android_kernel_motorola_sm6225/include/asm-powerpc/spinlock.h
Anton Blanchard 144b9c135b [PATCH] powerpc: use lwsync in atomics, bitops, lock functions
eieio is only a store - store ordering. When used to order an unlock
operation loads may leak out of the critical region. This is potentially
buggy, one example is if a user wants to atomically read a couple of
values.

We can solve this with an lwsync which orders everything except store - load.

I removed the (now unused) EIEIO_ON_SMP macros and the c versions
isync_on_smp and eieio_on_smp now we dont use them. I also removed some
old comments that were used to identify inline spinlocks in assembly,
they dont make sense now our locks are out of line.

Another interesting thing was that read_unlock was using an eieio even
though the rest of the spinlock code had already been converted to
use lwsync.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-01-13 21:18:50 +11:00

272 lines
6.2 KiB
C

#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H
#ifdef __KERNEL__
/*
* Simple spin lock operations.
*
* Copyright (C) 2001-2004 Paul Mackerras <paulus@au.ibm.com>, IBM
* Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
* Copyright (C) 2002 Dave Engebretsen <engebret@us.ibm.com>, IBM
* Rework to support virtual processors
*
* Type of int is used as a full 64b word is not necessary.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* (the type definitions are in asm/spinlock_types.h)
*/
#ifdef CONFIG_PPC64
#include <asm/paca.h>
#include <asm/hvcall.h>
#include <asm/iseries/hv_call.h>
#endif
#include <asm/asm-compat.h>
#include <asm/synch.h>
#define __raw_spin_is_locked(x) ((x)->slock != 0)
#ifdef CONFIG_PPC64
/* use 0x800000yy when locked, where yy == CPU number */
#define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
#else
#define LOCK_TOKEN 1
#endif
/*
* This returns the old value in the lock, so we succeeded
* in getting the lock if the return value is 0.
*/
static __inline__ unsigned long __spin_trylock(raw_spinlock_t *lock)
{
unsigned long tmp, token;
token = LOCK_TOKEN;
__asm__ __volatile__(
"1: lwarx %0,0,%2\n\
cmpwi 0,%0,0\n\
bne- 2f\n\
stwcx. %1,0,%2\n\
bne- 1b\n\
isync\n\
2:" : "=&r" (tmp)
: "r" (token), "r" (&lock->slock)
: "cr0", "memory");
return tmp;
}
static int __inline__ __raw_spin_trylock(raw_spinlock_t *lock)
{
return __spin_trylock(lock) == 0;
}
/*
* On a system with shared processors (that is, where a physical
* processor is multiplexed between several virtual processors),
* there is no point spinning on a lock if the holder of the lock
* isn't currently scheduled on a physical processor. Instead
* we detect this situation and ask the hypervisor to give the
* rest of our timeslice to the lock holder.
*
* So that we can tell which virtual processor is holding a lock,
* we put 0x80000000 | smp_processor_id() in the lock when it is
* held. Conveniently, we have a word in the paca that holds this
* value.
*/
#if defined(CONFIG_PPC_SPLPAR) || defined(CONFIG_PPC_ISERIES)
/* We only yield to the hypervisor if we are in shared processor mode */
#define SHARED_PROCESSOR (get_lppaca()->shared_proc)
extern void __spin_yield(raw_spinlock_t *lock);
extern void __rw_yield(raw_rwlock_t *lock);
#else /* SPLPAR || ISERIES */
#define __spin_yield(x) barrier()
#define __rw_yield(x) barrier()
#define SHARED_PROCESSOR 0
#endif
static void __inline__ __raw_spin_lock(raw_spinlock_t *lock)
{
while (1) {
if (likely(__spin_trylock(lock) == 0))
break;
do {
HMT_low();
if (SHARED_PROCESSOR)
__spin_yield(lock);
} while (unlikely(lock->slock != 0));
HMT_medium();
}
}
static void __inline__ __raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long flags)
{
unsigned long flags_dis;
while (1) {
if (likely(__spin_trylock(lock) == 0))
break;
local_save_flags(flags_dis);
local_irq_restore(flags);
do {
HMT_low();
if (SHARED_PROCESSOR)
__spin_yield(lock);
} while (unlikely(lock->slock != 0));
HMT_medium();
local_irq_restore(flags_dis);
}
}
static __inline__ void __raw_spin_unlock(raw_spinlock_t *lock)
{
__asm__ __volatile__("# __raw_spin_unlock\n\t"
LWSYNC_ON_SMP: : :"memory");
lock->slock = 0;
}
#ifdef CONFIG_PPC64
extern void __raw_spin_unlock_wait(raw_spinlock_t *lock);
#else
#define __raw_spin_unlock_wait(lock) \
do { while (__raw_spin_is_locked(lock)) cpu_relax(); } while (0)
#endif
/*
* Read-write spinlocks, allowing multiple readers
* but only one writer.
*
* NOTE! it is quite common to have readers in interrupts
* but no interrupt writers. For those circumstances we
* can "mix" irq-safe locks - any writer needs to get a
* irq-safe write-lock, but readers can get non-irqsafe
* read-locks.
*/
#define __raw_read_can_lock(rw) ((rw)->lock >= 0)
#define __raw_write_can_lock(rw) (!(rw)->lock)
#ifdef CONFIG_PPC64
#define __DO_SIGN_EXTEND "extsw %0,%0\n"
#define WRLOCK_TOKEN LOCK_TOKEN /* it's negative */
#else
#define __DO_SIGN_EXTEND
#define WRLOCK_TOKEN (-1)
#endif
/*
* This returns the old value in the lock + 1,
* so we got a read lock if the return value is > 0.
*/
static long __inline__ __read_trylock(raw_rwlock_t *rw)
{
long tmp;
__asm__ __volatile__(
"1: lwarx %0,0,%1\n"
__DO_SIGN_EXTEND
" addic. %0,%0,1\n\
ble- 2f\n"
PPC405_ERR77(0,%1)
" stwcx. %0,0,%1\n\
bne- 1b\n\
isync\n\
2:" : "=&r" (tmp)
: "r" (&rw->lock)
: "cr0", "xer", "memory");
return tmp;
}
/*
* This returns the old value in the lock,
* so we got the write lock if the return value is 0.
*/
static __inline__ long __write_trylock(raw_rwlock_t *rw)
{
long tmp, token;
token = WRLOCK_TOKEN;
__asm__ __volatile__(
"1: lwarx %0,0,%2\n\
cmpwi 0,%0,0\n\
bne- 2f\n"
PPC405_ERR77(0,%1)
" stwcx. %1,0,%2\n\
bne- 1b\n\
isync\n\
2:" : "=&r" (tmp)
: "r" (token), "r" (&rw->lock)
: "cr0", "memory");
return tmp;
}
static void __inline__ __raw_read_lock(raw_rwlock_t *rw)
{
while (1) {
if (likely(__read_trylock(rw) > 0))
break;
do {
HMT_low();
if (SHARED_PROCESSOR)
__rw_yield(rw);
} while (unlikely(rw->lock < 0));
HMT_medium();
}
}
static void __inline__ __raw_write_lock(raw_rwlock_t *rw)
{
while (1) {
if (likely(__write_trylock(rw) == 0))
break;
do {
HMT_low();
if (SHARED_PROCESSOR)
__rw_yield(rw);
} while (unlikely(rw->lock != 0));
HMT_medium();
}
}
static int __inline__ __raw_read_trylock(raw_rwlock_t *rw)
{
return __read_trylock(rw) > 0;
}
static int __inline__ __raw_write_trylock(raw_rwlock_t *rw)
{
return __write_trylock(rw) == 0;
}
static void __inline__ __raw_read_unlock(raw_rwlock_t *rw)
{
long tmp;
__asm__ __volatile__(
"# read_unlock\n\t"
LWSYNC_ON_SMP
"1: lwarx %0,0,%1\n\
addic %0,%0,-1\n"
PPC405_ERR77(0,%1)
" stwcx. %0,0,%1\n\
bne- 1b"
: "=&r"(tmp)
: "r"(&rw->lock)
: "cr0", "memory");
}
static __inline__ void __raw_write_unlock(raw_rwlock_t *rw)
{
__asm__ __volatile__("# write_unlock\n\t"
LWSYNC_ON_SMP: : :"memory");
rw->lock = 0;
}
#endif /* __KERNEL__ */
#endif /* __ASM_SPINLOCK_H */