|
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
|
|
clear_bit(0*32+31, &c->x86_capability);
|
|
|
|
/* On C+ stepping K8 rep microcode works well for copy/memset */
|
|
level = cpuid_eax(1);
|
|
if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
|
|
set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
|
|
if (c->x86 == 0x10)
|
|
set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
|
|
|
|
/* Enable workaround for FXSAVE leak */
|
|
if (c->x86 >= 6)
|
|
set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
|
|
|
|
level = get_model_name(c);
|
|
if (!level) {
|
|
switch (c->x86) {
|
|
case 15:
|
|
/* Should distinguish Models here, but this is only
|
|
a fallback anyways. */
|
|
strcpy(c->x86_model_id, "Hammer");
|
|
break;
|
|
}
|
|
}
|
|
display_cacheinfo(c);
|
|
|
|
/* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
|
|
if (c->x86_power & (1<<8))
|
|
set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
|
|
|
|
/* Multi core CPU? */
|
|
if (c->extended_cpuid_level >= 0x80000008)
|
|
amd_detect_cmp(c);
|
|
|
|
if (c->extended_cpuid_level >= 0x80000006 &&
|
|
(cpuid_edx(0x80000006) & 0xf000))
|
|
num_cache_leaves = 4;
|
|
else
|
|
num_cache_leaves = 3;
|
|
|
|
/* RDTSC can be speculated around */
|
|
clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
|
|
|
|
/* Family 10 doesn't support C states in MWAIT so don't use it */
|
|
if (c->x86 == 0x10 && !force_mwait)
|
|
clear_bit(X86_FEATURE_MWAIT, &c->x86_capability);
|
|
}
|
|
|
|
static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
u32 eax, ebx, ecx, edx;
|
|
int index_msb, core_bits;
|
|
|
|
cpuid(1, &eax, &ebx, &ecx, &edx);
|
|
|
|
|
|
if (!cpu_has(c, X86_FEATURE_HT))
|
|
return;
|
|
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
|
|
goto out;
|
|
|
|
smp_num_siblings = (ebx & 0xff0000) >> 16;
|
|
|
|
if (smp_num_siblings == 1) {
|
|
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
|
|
} else if (smp_num_siblings > 1 ) {
|
|
|
|
if (smp_num_siblings > NR_CPUS) {
|
|
printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
|
|
smp_num_siblings = 1;
|
|
return;
|
|
}
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
c->phys_proc_id = phys_pkg_id(index_msb);
|
|
|
|
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
|
|
|
|
index_msb = get_count_order(smp_num_siblings) ;
|
|
|
|
core_bits = get_count_order(c->x86_max_cores);
|
|
|
|
c->cpu_core_id = phys_pkg_id(index_msb) &
|
|
((1 << core_bits) - 1);
|
|
}
|
|
out:
|
|
if ((c->x86_max_cores * smp_num_siblings) > 1) {
|
|
printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
|
|
printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* find out the number of processor cores on the die
|
|
*/
|
|
static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int eax, t;
|
|
|
|
if (c->cpuid_level < 4)
|
|
return 1;
|
|
|
|
cpuid_count(4, 0, &eax, &t, &t, &t);
|
|
|
|
if (eax & 0x1f)
|
|
return ((eax >> 26) + 1);
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static void srat_detect_node(void)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
unsigned node;
|
|
int cpu = smp_processor_id();
|
|
int apicid = hard_smp_processor_id();
|
|
|
|
/* Don't do the funky fallback heuristics the AMD version employs
|
|
for now. */
|
|
node = apicid_to_node[apicid];
|
|
if (node == NUMA_NO_NODE)
|
|
node = first_node(node_online_map);
|
|
numa_set_node(cpu, node);
|
|
|
|
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
|
|
#endif
|
|
}
|
|
|
|
static void __cpuinit init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Cache sizes */
|
|
unsigned n;
|
|
|
|
init_intel_cacheinfo(c);
|
|
if (c->cpuid_level > 9 ) {
|
|
unsigned eax = cpuid_eax(10);
|
|
/* Check for version and the number of counters */
|
|
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
|
|
set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
|
|
}
|
|
|
|
if (cpu_has_ds) {
|
|
unsigned int l1, l2;
|
|
rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
|
|
if (!(l1 & (1<<11)))
|
|
set_bit(X86_FEATURE_BTS, c->x86_capability);
|
|
if (!(l1 & (1<<12)))
|
|
set_bit(X86_FEATURE_PEBS, c->x86_capability);
|
|
}
|
|
|
|
n = c->extended_cpuid_level;
|
|
if (n >= 0x80000008) {
|
|
unsigned eax = cpuid_eax(0x80000008);
|
|
c->x86_virt_bits = (eax >> 8) & 0xff;
|
|
c->x86_phys_bits = eax & 0xff;
|
|
/* CPUID workaround for Intel 0F34 CPU */
|
|
if (c->x86_vendor == X86_VENDOR_INTEL &&
|
|
c->x86 == 0xF && c->x86_model == 0x3 &&
|
|
c->x86_mask == 0x4)
|
|
c->x86_phys_bits = 36;
|
|
}
|
|
|
|
if (c->x86 == 15)
|
|
c->x86_cache_alignment = c->x86_clflush_size * 2;
|
|
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
|
|
(c->x86 == 0x6 && c->x86_model >= 0x0e))
|
|
set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
|
|
if (c->x86 == 6)
|
|
set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
|
|
if (c->x86 == 15)
|
|
set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
|
|
else
|
|
clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
|
|
c->x86_max_cores = intel_num_cpu_cores(c);
|
|
|
|
srat_detect_node();
|
|
}
|
|
|
|
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
|
|
{
|
|
char *v = c->x86_vendor_id;
|
|
|
|
if (!strcmp(v, "AuthenticAMD"))
|
|
c->x86_vendor = X86_VENDOR_AMD;
|
|
else if (!strcmp(v, "GenuineIntel"))
|
|
c->x86_vendor = X86_VENDOR_INTEL;
|
|
else
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
}
|
|
|
|
struct cpu_model_info {
|
|
int vendor;
|
|
int family;
|
|
char *model_names[16];
|
|
};
|
|
|
|
/* Do some early cpuid on the boot CPU to get some parameter that are
|
|
needed before check_bugs. Everything advanced is in identify_cpu
|
|
below. */
|
|
void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 tfms;
|
|
|
|
c->loops_per_jiffy = loops_per_jiffy;
|
|
c->x86_cache_size = -1;
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
c->x86_model = c->x86_mask = 0; /* So far unknown... */
|
|
c->x86_vendor_id[0] = '\0'; /* Unset */
|
|
c->x86_model_id[0] = '\0'; /* Unset */
|
|
c->x86_clflush_size = 64;
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
c->x86_max_cores = 1;
|
|
c->extended_cpuid_level = 0;
|
|
memset(&c->x86_capability, 0, sizeof c->x86_capability);
|
|
|
|
/* Get vendor name */
|
|
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
|
|
(unsigned int *)&c->x86_vendor_id[0],
|
|
(unsigned int *)&c->x86_vendor_id[8],
|
|
(unsigned int *)&c->x86_vendor_id[4]);
|
|
|
|
get_cpu_vendor(c);
|
|
|
|
/* Initialize the standard set of capabilities */
|
|
/* Note that the vendor-specific code below might override */
|
|
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
__u32 misc;
|
|
cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
|
|
&c->x86_capability[0]);
|
|
c->x86 = (tfms >> 8) & 0xf;
|
|
c->x86_model = (tfms >> 4) & 0xf;
|
|
c->x86_mask = tfms & 0xf;
|
|
if (c->x86 == 0xf)
|
|
c->x86 += (tfms >> 20) & 0xff;
|
|
if (c->x86 >= 0x6)
|
|
c->x86_model += ((tfms >> 16) & 0xF) << 4;
|
|
if (c->x86_capability[0] & (1<<19))
|
|
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
|
|
} else {
|
|
/* Have CPUID level 0 only - unheard of */
|
|
c->x86 = 4;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This does the hard work of actually picking apart the CPU stuff...
|
|
*/
|
|
void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
u32 xlvl;
|
|
|
|
early_identify_cpu(c);
|
|
|
|
/* AMD-defined flags: level 0x80000001 */
|
|
xlvl = cpuid_eax(0x80000000);
|
|
c->extended_cpuid_level = xlvl;
|
|
if ((xlvl & 0xffff0000) == 0x80000000) {
|
|
if (xlvl >= 0x80000001) {
|
|
c->x86_capability[1] = cpuid_edx(0x80000001);
|
|
c->x86_capability[6] = cpuid_ecx(0x80000001);
|
|
}
|
|
if (xlvl >= 0x80000004)
|
|
get_model_name(c); /* Default name */
|
|
}
|
|
|
|
/* Transmeta-defined flags: level 0x80860001 */
|
|
xlvl = cpuid_eax(0x80860000);
|
|
if ((xlvl & 0xffff0000) == 0x80860000) {
|
|
/* Don't set x86_cpuid_level here for now to not confuse. */
|
|
if (xlvl >= 0x80860001)
|
|
c->x86_capability[2] = cpuid_edx(0x80860001);
|
|
}
|
|
|
|
init_scattered_cpuid_features(c);
|
|
|
|
c->apicid = phys_pkg_id(0);
|
|
|
|
/*
|
|
* Vendor-specific initialization. In this section we
|
|
* canonicalize the feature flags, meaning if there are
|
|
* features a certain CPU supports which CPUID doesn't
|
|
* tell us, CPUID claiming incorrect flags, or other bugs,
|
|
* we handle them here.
|
|
*
|
|
* At the end of this section, c->x86_capability better
|
|
* indicate the features this CPU genuinely supports!
|
|
*/
|
|
switch (c->x86_vendor) {
|
|
case X86_VENDOR_AMD:
|
|
init_amd(c);
|
|
break;
|
|
|
|
case X86_VENDOR_INTEL:
|
|
init_intel(c);
|
|
break;
|
|
|
|
case X86_VENDOR_UNKNOWN:
|
|
default:
|
|
display_cacheinfo(c);
|
|
break;
|
|
}
|
|
|
|
select_idle_routine(c);
|
|
detect_ht(c);
|
|
|
|
/*
|
|
* On SMP, boot_cpu_data holds the common feature set between
|
|
* all CPUs; so make sure that we indicate which features are
|
|
* common between the CPUs. The first time this routine gets
|
|
* executed, c == &boot_cpu_data.
|
|
*/
|
|
if (c != &boot_cpu_data) {
|
|
/* AND the already accumulated flags with these */
|
|
for (i = 0 ; i < NCAPINTS ; i++)
|
|
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
|
|
}
|
|
|
|
#ifdef CONFIG_X86_MCE
|
|
mcheck_init(c);
|
|
#endif
|
|
if (c != &boot_cpu_data)
|
|
mtrr_ap_init();
|
|
#ifdef CONFIG_NUMA
|
|
numa_add_cpu(smp_processor_id());
|
|
#endif
|
|
}
|
|
|
|
|
|
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
|
|
{
|
|
if (c->x86_model_id[0])
|
|
printk("%s", c->x86_model_id);
|
|
|
|
if (c->x86_mask || c->cpuid_level >= 0)
|
|
printk(" stepping %02x\n", c->x86_mask);
|
|
else
|
|
printk("\n");
|
|
}
|
|
|
|
/*
|
|
* Get CPU information for use by the procfs.
|
|
*/
|
|
|
|
static int show_cpuinfo(struct seq_file *m, void *v)
|
|
{
|
|
struct cpuinfo_x86 *c = v;
|
|
|
|
/*
|
|
* These flag bits must match the definitions in <asm/cpufeature.h>.
|
|
* NULL means this bit is undefined or reserved; either way it doesn't
|
|
* have meaning as far as Linux is concerned. Note that it's important
|
|
* to realize there is a difference between this table and CPUID -- if
|
|
* applications want to get the raw CPUID data, they should access
|
|
* /dev/cpu/<cpu_nr>/cpuid instead.
|
|
*/
|
|
static char *x86_cap_flags[] = {
|
|
/* Intel-defined */
|
|
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
|
|
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
|
|
"pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
|
|
"fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
|
|
|
|
/* AMD-defined */
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
|
|
NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
|
|
"3dnowext", "3dnow",
|
|
|
|
/* Transmeta-defined */
|
|
"recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* Other (Linux-defined) */
|
|
"cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
|
|
NULL, NULL, NULL, NULL,
|
|
"constant_tsc", "up", NULL, "arch_perfmon",
|
|
"pebs", "bts", NULL, "sync_rdtsc",
|
|
"rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* Intel-defined (#2) */
|
|
"pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
|
|
"tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
|
|
NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* VIA/Cyrix/Centaur-defined */
|
|
NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
|
|
"ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* AMD-defined (#2) */
|
|
"lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy",
|
|
"altmovcr8", "abm", "sse4a",
|
|
"misalignsse", "3dnowprefetch",
|
|
"osvw", "ibs", NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* Auxiliary (Linux-defined) */
|
|
"ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
};
|
|
static char *x86_power_flags[] = {
|
|
"ts", /* temperature sensor */
|
|
"fid", /* frequency id control */
|
|
"vid", /* voltage id control */
|
|
"ttp", /* thermal trip */
|
|
"tm",
|
|
"stc",
|
|
"100mhzsteps",
|
|
"hwpstate",
|
|
"", /* tsc invariant mapped to constant_tsc */
|
|
/* nothing */
|
|
};
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (!cpu_online(c-cpu_data))
|
|
return 0;
|
|
#endif
|
|
|
|
seq_printf(m,"processor\t: %u\n"
|
|
"vendor_id\t: %s\n"
|
|
"cpu family\t: %d\n"
|
|
"model\t\t: %d\n"
|
|
"model name\t: %s\n",
|
|
(unsigned)(c-cpu_data),
|
|
c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
|
|
c->x86,
|
|
(int)c->x86_model,
|
|
c->x86_model_id[0] ? c->x86_model_id : "unknown");
|
|
|
|
if (c->x86_mask || c->cpuid_level >= 0)
|
|
seq_printf(m, "stepping\t: %d\n", c->x86_mask);
|
|
else
|
|
seq_printf(m, "stepping\t: unknown\n");
|
|
|
|
if (cpu_has(c,X86_FEATURE_TSC)) {
|
|
unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
|
|
if (!freq)
|
|
freq = cpu_khz;
|
|
seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
|
|
freq / 1000, (freq % 1000));
|
|
}
|
|
|
|
/* Cache size */
|
|
if (c->x86_cache_size >= 0)
|
|
seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (smp_num_siblings * c->x86_max_cores > 1) {
|
|
int cpu = c - cpu_data;
|
|
seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
|
|
seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
|
|
seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
|
|
seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
|
|
}
|
|
#endif
|
|
|
|
seq_printf(m,
|
|
"fpu\t\t: yes\n"
|
|
"fpu_exception\t: yes\n"
|
|
"cpuid level\t: %d\n"
|
|
"wp\t\t: yes\n"
|
|
"flags\t\t:",
|
|
c->cpuid_level);
|
|
|
|
{
|
|
int i;
|
|
for ( i = 0 ; i < 32*NCAPINTS ; i++ )
|
|
if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
|
|
seq_printf(m, " %s", x86_cap_flags[i]);
|
|
}
|
|
|
|
seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
|
|
c->loops_per_jiffy/(500000/HZ),
|
|
(c->loops_per_jiffy/(5000/HZ)) % 100);
|
|
|
|
if (c->x86_tlbsize > 0)
|
|
seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
|
|
seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
|
|
seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
|
|
|
|
seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
|
|
c->x86_phys_bits, c->x86_virt_bits);
|
|
|
|
seq_printf(m, "power management:");
|
|
{
|
|
unsigned i;
|
|
for (i = 0; i < 32; i++)
|
|
if (c->x86_power & (1 << i)) {
|
|
if (i < ARRAY_SIZE(x86_power_flags) &&
|
|
x86_power_flags[i])
|
|
seq_printf(m, "%s%s",
|
|
x86_power_flags[i][0]?" ":"",
|
|
x86_power_flags[i]);
|
|
else
|
|
seq_printf(m, " [%d]", i);
|
|
}
|
|
}
|
|
|
|
seq_printf(m, "\n\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *c_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
|
|
}
|
|
|
|
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return c_start(m, pos);
|
|
}
|
|
|
|
static void c_stop(struct seq_file *m, void *v)
|
|
{
|
|
}
|
|
|
|
struct seq_operations cpuinfo_op = {
|
|
.start =c_start,
|
|
.next = c_next,
|
|
.stop = c_stop,
|
|
.show = show_cpuinfo,
|
|
};
|