c167b77d5e
SGI-PV: 960791 SGI-Modid: xfs-linux-melb:xfs-kern:28021a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: Barry Naujok <bnaujok@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
3080 lines
87 KiB
C
3080 lines
87 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_da_btree.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_dir2_sf.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_attr_leaf.h"
|
|
#include "xfs_error.h"
|
|
|
|
/*
|
|
* xfs_attr_leaf.c
|
|
*
|
|
* Routines to implement leaf blocks of attributes as Btrees of hashed names.
|
|
*/
|
|
|
|
/*========================================================================
|
|
* Function prototypes for the kernel.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Routines used for growing the Btree.
|
|
*/
|
|
STATIC int xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t which_block,
|
|
xfs_dabuf_t **bpp);
|
|
STATIC int xfs_attr_leaf_add_work(xfs_dabuf_t *leaf_buffer, xfs_da_args_t *args,
|
|
int freemap_index);
|
|
STATIC void xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *leaf_buffer);
|
|
STATIC void xfs_attr_leaf_rebalance(xfs_da_state_t *state,
|
|
xfs_da_state_blk_t *blk1,
|
|
xfs_da_state_blk_t *blk2);
|
|
STATIC int xfs_attr_leaf_figure_balance(xfs_da_state_t *state,
|
|
xfs_da_state_blk_t *leaf_blk_1,
|
|
xfs_da_state_blk_t *leaf_blk_2,
|
|
int *number_entries_in_blk1,
|
|
int *number_usedbytes_in_blk1);
|
|
|
|
/*
|
|
* Routines used for shrinking the Btree.
|
|
*/
|
|
STATIC int xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
|
|
xfs_dabuf_t *bp, int level);
|
|
STATIC int xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
|
|
xfs_dabuf_t *bp);
|
|
STATIC int xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp,
|
|
xfs_dablk_t blkno, int blkcnt);
|
|
|
|
/*
|
|
* Utility routines.
|
|
*/
|
|
STATIC void xfs_attr_leaf_moveents(xfs_attr_leafblock_t *src_leaf,
|
|
int src_start,
|
|
xfs_attr_leafblock_t *dst_leaf,
|
|
int dst_start, int move_count,
|
|
xfs_mount_t *mp);
|
|
STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
|
|
|
|
/*========================================================================
|
|
* Namespace helper routines
|
|
*========================================================================*/
|
|
|
|
STATIC_INLINE attrnames_t *
|
|
xfs_attr_flags_namesp(int flags)
|
|
{
|
|
return ((flags & XFS_ATTR_SECURE) ? &attr_secure:
|
|
((flags & XFS_ATTR_ROOT) ? &attr_trusted : &attr_user));
|
|
}
|
|
|
|
/*
|
|
* If namespace bits don't match return 0.
|
|
* If all match then return 1.
|
|
*/
|
|
STATIC_INLINE int
|
|
xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
|
|
{
|
|
return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
|
|
}
|
|
|
|
/*
|
|
* If namespace bits don't match and we don't have an override for it
|
|
* then return 0.
|
|
* If all match or are overridable then return 1.
|
|
*/
|
|
STATIC_INLINE int
|
|
xfs_attr_namesp_match_overrides(int arg_flags, int ondisk_flags)
|
|
{
|
|
if (((arg_flags & ATTR_SECURE) == 0) !=
|
|
((ondisk_flags & XFS_ATTR_SECURE) == 0) &&
|
|
!(arg_flags & ATTR_KERNORMALS))
|
|
return 0;
|
|
if (((arg_flags & ATTR_ROOT) == 0) !=
|
|
((ondisk_flags & XFS_ATTR_ROOT) == 0) &&
|
|
!(arg_flags & ATTR_KERNROOTLS))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*========================================================================
|
|
* External routines when attribute fork size < XFS_LITINO(mp).
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Query whether the requested number of additional bytes of extended
|
|
* attribute space will be able to fit inline.
|
|
* Returns zero if not, else the di_forkoff fork offset to be used in the
|
|
* literal area for attribute data once the new bytes have been added.
|
|
*
|
|
* di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
|
|
* special case for dev/uuid inodes, they have fixed size data forks.
|
|
*/
|
|
int
|
|
xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
|
|
{
|
|
int offset;
|
|
int minforkoff; /* lower limit on valid forkoff locations */
|
|
int maxforkoff; /* upper limit on valid forkoff locations */
|
|
int dsize;
|
|
xfs_mount_t *mp = dp->i_mount;
|
|
|
|
offset = (XFS_LITINO(mp) - bytes) >> 3; /* rounded down */
|
|
|
|
switch (dp->i_d.di_format) {
|
|
case XFS_DINODE_FMT_DEV:
|
|
minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
|
|
return (offset >= minforkoff) ? minforkoff : 0;
|
|
case XFS_DINODE_FMT_UUID:
|
|
minforkoff = roundup(sizeof(uuid_t), 8) >> 3;
|
|
return (offset >= minforkoff) ? minforkoff : 0;
|
|
}
|
|
|
|
if (!(mp->m_flags & XFS_MOUNT_ATTR2)) {
|
|
if (bytes <= XFS_IFORK_ASIZE(dp))
|
|
return mp->m_attroffset >> 3;
|
|
return 0;
|
|
}
|
|
|
|
dsize = dp->i_df.if_bytes;
|
|
|
|
switch (dp->i_d.di_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
/*
|
|
* If there is no attr fork and the data fork is extents,
|
|
* determine if creating the default attr fork will result
|
|
* in the extents form migrating to btree. If so, the
|
|
* minimum offset only needs to be the space required for
|
|
* the btree root.
|
|
*/
|
|
if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > mp->m_attroffset)
|
|
dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_BTREE:
|
|
/*
|
|
* If have data btree then keep forkoff if we have one,
|
|
* otherwise we are adding a new attr, so then we set
|
|
* minforkoff to where the btree root can finish so we have
|
|
* plenty of room for attrs
|
|
*/
|
|
if (dp->i_d.di_forkoff) {
|
|
if (offset < dp->i_d.di_forkoff)
|
|
return 0;
|
|
else
|
|
return dp->i_d.di_forkoff;
|
|
} else
|
|
dsize = XFS_BMAP_BROOT_SPACE(dp->i_df.if_broot);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* A data fork btree root must have space for at least
|
|
* MINDBTPTRS key/ptr pairs if the data fork is small or empty.
|
|
*/
|
|
minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
|
|
minforkoff = roundup(minforkoff, 8) >> 3;
|
|
|
|
/* attr fork btree root can have at least this many key/ptr pairs */
|
|
maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
|
|
maxforkoff = maxforkoff >> 3; /* rounded down */
|
|
|
|
if (offset >= minforkoff && offset < maxforkoff)
|
|
return offset;
|
|
if (offset >= maxforkoff)
|
|
return maxforkoff;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Switch on the ATTR2 superblock bit (implies also FEATURES2)
|
|
*/
|
|
STATIC void
|
|
xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
|
|
{
|
|
unsigned long s;
|
|
|
|
if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
|
|
!(XFS_SB_VERSION_HASATTR2(&mp->m_sb))) {
|
|
s = XFS_SB_LOCK(mp);
|
|
if (!XFS_SB_VERSION_HASATTR2(&mp->m_sb)) {
|
|
XFS_SB_VERSION_ADDATTR2(&mp->m_sb);
|
|
XFS_SB_UNLOCK(mp, s);
|
|
xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2);
|
|
} else
|
|
XFS_SB_UNLOCK(mp, s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the initial contents of a shortform attribute list.
|
|
*/
|
|
void
|
|
xfs_attr_shortform_create(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_sf_hdr_t *hdr;
|
|
xfs_inode_t *dp;
|
|
xfs_ifork_t *ifp;
|
|
|
|
dp = args->dp;
|
|
ASSERT(dp != NULL);
|
|
ifp = dp->i_afp;
|
|
ASSERT(ifp != NULL);
|
|
ASSERT(ifp->if_bytes == 0);
|
|
if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
|
|
ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
|
|
dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
|
|
ifp->if_flags |= XFS_IFINLINE;
|
|
} else {
|
|
ASSERT(ifp->if_flags & XFS_IFINLINE);
|
|
}
|
|
xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
|
|
hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
|
|
hdr->count = 0;
|
|
hdr->totsize = cpu_to_be16(sizeof(*hdr));
|
|
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
|
|
}
|
|
|
|
/*
|
|
* Add a name/value pair to the shortform attribute list.
|
|
* Overflow from the inode has already been checked for.
|
|
*/
|
|
void
|
|
xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
|
|
{
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
int i, offset, size;
|
|
xfs_mount_t *mp;
|
|
xfs_inode_t *dp;
|
|
xfs_ifork_t *ifp;
|
|
|
|
dp = args->dp;
|
|
mp = dp->i_mount;
|
|
dp->i_d.di_forkoff = forkoff;
|
|
dp->i_df.if_ext_max =
|
|
XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
|
|
dp->i_afp->if_ext_max =
|
|
XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
|
|
|
|
ifp = dp->i_afp;
|
|
ASSERT(ifp->if_flags & XFS_IFINLINE);
|
|
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
|
|
sfe = &sf->list[0];
|
|
for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
|
|
#ifdef DEBUG
|
|
if (sfe->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
|
|
continue;
|
|
ASSERT(0);
|
|
#endif
|
|
}
|
|
|
|
offset = (char *)sfe - (char *)sf;
|
|
size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
|
|
xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
|
|
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
|
|
sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
|
|
|
|
sfe->namelen = args->namelen;
|
|
sfe->valuelen = args->valuelen;
|
|
sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
|
|
memcpy(sfe->nameval, args->name, args->namelen);
|
|
memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
|
|
sf->hdr.count++;
|
|
be16_add(&sf->hdr.totsize, size);
|
|
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
|
|
|
|
xfs_sbversion_add_attr2(mp, args->trans);
|
|
}
|
|
|
|
/*
|
|
* Remove an attribute from the shortform attribute list structure.
|
|
*/
|
|
int
|
|
xfs_attr_shortform_remove(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
int base, size=0, end, totsize, i;
|
|
xfs_mount_t *mp;
|
|
xfs_inode_t *dp;
|
|
|
|
dp = args->dp;
|
|
mp = dp->i_mount;
|
|
base = sizeof(xfs_attr_sf_hdr_t);
|
|
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
|
|
sfe = &sf->list[0];
|
|
end = sf->hdr.count;
|
|
for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
|
|
base += size, i++) {
|
|
size = XFS_ATTR_SF_ENTSIZE(sfe);
|
|
if (sfe->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
|
|
continue;
|
|
break;
|
|
}
|
|
if (i == end)
|
|
return(XFS_ERROR(ENOATTR));
|
|
|
|
/*
|
|
* Fix up the attribute fork data, covering the hole
|
|
*/
|
|
end = base + size;
|
|
totsize = be16_to_cpu(sf->hdr.totsize);
|
|
if (end != totsize)
|
|
memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
|
|
sf->hdr.count--;
|
|
be16_add(&sf->hdr.totsize, -size);
|
|
|
|
/*
|
|
* Fix up the start offset of the attribute fork
|
|
*/
|
|
totsize -= size;
|
|
if (totsize == sizeof(xfs_attr_sf_hdr_t) && !args->addname &&
|
|
(mp->m_flags & XFS_MOUNT_ATTR2) &&
|
|
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE)) {
|
|
/*
|
|
* Last attribute now removed, revert to original
|
|
* inode format making all literal area available
|
|
* to the data fork once more.
|
|
*/
|
|
xfs_idestroy_fork(dp, XFS_ATTR_FORK);
|
|
dp->i_d.di_forkoff = 0;
|
|
dp->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
|
ASSERT(dp->i_d.di_anextents == 0);
|
|
ASSERT(dp->i_afp == NULL);
|
|
dp->i_df.if_ext_max =
|
|
XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
|
|
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE);
|
|
} else {
|
|
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
|
|
dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
|
|
ASSERT(dp->i_d.di_forkoff);
|
|
ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || args->addname ||
|
|
!(mp->m_flags & XFS_MOUNT_ATTR2) ||
|
|
dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
|
|
dp->i_afp->if_ext_max =
|
|
XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
|
|
dp->i_df.if_ext_max =
|
|
XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
|
|
xfs_trans_log_inode(args->trans, dp,
|
|
XFS_ILOG_CORE | XFS_ILOG_ADATA);
|
|
}
|
|
|
|
xfs_sbversion_add_attr2(mp, args->trans);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Look up a name in a shortform attribute list structure.
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
xfs_attr_shortform_lookup(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
int i;
|
|
xfs_ifork_t *ifp;
|
|
|
|
ifp = args->dp->i_afp;
|
|
ASSERT(ifp->if_flags & XFS_IFINLINE);
|
|
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
|
|
sfe = &sf->list[0];
|
|
for (i = 0; i < sf->hdr.count;
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
|
|
if (sfe->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
|
|
continue;
|
|
return(XFS_ERROR(EEXIST));
|
|
}
|
|
return(XFS_ERROR(ENOATTR));
|
|
}
|
|
|
|
/*
|
|
* Look up a name in a shortform attribute list structure.
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
xfs_attr_shortform_getvalue(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
int i;
|
|
|
|
ASSERT(args->dp->i_d.di_aformat == XFS_IFINLINE);
|
|
sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
|
|
sfe = &sf->list[0];
|
|
for (i = 0; i < sf->hdr.count;
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
|
|
if (sfe->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
|
|
continue;
|
|
if (args->flags & ATTR_KERNOVAL) {
|
|
args->valuelen = sfe->valuelen;
|
|
return(XFS_ERROR(EEXIST));
|
|
}
|
|
if (args->valuelen < sfe->valuelen) {
|
|
args->valuelen = sfe->valuelen;
|
|
return(XFS_ERROR(ERANGE));
|
|
}
|
|
args->valuelen = sfe->valuelen;
|
|
memcpy(args->value, &sfe->nameval[args->namelen],
|
|
args->valuelen);
|
|
return(XFS_ERROR(EEXIST));
|
|
}
|
|
return(XFS_ERROR(ENOATTR));
|
|
}
|
|
|
|
/*
|
|
* Convert from using the shortform to the leaf.
|
|
*/
|
|
int
|
|
xfs_attr_shortform_to_leaf(xfs_da_args_t *args)
|
|
{
|
|
xfs_inode_t *dp;
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
xfs_da_args_t nargs;
|
|
char *tmpbuffer;
|
|
int error, i, size;
|
|
xfs_dablk_t blkno;
|
|
xfs_dabuf_t *bp;
|
|
xfs_ifork_t *ifp;
|
|
|
|
dp = args->dp;
|
|
ifp = dp->i_afp;
|
|
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
|
|
size = be16_to_cpu(sf->hdr.totsize);
|
|
tmpbuffer = kmem_alloc(size, KM_SLEEP);
|
|
ASSERT(tmpbuffer != NULL);
|
|
memcpy(tmpbuffer, ifp->if_u1.if_data, size);
|
|
sf = (xfs_attr_shortform_t *)tmpbuffer;
|
|
|
|
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
|
|
bp = NULL;
|
|
error = xfs_da_grow_inode(args, &blkno);
|
|
if (error) {
|
|
/*
|
|
* If we hit an IO error middle of the transaction inside
|
|
* grow_inode(), we may have inconsistent data. Bail out.
|
|
*/
|
|
if (error == EIO)
|
|
goto out;
|
|
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
|
|
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(blkno == 0);
|
|
error = xfs_attr_leaf_create(args, blkno, &bp);
|
|
if (error) {
|
|
error = xfs_da_shrink_inode(args, 0, bp);
|
|
bp = NULL;
|
|
if (error)
|
|
goto out;
|
|
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
|
|
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
|
|
goto out;
|
|
}
|
|
|
|
memset((char *)&nargs, 0, sizeof(nargs));
|
|
nargs.dp = dp;
|
|
nargs.firstblock = args->firstblock;
|
|
nargs.flist = args->flist;
|
|
nargs.total = args->total;
|
|
nargs.whichfork = XFS_ATTR_FORK;
|
|
nargs.trans = args->trans;
|
|
nargs.oknoent = 1;
|
|
|
|
sfe = &sf->list[0];
|
|
for (i = 0; i < sf->hdr.count; i++) {
|
|
nargs.name = (char *)sfe->nameval;
|
|
nargs.namelen = sfe->namelen;
|
|
nargs.value = (char *)&sfe->nameval[nargs.namelen];
|
|
nargs.valuelen = sfe->valuelen;
|
|
nargs.hashval = xfs_da_hashname((char *)sfe->nameval,
|
|
sfe->namelen);
|
|
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
|
|
error = xfs_attr_leaf_lookup_int(bp, &nargs); /* set a->index */
|
|
ASSERT(error == ENOATTR);
|
|
error = xfs_attr_leaf_add(bp, &nargs);
|
|
ASSERT(error != ENOSPC);
|
|
if (error)
|
|
goto out;
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
|
|
}
|
|
error = 0;
|
|
|
|
out:
|
|
if(bp)
|
|
xfs_da_buf_done(bp);
|
|
kmem_free(tmpbuffer, size);
|
|
return(error);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_attr_shortform_compare(const void *a, const void *b)
|
|
{
|
|
xfs_attr_sf_sort_t *sa, *sb;
|
|
|
|
sa = (xfs_attr_sf_sort_t *)a;
|
|
sb = (xfs_attr_sf_sort_t *)b;
|
|
if (sa->hash < sb->hash) {
|
|
return(-1);
|
|
} else if (sa->hash > sb->hash) {
|
|
return(1);
|
|
} else {
|
|
return(sa->entno - sb->entno);
|
|
}
|
|
}
|
|
|
|
|
|
#define XFS_ISRESET_CURSOR(cursor) \
|
|
(!((cursor)->initted) && !((cursor)->hashval) && \
|
|
!((cursor)->blkno) && !((cursor)->offset))
|
|
/*
|
|
* Copy out entries of shortform attribute lists for attr_list().
|
|
* Shortform attribute lists are not stored in hashval sorted order.
|
|
* If the output buffer is not large enough to hold them all, then we
|
|
* we have to calculate each entries' hashvalue and sort them before
|
|
* we can begin returning them to the user.
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
xfs_attr_shortform_list(xfs_attr_list_context_t *context)
|
|
{
|
|
attrlist_cursor_kern_t *cursor;
|
|
xfs_attr_sf_sort_t *sbuf, *sbp;
|
|
xfs_attr_shortform_t *sf;
|
|
xfs_attr_sf_entry_t *sfe;
|
|
xfs_inode_t *dp;
|
|
int sbsize, nsbuf, count, i;
|
|
int error;
|
|
|
|
ASSERT(context != NULL);
|
|
dp = context->dp;
|
|
ASSERT(dp != NULL);
|
|
ASSERT(dp->i_afp != NULL);
|
|
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
|
|
ASSERT(sf != NULL);
|
|
if (!sf->hdr.count)
|
|
return(0);
|
|
cursor = context->cursor;
|
|
ASSERT(cursor != NULL);
|
|
|
|
xfs_attr_trace_l_c("sf start", context);
|
|
|
|
/*
|
|
* If the buffer is large enough and the cursor is at the start,
|
|
* do not bother with sorting since we will return everything in
|
|
* one buffer and another call using the cursor won't need to be
|
|
* made.
|
|
* Note the generous fudge factor of 16 overhead bytes per entry.
|
|
* If bufsize is zero then put_listent must be a search function
|
|
* and can just scan through what we have.
|
|
*/
|
|
if (context->bufsize == 0 ||
|
|
(XFS_ISRESET_CURSOR(cursor) &&
|
|
(dp->i_afp->if_bytes + sf->hdr.count * 16) < context->bufsize)) {
|
|
for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
|
|
attrnames_t *namesp;
|
|
|
|
if (!xfs_attr_namesp_match_overrides(context->flags, sfe->flags)) {
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
|
|
continue;
|
|
}
|
|
namesp = xfs_attr_flags_namesp(sfe->flags);
|
|
error = context->put_listent(context,
|
|
namesp,
|
|
(char *)sfe->nameval,
|
|
(int)sfe->namelen,
|
|
(int)sfe->valuelen,
|
|
(char*)&sfe->nameval[sfe->namelen]);
|
|
|
|
/*
|
|
* Either search callback finished early or
|
|
* didn't fit it all in the buffer after all.
|
|
*/
|
|
if (context->seen_enough)
|
|
break;
|
|
|
|
if (error)
|
|
return error;
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
|
|
}
|
|
xfs_attr_trace_l_c("sf big-gulp", context);
|
|
return(0);
|
|
}
|
|
|
|
/* do no more for a search callback */
|
|
if (context->bufsize == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* It didn't all fit, so we have to sort everything on hashval.
|
|
*/
|
|
sbsize = sf->hdr.count * sizeof(*sbuf);
|
|
sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP);
|
|
|
|
/*
|
|
* Scan the attribute list for the rest of the entries, storing
|
|
* the relevant info from only those that match into a buffer.
|
|
*/
|
|
nsbuf = 0;
|
|
for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
|
|
if (unlikely(
|
|
((char *)sfe < (char *)sf) ||
|
|
((char *)sfe >= ((char *)sf + dp->i_afp->if_bytes)))) {
|
|
XFS_CORRUPTION_ERROR("xfs_attr_shortform_list",
|
|
XFS_ERRLEVEL_LOW,
|
|
context->dp->i_mount, sfe);
|
|
xfs_attr_trace_l_c("sf corrupted", context);
|
|
kmem_free(sbuf, sbsize);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
if (!xfs_attr_namesp_match_overrides(context->flags, sfe->flags)) {
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
|
|
continue;
|
|
}
|
|
sbp->entno = i;
|
|
sbp->hash = xfs_da_hashname((char *)sfe->nameval, sfe->namelen);
|
|
sbp->name = (char *)sfe->nameval;
|
|
sbp->namelen = sfe->namelen;
|
|
/* These are bytes, and both on-disk, don't endian-flip */
|
|
sbp->valuelen = sfe->valuelen;
|
|
sbp->flags = sfe->flags;
|
|
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
|
|
sbp++;
|
|
nsbuf++;
|
|
}
|
|
|
|
/*
|
|
* Sort the entries on hash then entno.
|
|
*/
|
|
xfs_sort(sbuf, nsbuf, sizeof(*sbuf), xfs_attr_shortform_compare);
|
|
|
|
/*
|
|
* Re-find our place IN THE SORTED LIST.
|
|
*/
|
|
count = 0;
|
|
cursor->initted = 1;
|
|
cursor->blkno = 0;
|
|
for (sbp = sbuf, i = 0; i < nsbuf; i++, sbp++) {
|
|
if (sbp->hash == cursor->hashval) {
|
|
if (cursor->offset == count) {
|
|
break;
|
|
}
|
|
count++;
|
|
} else if (sbp->hash > cursor->hashval) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == nsbuf) {
|
|
kmem_free(sbuf, sbsize);
|
|
xfs_attr_trace_l_c("blk end", context);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Loop putting entries into the user buffer.
|
|
*/
|
|
for ( ; i < nsbuf; i++, sbp++) {
|
|
attrnames_t *namesp;
|
|
|
|
namesp = xfs_attr_flags_namesp(sbp->flags);
|
|
|
|
if (cursor->hashval != sbp->hash) {
|
|
cursor->hashval = sbp->hash;
|
|
cursor->offset = 0;
|
|
}
|
|
error = context->put_listent(context,
|
|
namesp,
|
|
sbp->name,
|
|
sbp->namelen,
|
|
sbp->valuelen,
|
|
&sbp->name[sbp->namelen]);
|
|
if (error)
|
|
return error;
|
|
if (context->seen_enough)
|
|
break;
|
|
cursor->offset++;
|
|
}
|
|
|
|
kmem_free(sbuf, sbsize);
|
|
xfs_attr_trace_l_c("sf E-O-F", context);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Check a leaf attribute block to see if all the entries would fit into
|
|
* a shortform attribute list.
|
|
*/
|
|
int
|
|
xfs_attr_shortform_allfit(xfs_dabuf_t *bp, xfs_inode_t *dp)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
int bytes, i;
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
|
|
entry = &leaf->entries[0];
|
|
bytes = sizeof(struct xfs_attr_sf_hdr);
|
|
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
|
|
if (entry->flags & XFS_ATTR_INCOMPLETE)
|
|
continue; /* don't copy partial entries */
|
|
if (!(entry->flags & XFS_ATTR_LOCAL))
|
|
return(0);
|
|
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, i);
|
|
if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
|
|
return(0);
|
|
if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
|
|
return(0);
|
|
bytes += sizeof(struct xfs_attr_sf_entry)-1
|
|
+ name_loc->namelen
|
|
+ be16_to_cpu(name_loc->valuelen);
|
|
}
|
|
if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
|
|
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
|
|
(bytes == sizeof(struct xfs_attr_sf_hdr)))
|
|
return(-1);
|
|
return(xfs_attr_shortform_bytesfit(dp, bytes));
|
|
}
|
|
|
|
/*
|
|
* Convert a leaf attribute list to shortform attribute list
|
|
*/
|
|
int
|
|
xfs_attr_leaf_to_shortform(xfs_dabuf_t *bp, xfs_da_args_t *args, int forkoff)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
xfs_da_args_t nargs;
|
|
xfs_inode_t *dp;
|
|
char *tmpbuffer;
|
|
int error, i;
|
|
|
|
dp = args->dp;
|
|
tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP);
|
|
ASSERT(tmpbuffer != NULL);
|
|
|
|
ASSERT(bp != NULL);
|
|
memcpy(tmpbuffer, bp->data, XFS_LBSIZE(dp->i_mount));
|
|
leaf = (xfs_attr_leafblock_t *)tmpbuffer;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
memset(bp->data, 0, XFS_LBSIZE(dp->i_mount));
|
|
|
|
/*
|
|
* Clean out the prior contents of the attribute list.
|
|
*/
|
|
error = xfs_da_shrink_inode(args, 0, bp);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (forkoff == -1) {
|
|
ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
|
|
ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
|
|
|
|
/*
|
|
* Last attribute was removed, revert to original
|
|
* inode format making all literal area available
|
|
* to the data fork once more.
|
|
*/
|
|
xfs_idestroy_fork(dp, XFS_ATTR_FORK);
|
|
dp->i_d.di_forkoff = 0;
|
|
dp->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
|
ASSERT(dp->i_d.di_anextents == 0);
|
|
ASSERT(dp->i_afp == NULL);
|
|
dp->i_df.if_ext_max =
|
|
XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
|
|
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE);
|
|
goto out;
|
|
}
|
|
|
|
xfs_attr_shortform_create(args);
|
|
|
|
/*
|
|
* Copy the attributes
|
|
*/
|
|
memset((char *)&nargs, 0, sizeof(nargs));
|
|
nargs.dp = dp;
|
|
nargs.firstblock = args->firstblock;
|
|
nargs.flist = args->flist;
|
|
nargs.total = args->total;
|
|
nargs.whichfork = XFS_ATTR_FORK;
|
|
nargs.trans = args->trans;
|
|
nargs.oknoent = 1;
|
|
entry = &leaf->entries[0];
|
|
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
|
|
if (entry->flags & XFS_ATTR_INCOMPLETE)
|
|
continue; /* don't copy partial entries */
|
|
if (!entry->nameidx)
|
|
continue;
|
|
ASSERT(entry->flags & XFS_ATTR_LOCAL);
|
|
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, i);
|
|
nargs.name = (char *)name_loc->nameval;
|
|
nargs.namelen = name_loc->namelen;
|
|
nargs.value = (char *)&name_loc->nameval[nargs.namelen];
|
|
nargs.valuelen = be16_to_cpu(name_loc->valuelen);
|
|
nargs.hashval = be32_to_cpu(entry->hashval);
|
|
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
|
|
xfs_attr_shortform_add(&nargs, forkoff);
|
|
}
|
|
error = 0;
|
|
|
|
out:
|
|
kmem_free(tmpbuffer, XFS_LBSIZE(dp->i_mount));
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Convert from using a single leaf to a root node and a leaf.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_to_node(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_da_intnode_t *node;
|
|
xfs_inode_t *dp;
|
|
xfs_dabuf_t *bp1, *bp2;
|
|
xfs_dablk_t blkno;
|
|
int error;
|
|
|
|
dp = args->dp;
|
|
bp1 = bp2 = NULL;
|
|
error = xfs_da_grow_inode(args, &blkno);
|
|
if (error)
|
|
goto out;
|
|
error = xfs_da_read_buf(args->trans, args->dp, 0, -1, &bp1,
|
|
XFS_ATTR_FORK);
|
|
if (error)
|
|
goto out;
|
|
ASSERT(bp1 != NULL);
|
|
bp2 = NULL;
|
|
error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp2,
|
|
XFS_ATTR_FORK);
|
|
if (error)
|
|
goto out;
|
|
ASSERT(bp2 != NULL);
|
|
memcpy(bp2->data, bp1->data, XFS_LBSIZE(dp->i_mount));
|
|
xfs_da_buf_done(bp1);
|
|
bp1 = NULL;
|
|
xfs_da_log_buf(args->trans, bp2, 0, XFS_LBSIZE(dp->i_mount) - 1);
|
|
|
|
/*
|
|
* Set up the new root node.
|
|
*/
|
|
error = xfs_da_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
|
|
if (error)
|
|
goto out;
|
|
node = bp1->data;
|
|
leaf = bp2->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
/* both on-disk, don't endian-flip twice */
|
|
node->btree[0].hashval =
|
|
leaf->entries[be16_to_cpu(leaf->hdr.count)-1 ].hashval;
|
|
node->btree[0].before = cpu_to_be32(blkno);
|
|
node->hdr.count = cpu_to_be16(1);
|
|
xfs_da_log_buf(args->trans, bp1, 0, XFS_LBSIZE(dp->i_mount) - 1);
|
|
error = 0;
|
|
out:
|
|
if (bp1)
|
|
xfs_da_buf_done(bp1);
|
|
if (bp2)
|
|
xfs_da_buf_done(bp2);
|
|
return(error);
|
|
}
|
|
|
|
|
|
/*========================================================================
|
|
* Routines used for growing the Btree.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Create the initial contents of a leaf attribute list
|
|
* or a leaf in a node attribute list.
|
|
*/
|
|
STATIC int
|
|
xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t blkno, xfs_dabuf_t **bpp)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_hdr_t *hdr;
|
|
xfs_inode_t *dp;
|
|
xfs_dabuf_t *bp;
|
|
int error;
|
|
|
|
dp = args->dp;
|
|
ASSERT(dp != NULL);
|
|
error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
|
|
XFS_ATTR_FORK);
|
|
if (error)
|
|
return(error);
|
|
ASSERT(bp != NULL);
|
|
leaf = bp->data;
|
|
memset((char *)leaf, 0, XFS_LBSIZE(dp->i_mount));
|
|
hdr = &leaf->hdr;
|
|
hdr->info.magic = cpu_to_be16(XFS_ATTR_LEAF_MAGIC);
|
|
hdr->firstused = cpu_to_be16(XFS_LBSIZE(dp->i_mount));
|
|
if (!hdr->firstused) {
|
|
hdr->firstused = cpu_to_be16(
|
|
XFS_LBSIZE(dp->i_mount) - XFS_ATTR_LEAF_NAME_ALIGN);
|
|
}
|
|
|
|
hdr->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
|
|
hdr->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr->firstused) -
|
|
sizeof(xfs_attr_leaf_hdr_t));
|
|
|
|
xfs_da_log_buf(args->trans, bp, 0, XFS_LBSIZE(dp->i_mount) - 1);
|
|
|
|
*bpp = bp;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Split the leaf node, rebalance, then add the new entry.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk,
|
|
xfs_da_state_blk_t *newblk)
|
|
{
|
|
xfs_dablk_t blkno;
|
|
int error;
|
|
|
|
/*
|
|
* Allocate space for a new leaf node.
|
|
*/
|
|
ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
|
|
error = xfs_da_grow_inode(state->args, &blkno);
|
|
if (error)
|
|
return(error);
|
|
error = xfs_attr_leaf_create(state->args, blkno, &newblk->bp);
|
|
if (error)
|
|
return(error);
|
|
newblk->blkno = blkno;
|
|
newblk->magic = XFS_ATTR_LEAF_MAGIC;
|
|
|
|
/*
|
|
* Rebalance the entries across the two leaves.
|
|
* NOTE: rebalance() currently depends on the 2nd block being empty.
|
|
*/
|
|
xfs_attr_leaf_rebalance(state, oldblk, newblk);
|
|
error = xfs_da_blk_link(state, oldblk, newblk);
|
|
if (error)
|
|
return(error);
|
|
|
|
/*
|
|
* Save info on "old" attribute for "atomic rename" ops, leaf_add()
|
|
* modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
|
|
* "new" attrs info. Will need the "old" info to remove it later.
|
|
*
|
|
* Insert the "new" entry in the correct block.
|
|
*/
|
|
if (state->inleaf)
|
|
error = xfs_attr_leaf_add(oldblk->bp, state->args);
|
|
else
|
|
error = xfs_attr_leaf_add(newblk->bp, state->args);
|
|
|
|
/*
|
|
* Update last hashval in each block since we added the name.
|
|
*/
|
|
oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
|
|
newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Add a name to the leaf attribute list structure.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_add(xfs_dabuf_t *bp, xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_hdr_t *hdr;
|
|
xfs_attr_leaf_map_t *map;
|
|
int tablesize, entsize, sum, tmp, i;
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT((args->index >= 0)
|
|
&& (args->index <= be16_to_cpu(leaf->hdr.count)));
|
|
hdr = &leaf->hdr;
|
|
entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
|
|
args->trans->t_mountp->m_sb.sb_blocksize, NULL);
|
|
|
|
/*
|
|
* Search through freemap for first-fit on new name length.
|
|
* (may need to figure in size of entry struct too)
|
|
*/
|
|
tablesize = (be16_to_cpu(hdr->count) + 1)
|
|
* sizeof(xfs_attr_leaf_entry_t)
|
|
+ sizeof(xfs_attr_leaf_hdr_t);
|
|
map = &hdr->freemap[XFS_ATTR_LEAF_MAPSIZE-1];
|
|
for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE-1; i >= 0; map--, i--) {
|
|
if (tablesize > be16_to_cpu(hdr->firstused)) {
|
|
sum += be16_to_cpu(map->size);
|
|
continue;
|
|
}
|
|
if (!map->size)
|
|
continue; /* no space in this map */
|
|
tmp = entsize;
|
|
if (be16_to_cpu(map->base) < be16_to_cpu(hdr->firstused))
|
|
tmp += sizeof(xfs_attr_leaf_entry_t);
|
|
if (be16_to_cpu(map->size) >= tmp) {
|
|
tmp = xfs_attr_leaf_add_work(bp, args, i);
|
|
return(tmp);
|
|
}
|
|
sum += be16_to_cpu(map->size);
|
|
}
|
|
|
|
/*
|
|
* If there are no holes in the address space of the block,
|
|
* and we don't have enough freespace, then compaction will do us
|
|
* no good and we should just give up.
|
|
*/
|
|
if (!hdr->holes && (sum < entsize))
|
|
return(XFS_ERROR(ENOSPC));
|
|
|
|
/*
|
|
* Compact the entries to coalesce free space.
|
|
* This may change the hdr->count via dropping INCOMPLETE entries.
|
|
*/
|
|
xfs_attr_leaf_compact(args->trans, bp);
|
|
|
|
/*
|
|
* After compaction, the block is guaranteed to have only one
|
|
* free region, in freemap[0]. If it is not big enough, give up.
|
|
*/
|
|
if (be16_to_cpu(hdr->freemap[0].size)
|
|
< (entsize + sizeof(xfs_attr_leaf_entry_t)))
|
|
return(XFS_ERROR(ENOSPC));
|
|
|
|
return(xfs_attr_leaf_add_work(bp, args, 0));
|
|
}
|
|
|
|
/*
|
|
* Add a name to a leaf attribute list structure.
|
|
*/
|
|
STATIC int
|
|
xfs_attr_leaf_add_work(xfs_dabuf_t *bp, xfs_da_args_t *args, int mapindex)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_hdr_t *hdr;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
xfs_attr_leaf_name_remote_t *name_rmt;
|
|
xfs_attr_leaf_map_t *map;
|
|
xfs_mount_t *mp;
|
|
int tmp, i;
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
hdr = &leaf->hdr;
|
|
ASSERT((mapindex >= 0) && (mapindex < XFS_ATTR_LEAF_MAPSIZE));
|
|
ASSERT((args->index >= 0) && (args->index <= be16_to_cpu(hdr->count)));
|
|
|
|
/*
|
|
* Force open some space in the entry array and fill it in.
|
|
*/
|
|
entry = &leaf->entries[args->index];
|
|
if (args->index < be16_to_cpu(hdr->count)) {
|
|
tmp = be16_to_cpu(hdr->count) - args->index;
|
|
tmp *= sizeof(xfs_attr_leaf_entry_t);
|
|
memmove((char *)(entry+1), (char *)entry, tmp);
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
|
|
}
|
|
be16_add(&hdr->count, 1);
|
|
|
|
/*
|
|
* Allocate space for the new string (at the end of the run).
|
|
*/
|
|
map = &hdr->freemap[mapindex];
|
|
mp = args->trans->t_mountp;
|
|
ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp));
|
|
ASSERT((be16_to_cpu(map->base) & 0x3) == 0);
|
|
ASSERT(be16_to_cpu(map->size) >=
|
|
xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
|
|
mp->m_sb.sb_blocksize, NULL));
|
|
ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp));
|
|
ASSERT((be16_to_cpu(map->size) & 0x3) == 0);
|
|
be16_add(&map->size,
|
|
-xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
|
|
mp->m_sb.sb_blocksize, &tmp));
|
|
entry->nameidx = cpu_to_be16(be16_to_cpu(map->base) +
|
|
be16_to_cpu(map->size));
|
|
entry->hashval = cpu_to_be32(args->hashval);
|
|
entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
|
|
entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
|
|
if (args->rename) {
|
|
entry->flags |= XFS_ATTR_INCOMPLETE;
|
|
if ((args->blkno2 == args->blkno) &&
|
|
(args->index2 <= args->index)) {
|
|
args->index2++;
|
|
}
|
|
}
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
|
|
ASSERT((args->index == 0) ||
|
|
(be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
|
|
ASSERT((args->index == be16_to_cpu(hdr->count)-1) ||
|
|
(be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
|
|
|
|
/*
|
|
* Copy the attribute name and value into the new space.
|
|
*
|
|
* For "remote" attribute values, simply note that we need to
|
|
* allocate space for the "remote" value. We can't actually
|
|
* allocate the extents in this transaction, and we can't decide
|
|
* which blocks they should be as we might allocate more blocks
|
|
* as part of this transaction (a split operation for example).
|
|
*/
|
|
if (entry->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index);
|
|
name_loc->namelen = args->namelen;
|
|
name_loc->valuelen = cpu_to_be16(args->valuelen);
|
|
memcpy((char *)name_loc->nameval, args->name, args->namelen);
|
|
memcpy((char *)&name_loc->nameval[args->namelen], args->value,
|
|
be16_to_cpu(name_loc->valuelen));
|
|
} else {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
|
|
name_rmt->namelen = args->namelen;
|
|
memcpy((char *)name_rmt->name, args->name, args->namelen);
|
|
entry->flags |= XFS_ATTR_INCOMPLETE;
|
|
/* just in case */
|
|
name_rmt->valuelen = 0;
|
|
name_rmt->valueblk = 0;
|
|
args->rmtblkno = 1;
|
|
args->rmtblkcnt = XFS_B_TO_FSB(mp, args->valuelen);
|
|
}
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, XFS_ATTR_LEAF_NAME(leaf, args->index),
|
|
xfs_attr_leaf_entsize(leaf, args->index)));
|
|
|
|
/*
|
|
* Update the control info for this leaf node
|
|
*/
|
|
if (be16_to_cpu(entry->nameidx) < be16_to_cpu(hdr->firstused)) {
|
|
/* both on-disk, don't endian-flip twice */
|
|
hdr->firstused = entry->nameidx;
|
|
}
|
|
ASSERT(be16_to_cpu(hdr->firstused) >=
|
|
((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr)));
|
|
tmp = (be16_to_cpu(hdr->count)-1) * sizeof(xfs_attr_leaf_entry_t)
|
|
+ sizeof(xfs_attr_leaf_hdr_t);
|
|
map = &hdr->freemap[0];
|
|
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) {
|
|
if (be16_to_cpu(map->base) == tmp) {
|
|
be16_add(&map->base, sizeof(xfs_attr_leaf_entry_t));
|
|
be16_add(&map->size,
|
|
-((int)sizeof(xfs_attr_leaf_entry_t)));
|
|
}
|
|
}
|
|
be16_add(&hdr->usedbytes, xfs_attr_leaf_entsize(leaf, args->index));
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Garbage collect a leaf attribute list block by copying it to a new buffer.
|
|
*/
|
|
STATIC void
|
|
xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *bp)
|
|
{
|
|
xfs_attr_leafblock_t *leaf_s, *leaf_d;
|
|
xfs_attr_leaf_hdr_t *hdr_s, *hdr_d;
|
|
xfs_mount_t *mp;
|
|
char *tmpbuffer;
|
|
|
|
mp = trans->t_mountp;
|
|
tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP);
|
|
ASSERT(tmpbuffer != NULL);
|
|
memcpy(tmpbuffer, bp->data, XFS_LBSIZE(mp));
|
|
memset(bp->data, 0, XFS_LBSIZE(mp));
|
|
|
|
/*
|
|
* Copy basic information
|
|
*/
|
|
leaf_s = (xfs_attr_leafblock_t *)tmpbuffer;
|
|
leaf_d = bp->data;
|
|
hdr_s = &leaf_s->hdr;
|
|
hdr_d = &leaf_d->hdr;
|
|
hdr_d->info = hdr_s->info; /* struct copy */
|
|
hdr_d->firstused = cpu_to_be16(XFS_LBSIZE(mp));
|
|
/* handle truncation gracefully */
|
|
if (!hdr_d->firstused) {
|
|
hdr_d->firstused = cpu_to_be16(
|
|
XFS_LBSIZE(mp) - XFS_ATTR_LEAF_NAME_ALIGN);
|
|
}
|
|
hdr_d->usedbytes = 0;
|
|
hdr_d->count = 0;
|
|
hdr_d->holes = 0;
|
|
hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
|
|
hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused) -
|
|
sizeof(xfs_attr_leaf_hdr_t));
|
|
|
|
/*
|
|
* Copy all entry's in the same (sorted) order,
|
|
* but allocate name/value pairs packed and in sequence.
|
|
*/
|
|
xfs_attr_leaf_moveents(leaf_s, 0, leaf_d, 0,
|
|
be16_to_cpu(hdr_s->count), mp);
|
|
xfs_da_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1);
|
|
|
|
kmem_free(tmpbuffer, XFS_LBSIZE(mp));
|
|
}
|
|
|
|
/*
|
|
* Redistribute the attribute list entries between two leaf nodes,
|
|
* taking into account the size of the new entry.
|
|
*
|
|
* NOTE: if new block is empty, then it will get the upper half of the
|
|
* old block. At present, all (one) callers pass in an empty second block.
|
|
*
|
|
* This code adjusts the args->index/blkno and args->index2/blkno2 fields
|
|
* to match what it is doing in splitting the attribute leaf block. Those
|
|
* values are used in "atomic rename" operations on attributes. Note that
|
|
* the "new" and "old" values can end up in different blocks.
|
|
*/
|
|
STATIC void
|
|
xfs_attr_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1,
|
|
xfs_da_state_blk_t *blk2)
|
|
{
|
|
xfs_da_args_t *args;
|
|
xfs_da_state_blk_t *tmp_blk;
|
|
xfs_attr_leafblock_t *leaf1, *leaf2;
|
|
xfs_attr_leaf_hdr_t *hdr1, *hdr2;
|
|
int count, totallen, max, space, swap;
|
|
|
|
/*
|
|
* Set up environment.
|
|
*/
|
|
ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
|
|
leaf1 = blk1->bp->data;
|
|
leaf2 = blk2->bp->data;
|
|
ASSERT(be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
args = state->args;
|
|
|
|
/*
|
|
* Check ordering of blocks, reverse if it makes things simpler.
|
|
*
|
|
* NOTE: Given that all (current) callers pass in an empty
|
|
* second block, this code should never set "swap".
|
|
*/
|
|
swap = 0;
|
|
if (xfs_attr_leaf_order(blk1->bp, blk2->bp)) {
|
|
tmp_blk = blk1;
|
|
blk1 = blk2;
|
|
blk2 = tmp_blk;
|
|
leaf1 = blk1->bp->data;
|
|
leaf2 = blk2->bp->data;
|
|
swap = 1;
|
|
}
|
|
hdr1 = &leaf1->hdr;
|
|
hdr2 = &leaf2->hdr;
|
|
|
|
/*
|
|
* Examine entries until we reduce the absolute difference in
|
|
* byte usage between the two blocks to a minimum. Then get
|
|
* the direction to copy and the number of elements to move.
|
|
*
|
|
* "inleaf" is true if the new entry should be inserted into blk1.
|
|
* If "swap" is also true, then reverse the sense of "inleaf".
|
|
*/
|
|
state->inleaf = xfs_attr_leaf_figure_balance(state, blk1, blk2,
|
|
&count, &totallen);
|
|
if (swap)
|
|
state->inleaf = !state->inleaf;
|
|
|
|
/*
|
|
* Move any entries required from leaf to leaf:
|
|
*/
|
|
if (count < be16_to_cpu(hdr1->count)) {
|
|
/*
|
|
* Figure the total bytes to be added to the destination leaf.
|
|
*/
|
|
/* number entries being moved */
|
|
count = be16_to_cpu(hdr1->count) - count;
|
|
space = be16_to_cpu(hdr1->usedbytes) - totallen;
|
|
space += count * sizeof(xfs_attr_leaf_entry_t);
|
|
|
|
/*
|
|
* leaf2 is the destination, compact it if it looks tight.
|
|
*/
|
|
max = be16_to_cpu(hdr2->firstused)
|
|
- sizeof(xfs_attr_leaf_hdr_t);
|
|
max -= be16_to_cpu(hdr2->count) * sizeof(xfs_attr_leaf_entry_t);
|
|
if (space > max) {
|
|
xfs_attr_leaf_compact(args->trans, blk2->bp);
|
|
}
|
|
|
|
/*
|
|
* Move high entries from leaf1 to low end of leaf2.
|
|
*/
|
|
xfs_attr_leaf_moveents(leaf1, be16_to_cpu(hdr1->count) - count,
|
|
leaf2, 0, count, state->mp);
|
|
|
|
xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
|
|
xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
|
|
} else if (count > be16_to_cpu(hdr1->count)) {
|
|
/*
|
|
* I assert that since all callers pass in an empty
|
|
* second buffer, this code should never execute.
|
|
*/
|
|
|
|
/*
|
|
* Figure the total bytes to be added to the destination leaf.
|
|
*/
|
|
/* number entries being moved */
|
|
count -= be16_to_cpu(hdr1->count);
|
|
space = totallen - be16_to_cpu(hdr1->usedbytes);
|
|
space += count * sizeof(xfs_attr_leaf_entry_t);
|
|
|
|
/*
|
|
* leaf1 is the destination, compact it if it looks tight.
|
|
*/
|
|
max = be16_to_cpu(hdr1->firstused)
|
|
- sizeof(xfs_attr_leaf_hdr_t);
|
|
max -= be16_to_cpu(hdr1->count) * sizeof(xfs_attr_leaf_entry_t);
|
|
if (space > max) {
|
|
xfs_attr_leaf_compact(args->trans, blk1->bp);
|
|
}
|
|
|
|
/*
|
|
* Move low entries from leaf2 to high end of leaf1.
|
|
*/
|
|
xfs_attr_leaf_moveents(leaf2, 0, leaf1,
|
|
be16_to_cpu(hdr1->count), count, state->mp);
|
|
|
|
xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
|
|
xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
|
|
}
|
|
|
|
/*
|
|
* Copy out last hashval in each block for B-tree code.
|
|
*/
|
|
blk1->hashval = be32_to_cpu(
|
|
leaf1->entries[be16_to_cpu(leaf1->hdr.count)-1].hashval);
|
|
blk2->hashval = be32_to_cpu(
|
|
leaf2->entries[be16_to_cpu(leaf2->hdr.count)-1].hashval);
|
|
|
|
/*
|
|
* Adjust the expected index for insertion.
|
|
* NOTE: this code depends on the (current) situation that the
|
|
* second block was originally empty.
|
|
*
|
|
* If the insertion point moved to the 2nd block, we must adjust
|
|
* the index. We must also track the entry just following the
|
|
* new entry for use in an "atomic rename" operation, that entry
|
|
* is always the "old" entry and the "new" entry is what we are
|
|
* inserting. The index/blkno fields refer to the "old" entry,
|
|
* while the index2/blkno2 fields refer to the "new" entry.
|
|
*/
|
|
if (blk1->index > be16_to_cpu(leaf1->hdr.count)) {
|
|
ASSERT(state->inleaf == 0);
|
|
blk2->index = blk1->index - be16_to_cpu(leaf1->hdr.count);
|
|
args->index = args->index2 = blk2->index;
|
|
args->blkno = args->blkno2 = blk2->blkno;
|
|
} else if (blk1->index == be16_to_cpu(leaf1->hdr.count)) {
|
|
if (state->inleaf) {
|
|
args->index = blk1->index;
|
|
args->blkno = blk1->blkno;
|
|
args->index2 = 0;
|
|
args->blkno2 = blk2->blkno;
|
|
} else {
|
|
blk2->index = blk1->index
|
|
- be16_to_cpu(leaf1->hdr.count);
|
|
args->index = args->index2 = blk2->index;
|
|
args->blkno = args->blkno2 = blk2->blkno;
|
|
}
|
|
} else {
|
|
ASSERT(state->inleaf == 1);
|
|
args->index = args->index2 = blk1->index;
|
|
args->blkno = args->blkno2 = blk1->blkno;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Examine entries until we reduce the absolute difference in
|
|
* byte usage between the two blocks to a minimum.
|
|
* GROT: Is this really necessary? With other than a 512 byte blocksize,
|
|
* GROT: there will always be enough room in either block for a new entry.
|
|
* GROT: Do a double-split for this case?
|
|
*/
|
|
STATIC int
|
|
xfs_attr_leaf_figure_balance(xfs_da_state_t *state,
|
|
xfs_da_state_blk_t *blk1,
|
|
xfs_da_state_blk_t *blk2,
|
|
int *countarg, int *usedbytesarg)
|
|
{
|
|
xfs_attr_leafblock_t *leaf1, *leaf2;
|
|
xfs_attr_leaf_hdr_t *hdr1, *hdr2;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
int count, max, index, totallen, half;
|
|
int lastdelta, foundit, tmp;
|
|
|
|
/*
|
|
* Set up environment.
|
|
*/
|
|
leaf1 = blk1->bp->data;
|
|
leaf2 = blk2->bp->data;
|
|
hdr1 = &leaf1->hdr;
|
|
hdr2 = &leaf2->hdr;
|
|
foundit = 0;
|
|
totallen = 0;
|
|
|
|
/*
|
|
* Examine entries until we reduce the absolute difference in
|
|
* byte usage between the two blocks to a minimum.
|
|
*/
|
|
max = be16_to_cpu(hdr1->count) + be16_to_cpu(hdr2->count);
|
|
half = (max+1) * sizeof(*entry);
|
|
half += be16_to_cpu(hdr1->usedbytes) +
|
|
be16_to_cpu(hdr2->usedbytes) +
|
|
xfs_attr_leaf_newentsize(
|
|
state->args->namelen,
|
|
state->args->valuelen,
|
|
state->blocksize, NULL);
|
|
half /= 2;
|
|
lastdelta = state->blocksize;
|
|
entry = &leaf1->entries[0];
|
|
for (count = index = 0; count < max; entry++, index++, count++) {
|
|
|
|
#define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
|
|
/*
|
|
* The new entry is in the first block, account for it.
|
|
*/
|
|
if (count == blk1->index) {
|
|
tmp = totallen + sizeof(*entry) +
|
|
xfs_attr_leaf_newentsize(
|
|
state->args->namelen,
|
|
state->args->valuelen,
|
|
state->blocksize, NULL);
|
|
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
|
|
break;
|
|
lastdelta = XFS_ATTR_ABS(half - tmp);
|
|
totallen = tmp;
|
|
foundit = 1;
|
|
}
|
|
|
|
/*
|
|
* Wrap around into the second block if necessary.
|
|
*/
|
|
if (count == be16_to_cpu(hdr1->count)) {
|
|
leaf1 = leaf2;
|
|
entry = &leaf1->entries[0];
|
|
index = 0;
|
|
}
|
|
|
|
/*
|
|
* Figure out if next leaf entry would be too much.
|
|
*/
|
|
tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
|
|
index);
|
|
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
|
|
break;
|
|
lastdelta = XFS_ATTR_ABS(half - tmp);
|
|
totallen = tmp;
|
|
#undef XFS_ATTR_ABS
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of usedbytes that will end up in lower block.
|
|
* If new entry not in lower block, fix up the count.
|
|
*/
|
|
totallen -= count * sizeof(*entry);
|
|
if (foundit) {
|
|
totallen -= sizeof(*entry) +
|
|
xfs_attr_leaf_newentsize(
|
|
state->args->namelen,
|
|
state->args->valuelen,
|
|
state->blocksize, NULL);
|
|
}
|
|
|
|
*countarg = count;
|
|
*usedbytesarg = totallen;
|
|
return(foundit);
|
|
}
|
|
|
|
/*========================================================================
|
|
* Routines used for shrinking the Btree.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Check a leaf block and its neighbors to see if the block should be
|
|
* collapsed into one or the other neighbor. Always keep the block
|
|
* with the smaller block number.
|
|
* If the current block is over 50% full, don't try to join it, return 0.
|
|
* If the block is empty, fill in the state structure and return 2.
|
|
* If it can be collapsed, fill in the state structure and return 1.
|
|
* If nothing can be done, return 0.
|
|
*
|
|
* GROT: allow for INCOMPLETE entries in calculation.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_toosmall(xfs_da_state_t *state, int *action)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_da_state_blk_t *blk;
|
|
xfs_da_blkinfo_t *info;
|
|
int count, bytes, forward, error, retval, i;
|
|
xfs_dablk_t blkno;
|
|
xfs_dabuf_t *bp;
|
|
|
|
/*
|
|
* Check for the degenerate case of the block being over 50% full.
|
|
* If so, it's not worth even looking to see if we might be able
|
|
* to coalesce with a sibling.
|
|
*/
|
|
blk = &state->path.blk[ state->path.active-1 ];
|
|
info = blk->bp->data;
|
|
ASSERT(be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC);
|
|
leaf = (xfs_attr_leafblock_t *)info;
|
|
count = be16_to_cpu(leaf->hdr.count);
|
|
bytes = sizeof(xfs_attr_leaf_hdr_t) +
|
|
count * sizeof(xfs_attr_leaf_entry_t) +
|
|
be16_to_cpu(leaf->hdr.usedbytes);
|
|
if (bytes > (state->blocksize >> 1)) {
|
|
*action = 0; /* blk over 50%, don't try to join */
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Check for the degenerate case of the block being empty.
|
|
* If the block is empty, we'll simply delete it, no need to
|
|
* coalesce it with a sibling block. We choose (arbitrarily)
|
|
* to merge with the forward block unless it is NULL.
|
|
*/
|
|
if (count == 0) {
|
|
/*
|
|
* Make altpath point to the block we want to keep and
|
|
* path point to the block we want to drop (this one).
|
|
*/
|
|
forward = (info->forw != 0);
|
|
memcpy(&state->altpath, &state->path, sizeof(state->path));
|
|
error = xfs_da_path_shift(state, &state->altpath, forward,
|
|
0, &retval);
|
|
if (error)
|
|
return(error);
|
|
if (retval) {
|
|
*action = 0;
|
|
} else {
|
|
*action = 2;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Examine each sibling block to see if we can coalesce with
|
|
* at least 25% free space to spare. We need to figure out
|
|
* whether to merge with the forward or the backward block.
|
|
* We prefer coalescing with the lower numbered sibling so as
|
|
* to shrink an attribute list over time.
|
|
*/
|
|
/* start with smaller blk num */
|
|
forward = (be32_to_cpu(info->forw) < be32_to_cpu(info->back));
|
|
for (i = 0; i < 2; forward = !forward, i++) {
|
|
if (forward)
|
|
blkno = be32_to_cpu(info->forw);
|
|
else
|
|
blkno = be32_to_cpu(info->back);
|
|
if (blkno == 0)
|
|
continue;
|
|
error = xfs_da_read_buf(state->args->trans, state->args->dp,
|
|
blkno, -1, &bp, XFS_ATTR_FORK);
|
|
if (error)
|
|
return(error);
|
|
ASSERT(bp != NULL);
|
|
|
|
leaf = (xfs_attr_leafblock_t *)info;
|
|
count = be16_to_cpu(leaf->hdr.count);
|
|
bytes = state->blocksize - (state->blocksize>>2);
|
|
bytes -= be16_to_cpu(leaf->hdr.usedbytes);
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
count += be16_to_cpu(leaf->hdr.count);
|
|
bytes -= be16_to_cpu(leaf->hdr.usedbytes);
|
|
bytes -= count * sizeof(xfs_attr_leaf_entry_t);
|
|
bytes -= sizeof(xfs_attr_leaf_hdr_t);
|
|
xfs_da_brelse(state->args->trans, bp);
|
|
if (bytes >= 0)
|
|
break; /* fits with at least 25% to spare */
|
|
}
|
|
if (i >= 2) {
|
|
*action = 0;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Make altpath point to the block we want to keep (the lower
|
|
* numbered block) and path point to the block we want to drop.
|
|
*/
|
|
memcpy(&state->altpath, &state->path, sizeof(state->path));
|
|
if (blkno < blk->blkno) {
|
|
error = xfs_da_path_shift(state, &state->altpath, forward,
|
|
0, &retval);
|
|
} else {
|
|
error = xfs_da_path_shift(state, &state->path, forward,
|
|
0, &retval);
|
|
}
|
|
if (error)
|
|
return(error);
|
|
if (retval) {
|
|
*action = 0;
|
|
} else {
|
|
*action = 1;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Remove a name from the leaf attribute list structure.
|
|
*
|
|
* Return 1 if leaf is less than 37% full, 0 if >= 37% full.
|
|
* If two leaves are 37% full, when combined they will leave 25% free.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_remove(xfs_dabuf_t *bp, xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_hdr_t *hdr;
|
|
xfs_attr_leaf_map_t *map;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
int before, after, smallest, entsize;
|
|
int tablesize, tmp, i;
|
|
xfs_mount_t *mp;
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
hdr = &leaf->hdr;
|
|
mp = args->trans->t_mountp;
|
|
ASSERT((be16_to_cpu(hdr->count) > 0)
|
|
&& (be16_to_cpu(hdr->count) < (XFS_LBSIZE(mp)/8)));
|
|
ASSERT((args->index >= 0)
|
|
&& (args->index < be16_to_cpu(hdr->count)));
|
|
ASSERT(be16_to_cpu(hdr->firstused) >=
|
|
((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr)));
|
|
entry = &leaf->entries[args->index];
|
|
ASSERT(be16_to_cpu(entry->nameidx) >= be16_to_cpu(hdr->firstused));
|
|
ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
|
|
|
|
/*
|
|
* Scan through free region table:
|
|
* check for adjacency of free'd entry with an existing one,
|
|
* find smallest free region in case we need to replace it,
|
|
* adjust any map that borders the entry table,
|
|
*/
|
|
tablesize = be16_to_cpu(hdr->count) * sizeof(xfs_attr_leaf_entry_t)
|
|
+ sizeof(xfs_attr_leaf_hdr_t);
|
|
map = &hdr->freemap[0];
|
|
tmp = be16_to_cpu(map->size);
|
|
before = after = -1;
|
|
smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
|
|
entsize = xfs_attr_leaf_entsize(leaf, args->index);
|
|
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) {
|
|
ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp));
|
|
ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp));
|
|
if (be16_to_cpu(map->base) == tablesize) {
|
|
be16_add(&map->base,
|
|
-((int)sizeof(xfs_attr_leaf_entry_t)));
|
|
be16_add(&map->size, sizeof(xfs_attr_leaf_entry_t));
|
|
}
|
|
|
|
if ((be16_to_cpu(map->base) + be16_to_cpu(map->size))
|
|
== be16_to_cpu(entry->nameidx)) {
|
|
before = i;
|
|
} else if (be16_to_cpu(map->base)
|
|
== (be16_to_cpu(entry->nameidx) + entsize)) {
|
|
after = i;
|
|
} else if (be16_to_cpu(map->size) < tmp) {
|
|
tmp = be16_to_cpu(map->size);
|
|
smallest = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Coalesce adjacent freemap regions,
|
|
* or replace the smallest region.
|
|
*/
|
|
if ((before >= 0) || (after >= 0)) {
|
|
if ((before >= 0) && (after >= 0)) {
|
|
map = &hdr->freemap[before];
|
|
be16_add(&map->size, entsize);
|
|
be16_add(&map->size,
|
|
be16_to_cpu(hdr->freemap[after].size));
|
|
hdr->freemap[after].base = 0;
|
|
hdr->freemap[after].size = 0;
|
|
} else if (before >= 0) {
|
|
map = &hdr->freemap[before];
|
|
be16_add(&map->size, entsize);
|
|
} else {
|
|
map = &hdr->freemap[after];
|
|
/* both on-disk, don't endian flip twice */
|
|
map->base = entry->nameidx;
|
|
be16_add(&map->size, entsize);
|
|
}
|
|
} else {
|
|
/*
|
|
* Replace smallest region (if it is smaller than free'd entry)
|
|
*/
|
|
map = &hdr->freemap[smallest];
|
|
if (be16_to_cpu(map->size) < entsize) {
|
|
map->base = cpu_to_be16(be16_to_cpu(entry->nameidx));
|
|
map->size = cpu_to_be16(entsize);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Did we remove the first entry?
|
|
*/
|
|
if (be16_to_cpu(entry->nameidx) == be16_to_cpu(hdr->firstused))
|
|
smallest = 1;
|
|
else
|
|
smallest = 0;
|
|
|
|
/*
|
|
* Compress the remaining entries and zero out the removed stuff.
|
|
*/
|
|
memset(XFS_ATTR_LEAF_NAME(leaf, args->index), 0, entsize);
|
|
be16_add(&hdr->usedbytes, -entsize);
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, XFS_ATTR_LEAF_NAME(leaf, args->index),
|
|
entsize));
|
|
|
|
tmp = (be16_to_cpu(hdr->count) - args->index)
|
|
* sizeof(xfs_attr_leaf_entry_t);
|
|
memmove((char *)entry, (char *)(entry+1), tmp);
|
|
be16_add(&hdr->count, -1);
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
|
|
entry = &leaf->entries[be16_to_cpu(hdr->count)];
|
|
memset((char *)entry, 0, sizeof(xfs_attr_leaf_entry_t));
|
|
|
|
/*
|
|
* If we removed the first entry, re-find the first used byte
|
|
* in the name area. Note that if the entry was the "firstused",
|
|
* then we don't have a "hole" in our block resulting from
|
|
* removing the name.
|
|
*/
|
|
if (smallest) {
|
|
tmp = XFS_LBSIZE(mp);
|
|
entry = &leaf->entries[0];
|
|
for (i = be16_to_cpu(hdr->count)-1; i >= 0; entry++, i--) {
|
|
ASSERT(be16_to_cpu(entry->nameidx) >=
|
|
be16_to_cpu(hdr->firstused));
|
|
ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
|
|
|
|
if (be16_to_cpu(entry->nameidx) < tmp)
|
|
tmp = be16_to_cpu(entry->nameidx);
|
|
}
|
|
hdr->firstused = cpu_to_be16(tmp);
|
|
if (!hdr->firstused) {
|
|
hdr->firstused = cpu_to_be16(
|
|
tmp - XFS_ATTR_LEAF_NAME_ALIGN);
|
|
}
|
|
} else {
|
|
hdr->holes = 1; /* mark as needing compaction */
|
|
}
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));
|
|
|
|
/*
|
|
* Check if leaf is less than 50% full, caller may want to
|
|
* "join" the leaf with a sibling if so.
|
|
*/
|
|
tmp = sizeof(xfs_attr_leaf_hdr_t);
|
|
tmp += be16_to_cpu(leaf->hdr.count) * sizeof(xfs_attr_leaf_entry_t);
|
|
tmp += be16_to_cpu(leaf->hdr.usedbytes);
|
|
return(tmp < mp->m_attr_magicpct); /* leaf is < 37% full */
|
|
}
|
|
|
|
/*
|
|
* Move all the attribute list entries from drop_leaf into save_leaf.
|
|
*/
|
|
void
|
|
xfs_attr_leaf_unbalance(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk,
|
|
xfs_da_state_blk_t *save_blk)
|
|
{
|
|
xfs_attr_leafblock_t *drop_leaf, *save_leaf, *tmp_leaf;
|
|
xfs_attr_leaf_hdr_t *drop_hdr, *save_hdr, *tmp_hdr;
|
|
xfs_mount_t *mp;
|
|
char *tmpbuffer;
|
|
|
|
/*
|
|
* Set up environment.
|
|
*/
|
|
mp = state->mp;
|
|
ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(save_blk->magic == XFS_ATTR_LEAF_MAGIC);
|
|
drop_leaf = drop_blk->bp->data;
|
|
save_leaf = save_blk->bp->data;
|
|
ASSERT(be16_to_cpu(drop_leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(be16_to_cpu(save_leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
drop_hdr = &drop_leaf->hdr;
|
|
save_hdr = &save_leaf->hdr;
|
|
|
|
/*
|
|
* Save last hashval from dying block for later Btree fixup.
|
|
*/
|
|
drop_blk->hashval = be32_to_cpu(
|
|
drop_leaf->entries[be16_to_cpu(drop_leaf->hdr.count)-1].hashval);
|
|
|
|
/*
|
|
* Check if we need a temp buffer, or can we do it in place.
|
|
* Note that we don't check "leaf" for holes because we will
|
|
* always be dropping it, toosmall() decided that for us already.
|
|
*/
|
|
if (save_hdr->holes == 0) {
|
|
/*
|
|
* dest leaf has no holes, so we add there. May need
|
|
* to make some room in the entry array.
|
|
*/
|
|
if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) {
|
|
xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, 0,
|
|
be16_to_cpu(drop_hdr->count), mp);
|
|
} else {
|
|
xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf,
|
|
be16_to_cpu(save_hdr->count),
|
|
be16_to_cpu(drop_hdr->count), mp);
|
|
}
|
|
} else {
|
|
/*
|
|
* Destination has holes, so we make a temporary copy
|
|
* of the leaf and add them both to that.
|
|
*/
|
|
tmpbuffer = kmem_alloc(state->blocksize, KM_SLEEP);
|
|
ASSERT(tmpbuffer != NULL);
|
|
memset(tmpbuffer, 0, state->blocksize);
|
|
tmp_leaf = (xfs_attr_leafblock_t *)tmpbuffer;
|
|
tmp_hdr = &tmp_leaf->hdr;
|
|
tmp_hdr->info = save_hdr->info; /* struct copy */
|
|
tmp_hdr->count = 0;
|
|
tmp_hdr->firstused = cpu_to_be16(state->blocksize);
|
|
if (!tmp_hdr->firstused) {
|
|
tmp_hdr->firstused = cpu_to_be16(
|
|
state->blocksize - XFS_ATTR_LEAF_NAME_ALIGN);
|
|
}
|
|
tmp_hdr->usedbytes = 0;
|
|
if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) {
|
|
xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, 0,
|
|
be16_to_cpu(drop_hdr->count), mp);
|
|
xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf,
|
|
be16_to_cpu(tmp_leaf->hdr.count),
|
|
be16_to_cpu(save_hdr->count), mp);
|
|
} else {
|
|
xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, 0,
|
|
be16_to_cpu(save_hdr->count), mp);
|
|
xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf,
|
|
be16_to_cpu(tmp_leaf->hdr.count),
|
|
be16_to_cpu(drop_hdr->count), mp);
|
|
}
|
|
memcpy((char *)save_leaf, (char *)tmp_leaf, state->blocksize);
|
|
kmem_free(tmpbuffer, state->blocksize);
|
|
}
|
|
|
|
xfs_da_log_buf(state->args->trans, save_blk->bp, 0,
|
|
state->blocksize - 1);
|
|
|
|
/*
|
|
* Copy out last hashval in each block for B-tree code.
|
|
*/
|
|
save_blk->hashval = be32_to_cpu(
|
|
save_leaf->entries[be16_to_cpu(save_leaf->hdr.count)-1].hashval);
|
|
}
|
|
|
|
/*========================================================================
|
|
* Routines used for finding things in the Btree.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Look up a name in a leaf attribute list structure.
|
|
* This is the internal routine, it uses the caller's buffer.
|
|
*
|
|
* Note that duplicate keys are allowed, but only check within the
|
|
* current leaf node. The Btree code must check in adjacent leaf nodes.
|
|
*
|
|
* Return in args->index the index into the entry[] array of either
|
|
* the found entry, or where the entry should have been (insert before
|
|
* that entry).
|
|
*
|
|
* Don't change the args->value unless we find the attribute.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_lookup_int(xfs_dabuf_t *bp, xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
xfs_attr_leaf_name_remote_t *name_rmt;
|
|
int probe, span;
|
|
xfs_dahash_t hashval;
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(be16_to_cpu(leaf->hdr.count)
|
|
< (XFS_LBSIZE(args->dp->i_mount)/8));
|
|
|
|
/*
|
|
* Binary search. (note: small blocks will skip this loop)
|
|
*/
|
|
hashval = args->hashval;
|
|
probe = span = be16_to_cpu(leaf->hdr.count) / 2;
|
|
for (entry = &leaf->entries[probe]; span > 4;
|
|
entry = &leaf->entries[probe]) {
|
|
span /= 2;
|
|
if (be32_to_cpu(entry->hashval) < hashval)
|
|
probe += span;
|
|
else if (be32_to_cpu(entry->hashval) > hashval)
|
|
probe -= span;
|
|
else
|
|
break;
|
|
}
|
|
ASSERT((probe >= 0) &&
|
|
(!leaf->hdr.count
|
|
|| (probe < be16_to_cpu(leaf->hdr.count))));
|
|
ASSERT((span <= 4) || (be32_to_cpu(entry->hashval) == hashval));
|
|
|
|
/*
|
|
* Since we may have duplicate hashval's, find the first matching
|
|
* hashval in the leaf.
|
|
*/
|
|
while ((probe > 0) && (be32_to_cpu(entry->hashval) >= hashval)) {
|
|
entry--;
|
|
probe--;
|
|
}
|
|
while ((probe < be16_to_cpu(leaf->hdr.count)) &&
|
|
(be32_to_cpu(entry->hashval) < hashval)) {
|
|
entry++;
|
|
probe++;
|
|
}
|
|
if ((probe == be16_to_cpu(leaf->hdr.count)) ||
|
|
(be32_to_cpu(entry->hashval) != hashval)) {
|
|
args->index = probe;
|
|
return(XFS_ERROR(ENOATTR));
|
|
}
|
|
|
|
/*
|
|
* Duplicate keys may be present, so search all of them for a match.
|
|
*/
|
|
for ( ; (probe < be16_to_cpu(leaf->hdr.count)) &&
|
|
(be32_to_cpu(entry->hashval) == hashval);
|
|
entry++, probe++) {
|
|
/*
|
|
* GROT: Add code to remove incomplete entries.
|
|
*/
|
|
/*
|
|
* If we are looking for INCOMPLETE entries, show only those.
|
|
* If we are looking for complete entries, show only those.
|
|
*/
|
|
if ((args->flags & XFS_ATTR_INCOMPLETE) !=
|
|
(entry->flags & XFS_ATTR_INCOMPLETE)) {
|
|
continue;
|
|
}
|
|
if (entry->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, probe);
|
|
if (name_loc->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, (char *)name_loc->nameval, args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, entry->flags))
|
|
continue;
|
|
args->index = probe;
|
|
return(XFS_ERROR(EEXIST));
|
|
} else {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, probe);
|
|
if (name_rmt->namelen != args->namelen)
|
|
continue;
|
|
if (memcmp(args->name, (char *)name_rmt->name,
|
|
args->namelen) != 0)
|
|
continue;
|
|
if (!xfs_attr_namesp_match(args->flags, entry->flags))
|
|
continue;
|
|
args->index = probe;
|
|
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
|
|
args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount,
|
|
be32_to_cpu(name_rmt->valuelen));
|
|
return(XFS_ERROR(EEXIST));
|
|
}
|
|
}
|
|
args->index = probe;
|
|
return(XFS_ERROR(ENOATTR));
|
|
}
|
|
|
|
/*
|
|
* Get the value associated with an attribute name from a leaf attribute
|
|
* list structure.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_getvalue(xfs_dabuf_t *bp, xfs_da_args_t *args)
|
|
{
|
|
int valuelen;
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
xfs_attr_leaf_name_remote_t *name_rmt;
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(be16_to_cpu(leaf->hdr.count)
|
|
< (XFS_LBSIZE(args->dp->i_mount)/8));
|
|
ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
|
|
|
|
entry = &leaf->entries[args->index];
|
|
if (entry->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index);
|
|
ASSERT(name_loc->namelen == args->namelen);
|
|
ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
|
|
valuelen = be16_to_cpu(name_loc->valuelen);
|
|
if (args->flags & ATTR_KERNOVAL) {
|
|
args->valuelen = valuelen;
|
|
return(0);
|
|
}
|
|
if (args->valuelen < valuelen) {
|
|
args->valuelen = valuelen;
|
|
return(XFS_ERROR(ERANGE));
|
|
}
|
|
args->valuelen = valuelen;
|
|
memcpy(args->value, &name_loc->nameval[args->namelen], valuelen);
|
|
} else {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
|
|
ASSERT(name_rmt->namelen == args->namelen);
|
|
ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
|
|
valuelen = be32_to_cpu(name_rmt->valuelen);
|
|
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
|
|
args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, valuelen);
|
|
if (args->flags & ATTR_KERNOVAL) {
|
|
args->valuelen = valuelen;
|
|
return(0);
|
|
}
|
|
if (args->valuelen < valuelen) {
|
|
args->valuelen = valuelen;
|
|
return(XFS_ERROR(ERANGE));
|
|
}
|
|
args->valuelen = valuelen;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*========================================================================
|
|
* Utility routines.
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Move the indicated entries from one leaf to another.
|
|
* NOTE: this routine modifies both source and destination leaves.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_attr_leaf_moveents(xfs_attr_leafblock_t *leaf_s, int start_s,
|
|
xfs_attr_leafblock_t *leaf_d, int start_d,
|
|
int count, xfs_mount_t *mp)
|
|
{
|
|
xfs_attr_leaf_hdr_t *hdr_s, *hdr_d;
|
|
xfs_attr_leaf_entry_t *entry_s, *entry_d;
|
|
int desti, tmp, i;
|
|
|
|
/*
|
|
* Check for nothing to do.
|
|
*/
|
|
if (count == 0)
|
|
return;
|
|
|
|
/*
|
|
* Set up environment.
|
|
*/
|
|
ASSERT(be16_to_cpu(leaf_s->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(be16_to_cpu(leaf_d->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
hdr_s = &leaf_s->hdr;
|
|
hdr_d = &leaf_d->hdr;
|
|
ASSERT((be16_to_cpu(hdr_s->count) > 0) &&
|
|
(be16_to_cpu(hdr_s->count) < (XFS_LBSIZE(mp)/8)));
|
|
ASSERT(be16_to_cpu(hdr_s->firstused) >=
|
|
((be16_to_cpu(hdr_s->count)
|
|
* sizeof(*entry_s))+sizeof(*hdr_s)));
|
|
ASSERT(be16_to_cpu(hdr_d->count) < (XFS_LBSIZE(mp)/8));
|
|
ASSERT(be16_to_cpu(hdr_d->firstused) >=
|
|
((be16_to_cpu(hdr_d->count)
|
|
* sizeof(*entry_d))+sizeof(*hdr_d)));
|
|
|
|
ASSERT(start_s < be16_to_cpu(hdr_s->count));
|
|
ASSERT(start_d <= be16_to_cpu(hdr_d->count));
|
|
ASSERT(count <= be16_to_cpu(hdr_s->count));
|
|
|
|
/*
|
|
* Move the entries in the destination leaf up to make a hole?
|
|
*/
|
|
if (start_d < be16_to_cpu(hdr_d->count)) {
|
|
tmp = be16_to_cpu(hdr_d->count) - start_d;
|
|
tmp *= sizeof(xfs_attr_leaf_entry_t);
|
|
entry_s = &leaf_d->entries[start_d];
|
|
entry_d = &leaf_d->entries[start_d + count];
|
|
memmove((char *)entry_d, (char *)entry_s, tmp);
|
|
}
|
|
|
|
/*
|
|
* Copy all entry's in the same (sorted) order,
|
|
* but allocate attribute info packed and in sequence.
|
|
*/
|
|
entry_s = &leaf_s->entries[start_s];
|
|
entry_d = &leaf_d->entries[start_d];
|
|
desti = start_d;
|
|
for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
|
|
ASSERT(be16_to_cpu(entry_s->nameidx)
|
|
>= be16_to_cpu(hdr_s->firstused));
|
|
tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
|
|
#ifdef GROT
|
|
/*
|
|
* Code to drop INCOMPLETE entries. Difficult to use as we
|
|
* may also need to change the insertion index. Code turned
|
|
* off for 6.2, should be revisited later.
|
|
*/
|
|
if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
|
|
memset(XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), 0, tmp);
|
|
be16_add(&hdr_s->usedbytes, -tmp);
|
|
be16_add(&hdr_s->count, -1);
|
|
entry_d--; /* to compensate for ++ in loop hdr */
|
|
desti--;
|
|
if ((start_s + i) < offset)
|
|
result++; /* insertion index adjustment */
|
|
} else {
|
|
#endif /* GROT */
|
|
be16_add(&hdr_d->firstused, -tmp);
|
|
/* both on-disk, don't endian flip twice */
|
|
entry_d->hashval = entry_s->hashval;
|
|
/* both on-disk, don't endian flip twice */
|
|
entry_d->nameidx = hdr_d->firstused;
|
|
entry_d->flags = entry_s->flags;
|
|
ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
|
|
<= XFS_LBSIZE(mp));
|
|
memmove(XFS_ATTR_LEAF_NAME(leaf_d, desti),
|
|
XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), tmp);
|
|
ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
|
|
<= XFS_LBSIZE(mp));
|
|
memset(XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), 0, tmp);
|
|
be16_add(&hdr_s->usedbytes, -tmp);
|
|
be16_add(&hdr_d->usedbytes, tmp);
|
|
be16_add(&hdr_s->count, -1);
|
|
be16_add(&hdr_d->count, 1);
|
|
tmp = be16_to_cpu(hdr_d->count)
|
|
* sizeof(xfs_attr_leaf_entry_t)
|
|
+ sizeof(xfs_attr_leaf_hdr_t);
|
|
ASSERT(be16_to_cpu(hdr_d->firstused) >= tmp);
|
|
#ifdef GROT
|
|
}
|
|
#endif /* GROT */
|
|
}
|
|
|
|
/*
|
|
* Zero out the entries we just copied.
|
|
*/
|
|
if (start_s == be16_to_cpu(hdr_s->count)) {
|
|
tmp = count * sizeof(xfs_attr_leaf_entry_t);
|
|
entry_s = &leaf_s->entries[start_s];
|
|
ASSERT(((char *)entry_s + tmp) <=
|
|
((char *)leaf_s + XFS_LBSIZE(mp)));
|
|
memset((char *)entry_s, 0, tmp);
|
|
} else {
|
|
/*
|
|
* Move the remaining entries down to fill the hole,
|
|
* then zero the entries at the top.
|
|
*/
|
|
tmp = be16_to_cpu(hdr_s->count) - count;
|
|
tmp *= sizeof(xfs_attr_leaf_entry_t);
|
|
entry_s = &leaf_s->entries[start_s + count];
|
|
entry_d = &leaf_s->entries[start_s];
|
|
memmove((char *)entry_d, (char *)entry_s, tmp);
|
|
|
|
tmp = count * sizeof(xfs_attr_leaf_entry_t);
|
|
entry_s = &leaf_s->entries[be16_to_cpu(hdr_s->count)];
|
|
ASSERT(((char *)entry_s + tmp) <=
|
|
((char *)leaf_s + XFS_LBSIZE(mp)));
|
|
memset((char *)entry_s, 0, tmp);
|
|
}
|
|
|
|
/*
|
|
* Fill in the freemap information
|
|
*/
|
|
hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
|
|
be16_add(&hdr_d->freemap[0].base, be16_to_cpu(hdr_d->count) *
|
|
sizeof(xfs_attr_leaf_entry_t));
|
|
hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused)
|
|
- be16_to_cpu(hdr_d->freemap[0].base));
|
|
hdr_d->freemap[1].base = 0;
|
|
hdr_d->freemap[2].base = 0;
|
|
hdr_d->freemap[1].size = 0;
|
|
hdr_d->freemap[2].size = 0;
|
|
hdr_s->holes = 1; /* leaf may not be compact */
|
|
}
|
|
|
|
/*
|
|
* Compare two leaf blocks "order".
|
|
* Return 0 unless leaf2 should go before leaf1.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_order(xfs_dabuf_t *leaf1_bp, xfs_dabuf_t *leaf2_bp)
|
|
{
|
|
xfs_attr_leafblock_t *leaf1, *leaf2;
|
|
|
|
leaf1 = leaf1_bp->data;
|
|
leaf2 = leaf2_bp->data;
|
|
ASSERT((be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC) &&
|
|
(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC));
|
|
if ((be16_to_cpu(leaf1->hdr.count) > 0) &&
|
|
(be16_to_cpu(leaf2->hdr.count) > 0) &&
|
|
((be32_to_cpu(leaf2->entries[0].hashval) <
|
|
be32_to_cpu(leaf1->entries[0].hashval)) ||
|
|
(be32_to_cpu(leaf2->entries[
|
|
be16_to_cpu(leaf2->hdr.count)-1].hashval) <
|
|
be32_to_cpu(leaf1->entries[
|
|
be16_to_cpu(leaf1->hdr.count)-1].hashval)))) {
|
|
return(1);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Pick up the last hashvalue from a leaf block.
|
|
*/
|
|
xfs_dahash_t
|
|
xfs_attr_leaf_lasthash(xfs_dabuf_t *bp, int *count)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
if (count)
|
|
*count = be16_to_cpu(leaf->hdr.count);
|
|
if (!leaf->hdr.count)
|
|
return(0);
|
|
return be32_to_cpu(leaf->entries[be16_to_cpu(leaf->hdr.count)-1].hashval);
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of bytes used to store the indicated attribute
|
|
* (whether local or remote only calculate bytes in this block).
|
|
*/
|
|
STATIC int
|
|
xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
|
|
{
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
xfs_attr_leaf_name_remote_t *name_rmt;
|
|
int size;
|
|
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
if (leaf->entries[index].flags & XFS_ATTR_LOCAL) {
|
|
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, index);
|
|
size = XFS_ATTR_LEAF_ENTSIZE_LOCAL(name_loc->namelen,
|
|
be16_to_cpu(name_loc->valuelen));
|
|
} else {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, index);
|
|
size = XFS_ATTR_LEAF_ENTSIZE_REMOTE(name_rmt->namelen);
|
|
}
|
|
return(size);
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of bytes that would be required to store the new
|
|
* attribute (whether local or remote only calculate bytes in this block).
|
|
* This routine decides as a side effect whether the attribute will be
|
|
* a "local" or a "remote" attribute.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_newentsize(int namelen, int valuelen, int blocksize, int *local)
|
|
{
|
|
int size;
|
|
|
|
size = XFS_ATTR_LEAF_ENTSIZE_LOCAL(namelen, valuelen);
|
|
if (size < XFS_ATTR_LEAF_ENTSIZE_LOCAL_MAX(blocksize)) {
|
|
if (local) {
|
|
*local = 1;
|
|
}
|
|
} else {
|
|
size = XFS_ATTR_LEAF_ENTSIZE_REMOTE(namelen);
|
|
if (local) {
|
|
*local = 0;
|
|
}
|
|
}
|
|
return(size);
|
|
}
|
|
|
|
/*
|
|
* Copy out attribute list entries for attr_list(), for leaf attribute lists.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_list_int(xfs_dabuf_t *bp, xfs_attr_list_context_t *context)
|
|
{
|
|
attrlist_cursor_kern_t *cursor;
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
int retval, i;
|
|
|
|
ASSERT(bp != NULL);
|
|
leaf = bp->data;
|
|
cursor = context->cursor;
|
|
cursor->initted = 1;
|
|
|
|
xfs_attr_trace_l_cl("blk start", context, leaf);
|
|
|
|
/*
|
|
* Re-find our place in the leaf block if this is a new syscall.
|
|
*/
|
|
if (context->resynch) {
|
|
entry = &leaf->entries[0];
|
|
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
|
|
if (be32_to_cpu(entry->hashval) == cursor->hashval) {
|
|
if (cursor->offset == context->dupcnt) {
|
|
context->dupcnt = 0;
|
|
break;
|
|
}
|
|
context->dupcnt++;
|
|
} else if (be32_to_cpu(entry->hashval) >
|
|
cursor->hashval) {
|
|
context->dupcnt = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (i == be16_to_cpu(leaf->hdr.count)) {
|
|
xfs_attr_trace_l_c("not found", context);
|
|
return(0);
|
|
}
|
|
} else {
|
|
entry = &leaf->entries[0];
|
|
i = 0;
|
|
}
|
|
context->resynch = 0;
|
|
|
|
/*
|
|
* We have found our place, start copying out the new attributes.
|
|
*/
|
|
retval = 0;
|
|
for ( ; (i < be16_to_cpu(leaf->hdr.count)); entry++, i++) {
|
|
attrnames_t *namesp;
|
|
|
|
if (be32_to_cpu(entry->hashval) != cursor->hashval) {
|
|
cursor->hashval = be32_to_cpu(entry->hashval);
|
|
cursor->offset = 0;
|
|
}
|
|
|
|
if (entry->flags & XFS_ATTR_INCOMPLETE)
|
|
continue; /* skip incomplete entries */
|
|
if (!xfs_attr_namesp_match_overrides(context->flags, entry->flags))
|
|
continue;
|
|
|
|
namesp = xfs_attr_flags_namesp(entry->flags);
|
|
|
|
if (entry->flags & XFS_ATTR_LOCAL) {
|
|
xfs_attr_leaf_name_local_t *name_loc =
|
|
XFS_ATTR_LEAF_NAME_LOCAL(leaf, i);
|
|
|
|
retval = context->put_listent(context,
|
|
namesp,
|
|
(char *)name_loc->nameval,
|
|
(int)name_loc->namelen,
|
|
be16_to_cpu(name_loc->valuelen),
|
|
(char *)&name_loc->nameval[name_loc->namelen]);
|
|
if (retval)
|
|
return retval;
|
|
} else {
|
|
xfs_attr_leaf_name_remote_t *name_rmt =
|
|
XFS_ATTR_LEAF_NAME_REMOTE(leaf, i);
|
|
|
|
int valuelen = be32_to_cpu(name_rmt->valuelen);
|
|
|
|
if (context->put_value) {
|
|
xfs_da_args_t args;
|
|
|
|
memset((char *)&args, 0, sizeof(args));
|
|
args.dp = context->dp;
|
|
args.whichfork = XFS_ATTR_FORK;
|
|
args.valuelen = valuelen;
|
|
args.value = kmem_alloc(valuelen, KM_SLEEP);
|
|
args.rmtblkno = be32_to_cpu(name_rmt->valueblk);
|
|
args.rmtblkcnt = XFS_B_TO_FSB(args.dp->i_mount, valuelen);
|
|
retval = xfs_attr_rmtval_get(&args);
|
|
if (retval)
|
|
return retval;
|
|
retval = context->put_listent(context,
|
|
namesp,
|
|
(char *)name_rmt->name,
|
|
(int)name_rmt->namelen,
|
|
valuelen,
|
|
(char*)args.value);
|
|
kmem_free(args.value, valuelen);
|
|
}
|
|
else {
|
|
retval = context->put_listent(context,
|
|
namesp,
|
|
(char *)name_rmt->name,
|
|
(int)name_rmt->namelen,
|
|
valuelen,
|
|
NULL);
|
|
}
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
if (context->seen_enough)
|
|
break;
|
|
cursor->offset++;
|
|
}
|
|
xfs_attr_trace_l_cl("blk end", context, leaf);
|
|
return(retval);
|
|
}
|
|
|
|
|
|
/*========================================================================
|
|
* Manage the INCOMPLETE flag in a leaf entry
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Clear the INCOMPLETE flag on an entry in a leaf block.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_clearflag(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
xfs_attr_leaf_name_remote_t *name_rmt;
|
|
xfs_dabuf_t *bp;
|
|
int error;
|
|
#ifdef DEBUG
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
int namelen;
|
|
char *name;
|
|
#endif /* DEBUG */
|
|
|
|
/*
|
|
* Set up the operation.
|
|
*/
|
|
error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp,
|
|
XFS_ATTR_FORK);
|
|
if (error) {
|
|
return(error);
|
|
}
|
|
ASSERT(bp != NULL);
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
|
|
ASSERT(args->index >= 0);
|
|
entry = &leaf->entries[ args->index ];
|
|
ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
|
|
|
|
#ifdef DEBUG
|
|
if (entry->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index);
|
|
namelen = name_loc->namelen;
|
|
name = (char *)name_loc->nameval;
|
|
} else {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
|
|
namelen = name_rmt->namelen;
|
|
name = (char *)name_rmt->name;
|
|
}
|
|
ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
|
|
ASSERT(namelen == args->namelen);
|
|
ASSERT(memcmp(name, args->name, namelen) == 0);
|
|
#endif /* DEBUG */
|
|
|
|
entry->flags &= ~XFS_ATTR_INCOMPLETE;
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
|
|
|
|
if (args->rmtblkno) {
|
|
ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
|
|
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
|
|
name_rmt->valuelen = cpu_to_be32(args->valuelen);
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
|
|
}
|
|
xfs_da_buf_done(bp);
|
|
|
|
/*
|
|
* Commit the flag value change and start the next trans in series.
|
|
*/
|
|
error = xfs_attr_rolltrans(&args->trans, args->dp);
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Set the INCOMPLETE flag on an entry in a leaf block.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_setflag(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
xfs_attr_leaf_name_remote_t *name_rmt;
|
|
xfs_dabuf_t *bp;
|
|
int error;
|
|
|
|
/*
|
|
* Set up the operation.
|
|
*/
|
|
error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp,
|
|
XFS_ATTR_FORK);
|
|
if (error) {
|
|
return(error);
|
|
}
|
|
ASSERT(bp != NULL);
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
|
|
ASSERT(args->index >= 0);
|
|
entry = &leaf->entries[ args->index ];
|
|
|
|
ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
|
|
entry->flags |= XFS_ATTR_INCOMPLETE;
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
|
|
if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
|
|
name_rmt->valueblk = 0;
|
|
name_rmt->valuelen = 0;
|
|
xfs_da_log_buf(args->trans, bp,
|
|
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
|
|
}
|
|
xfs_da_buf_done(bp);
|
|
|
|
/*
|
|
* Commit the flag value change and start the next trans in series.
|
|
*/
|
|
error = xfs_attr_rolltrans(&args->trans, args->dp);
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* In a single transaction, clear the INCOMPLETE flag on the leaf entry
|
|
* given by args->blkno/index and set the INCOMPLETE flag on the leaf
|
|
* entry given by args->blkno2/index2.
|
|
*
|
|
* Note that they could be in different blocks, or in the same block.
|
|
*/
|
|
int
|
|
xfs_attr_leaf_flipflags(xfs_da_args_t *args)
|
|
{
|
|
xfs_attr_leafblock_t *leaf1, *leaf2;
|
|
xfs_attr_leaf_entry_t *entry1, *entry2;
|
|
xfs_attr_leaf_name_remote_t *name_rmt;
|
|
xfs_dabuf_t *bp1, *bp2;
|
|
int error;
|
|
#ifdef DEBUG
|
|
xfs_attr_leaf_name_local_t *name_loc;
|
|
int namelen1, namelen2;
|
|
char *name1, *name2;
|
|
#endif /* DEBUG */
|
|
|
|
/*
|
|
* Read the block containing the "old" attr
|
|
*/
|
|
error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp1,
|
|
XFS_ATTR_FORK);
|
|
if (error) {
|
|
return(error);
|
|
}
|
|
ASSERT(bp1 != NULL);
|
|
|
|
/*
|
|
* Read the block containing the "new" attr, if it is different
|
|
*/
|
|
if (args->blkno2 != args->blkno) {
|
|
error = xfs_da_read_buf(args->trans, args->dp, args->blkno2,
|
|
-1, &bp2, XFS_ATTR_FORK);
|
|
if (error) {
|
|
return(error);
|
|
}
|
|
ASSERT(bp2 != NULL);
|
|
} else {
|
|
bp2 = bp1;
|
|
}
|
|
|
|
leaf1 = bp1->data;
|
|
ASSERT(be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(args->index < be16_to_cpu(leaf1->hdr.count));
|
|
ASSERT(args->index >= 0);
|
|
entry1 = &leaf1->entries[ args->index ];
|
|
|
|
leaf2 = bp2->data;
|
|
ASSERT(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
ASSERT(args->index2 < be16_to_cpu(leaf2->hdr.count));
|
|
ASSERT(args->index2 >= 0);
|
|
entry2 = &leaf2->entries[ args->index2 ];
|
|
|
|
#ifdef DEBUG
|
|
if (entry1->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf1, args->index);
|
|
namelen1 = name_loc->namelen;
|
|
name1 = (char *)name_loc->nameval;
|
|
} else {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf1, args->index);
|
|
namelen1 = name_rmt->namelen;
|
|
name1 = (char *)name_rmt->name;
|
|
}
|
|
if (entry2->flags & XFS_ATTR_LOCAL) {
|
|
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf2, args->index2);
|
|
namelen2 = name_loc->namelen;
|
|
name2 = (char *)name_loc->nameval;
|
|
} else {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf2, args->index2);
|
|
namelen2 = name_rmt->namelen;
|
|
name2 = (char *)name_rmt->name;
|
|
}
|
|
ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
|
|
ASSERT(namelen1 == namelen2);
|
|
ASSERT(memcmp(name1, name2, namelen1) == 0);
|
|
#endif /* DEBUG */
|
|
|
|
ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
|
|
ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
|
|
|
|
entry1->flags &= ~XFS_ATTR_INCOMPLETE;
|
|
xfs_da_log_buf(args->trans, bp1,
|
|
XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
|
|
if (args->rmtblkno) {
|
|
ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf1, args->index);
|
|
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
|
|
name_rmt->valuelen = cpu_to_be32(args->valuelen);
|
|
xfs_da_log_buf(args->trans, bp1,
|
|
XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
|
|
}
|
|
|
|
entry2->flags |= XFS_ATTR_INCOMPLETE;
|
|
xfs_da_log_buf(args->trans, bp2,
|
|
XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
|
|
if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf2, args->index2);
|
|
name_rmt->valueblk = 0;
|
|
name_rmt->valuelen = 0;
|
|
xfs_da_log_buf(args->trans, bp2,
|
|
XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
|
|
}
|
|
xfs_da_buf_done(bp1);
|
|
if (bp1 != bp2)
|
|
xfs_da_buf_done(bp2);
|
|
|
|
/*
|
|
* Commit the flag value change and start the next trans in series.
|
|
*/
|
|
error = xfs_attr_rolltrans(&args->trans, args->dp);
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*========================================================================
|
|
* Indiscriminately delete the entire attribute fork
|
|
*========================================================================*/
|
|
|
|
/*
|
|
* Recurse (gasp!) through the attribute nodes until we find leaves.
|
|
* We're doing a depth-first traversal in order to invalidate everything.
|
|
*/
|
|
int
|
|
xfs_attr_root_inactive(xfs_trans_t **trans, xfs_inode_t *dp)
|
|
{
|
|
xfs_da_blkinfo_t *info;
|
|
xfs_daddr_t blkno;
|
|
xfs_dabuf_t *bp;
|
|
int error;
|
|
|
|
/*
|
|
* Read block 0 to see what we have to work with.
|
|
* We only get here if we have extents, since we remove
|
|
* the extents in reverse order the extent containing
|
|
* block 0 must still be there.
|
|
*/
|
|
error = xfs_da_read_buf(*trans, dp, 0, -1, &bp, XFS_ATTR_FORK);
|
|
if (error)
|
|
return(error);
|
|
blkno = xfs_da_blkno(bp);
|
|
|
|
/*
|
|
* Invalidate the tree, even if the "tree" is only a single leaf block.
|
|
* This is a depth-first traversal!
|
|
*/
|
|
info = bp->data;
|
|
if (be16_to_cpu(info->magic) == XFS_DA_NODE_MAGIC) {
|
|
error = xfs_attr_node_inactive(trans, dp, bp, 1);
|
|
} else if (be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC) {
|
|
error = xfs_attr_leaf_inactive(trans, dp, bp);
|
|
} else {
|
|
error = XFS_ERROR(EIO);
|
|
xfs_da_brelse(*trans, bp);
|
|
}
|
|
if (error)
|
|
return(error);
|
|
|
|
/*
|
|
* Invalidate the incore copy of the root block.
|
|
*/
|
|
error = xfs_da_get_buf(*trans, dp, 0, blkno, &bp, XFS_ATTR_FORK);
|
|
if (error)
|
|
return(error);
|
|
xfs_da_binval(*trans, bp); /* remove from cache */
|
|
/*
|
|
* Commit the invalidate and start the next transaction.
|
|
*/
|
|
error = xfs_attr_rolltrans(trans, dp);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Recurse (gasp!) through the attribute nodes until we find leaves.
|
|
* We're doing a depth-first traversal in order to invalidate everything.
|
|
*/
|
|
STATIC int
|
|
xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp,
|
|
int level)
|
|
{
|
|
xfs_da_blkinfo_t *info;
|
|
xfs_da_intnode_t *node;
|
|
xfs_dablk_t child_fsb;
|
|
xfs_daddr_t parent_blkno, child_blkno;
|
|
int error, count, i;
|
|
xfs_dabuf_t *child_bp;
|
|
|
|
/*
|
|
* Since this code is recursive (gasp!) we must protect ourselves.
|
|
*/
|
|
if (level > XFS_DA_NODE_MAXDEPTH) {
|
|
xfs_da_brelse(*trans, bp); /* no locks for later trans */
|
|
return(XFS_ERROR(EIO));
|
|
}
|
|
|
|
node = bp->data;
|
|
ASSERT(be16_to_cpu(node->hdr.info.magic) == XFS_DA_NODE_MAGIC);
|
|
parent_blkno = xfs_da_blkno(bp); /* save for re-read later */
|
|
count = be16_to_cpu(node->hdr.count);
|
|
if (!count) {
|
|
xfs_da_brelse(*trans, bp);
|
|
return(0);
|
|
}
|
|
child_fsb = be32_to_cpu(node->btree[0].before);
|
|
xfs_da_brelse(*trans, bp); /* no locks for later trans */
|
|
|
|
/*
|
|
* If this is the node level just above the leaves, simply loop
|
|
* over the leaves removing all of them. If this is higher up
|
|
* in the tree, recurse downward.
|
|
*/
|
|
for (i = 0; i < count; i++) {
|
|
/*
|
|
* Read the subsidiary block to see what we have to work with.
|
|
* Don't do this in a transaction. This is a depth-first
|
|
* traversal of the tree so we may deal with many blocks
|
|
* before we come back to this one.
|
|
*/
|
|
error = xfs_da_read_buf(*trans, dp, child_fsb, -2, &child_bp,
|
|
XFS_ATTR_FORK);
|
|
if (error)
|
|
return(error);
|
|
if (child_bp) {
|
|
/* save for re-read later */
|
|
child_blkno = xfs_da_blkno(child_bp);
|
|
|
|
/*
|
|
* Invalidate the subtree, however we have to.
|
|
*/
|
|
info = child_bp->data;
|
|
if (be16_to_cpu(info->magic) == XFS_DA_NODE_MAGIC) {
|
|
error = xfs_attr_node_inactive(trans, dp,
|
|
child_bp, level+1);
|
|
} else if (be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC) {
|
|
error = xfs_attr_leaf_inactive(trans, dp,
|
|
child_bp);
|
|
} else {
|
|
error = XFS_ERROR(EIO);
|
|
xfs_da_brelse(*trans, child_bp);
|
|
}
|
|
if (error)
|
|
return(error);
|
|
|
|
/*
|
|
* Remove the subsidiary block from the cache
|
|
* and from the log.
|
|
*/
|
|
error = xfs_da_get_buf(*trans, dp, 0, child_blkno,
|
|
&child_bp, XFS_ATTR_FORK);
|
|
if (error)
|
|
return(error);
|
|
xfs_da_binval(*trans, child_bp);
|
|
}
|
|
|
|
/*
|
|
* If we're not done, re-read the parent to get the next
|
|
* child block number.
|
|
*/
|
|
if ((i+1) < count) {
|
|
error = xfs_da_read_buf(*trans, dp, 0, parent_blkno,
|
|
&bp, XFS_ATTR_FORK);
|
|
if (error)
|
|
return(error);
|
|
child_fsb = be32_to_cpu(node->btree[i+1].before);
|
|
xfs_da_brelse(*trans, bp);
|
|
}
|
|
/*
|
|
* Atomically commit the whole invalidate stuff.
|
|
*/
|
|
if ((error = xfs_attr_rolltrans(trans, dp)))
|
|
return (error);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Invalidate all of the "remote" value regions pointed to by a particular
|
|
* leaf block.
|
|
* Note that we must release the lock on the buffer so that we are not
|
|
* caught holding something that the logging code wants to flush to disk.
|
|
*/
|
|
STATIC int
|
|
xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp)
|
|
{
|
|
xfs_attr_leafblock_t *leaf;
|
|
xfs_attr_leaf_entry_t *entry;
|
|
xfs_attr_leaf_name_remote_t *name_rmt;
|
|
xfs_attr_inactive_list_t *list, *lp;
|
|
int error, count, size, tmp, i;
|
|
|
|
leaf = bp->data;
|
|
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
|
|
|
|
/*
|
|
* Count the number of "remote" value extents.
|
|
*/
|
|
count = 0;
|
|
entry = &leaf->entries[0];
|
|
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
|
|
if (be16_to_cpu(entry->nameidx) &&
|
|
((entry->flags & XFS_ATTR_LOCAL) == 0)) {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, i);
|
|
if (name_rmt->valueblk)
|
|
count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there are no "remote" values, we're done.
|
|
*/
|
|
if (count == 0) {
|
|
xfs_da_brelse(*trans, bp);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Allocate storage for a list of all the "remote" value extents.
|
|
*/
|
|
size = count * sizeof(xfs_attr_inactive_list_t);
|
|
list = (xfs_attr_inactive_list_t *)kmem_alloc(size, KM_SLEEP);
|
|
|
|
/*
|
|
* Identify each of the "remote" value extents.
|
|
*/
|
|
lp = list;
|
|
entry = &leaf->entries[0];
|
|
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
|
|
if (be16_to_cpu(entry->nameidx) &&
|
|
((entry->flags & XFS_ATTR_LOCAL) == 0)) {
|
|
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, i);
|
|
if (name_rmt->valueblk) {
|
|
lp->valueblk = be32_to_cpu(name_rmt->valueblk);
|
|
lp->valuelen = XFS_B_TO_FSB(dp->i_mount,
|
|
be32_to_cpu(name_rmt->valuelen));
|
|
lp++;
|
|
}
|
|
}
|
|
}
|
|
xfs_da_brelse(*trans, bp); /* unlock for trans. in freextent() */
|
|
|
|
/*
|
|
* Invalidate each of the "remote" value extents.
|
|
*/
|
|
error = 0;
|
|
for (lp = list, i = 0; i < count; i++, lp++) {
|
|
tmp = xfs_attr_leaf_freextent(trans, dp,
|
|
lp->valueblk, lp->valuelen);
|
|
|
|
if (error == 0)
|
|
error = tmp; /* save only the 1st errno */
|
|
}
|
|
|
|
kmem_free((xfs_caddr_t)list, size);
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Look at all the extents for this logical region,
|
|
* invalidate any buffers that are incore/in transactions.
|
|
*/
|
|
STATIC int
|
|
xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp,
|
|
xfs_dablk_t blkno, int blkcnt)
|
|
{
|
|
xfs_bmbt_irec_t map;
|
|
xfs_dablk_t tblkno;
|
|
int tblkcnt, dblkcnt, nmap, error;
|
|
xfs_daddr_t dblkno;
|
|
xfs_buf_t *bp;
|
|
|
|
/*
|
|
* Roll through the "value", invalidating the attribute value's
|
|
* blocks.
|
|
*/
|
|
tblkno = blkno;
|
|
tblkcnt = blkcnt;
|
|
while (tblkcnt > 0) {
|
|
/*
|
|
* Try to remember where we decided to put the value.
|
|
*/
|
|
nmap = 1;
|
|
error = xfs_bmapi(*trans, dp, (xfs_fileoff_t)tblkno, tblkcnt,
|
|
XFS_BMAPI_ATTRFORK | XFS_BMAPI_METADATA,
|
|
NULL, 0, &map, &nmap, NULL, NULL);
|
|
if (error) {
|
|
return(error);
|
|
}
|
|
ASSERT(nmap == 1);
|
|
ASSERT(map.br_startblock != DELAYSTARTBLOCK);
|
|
|
|
/*
|
|
* If it's a hole, these are already unmapped
|
|
* so there's nothing to invalidate.
|
|
*/
|
|
if (map.br_startblock != HOLESTARTBLOCK) {
|
|
|
|
dblkno = XFS_FSB_TO_DADDR(dp->i_mount,
|
|
map.br_startblock);
|
|
dblkcnt = XFS_FSB_TO_BB(dp->i_mount,
|
|
map.br_blockcount);
|
|
bp = xfs_trans_get_buf(*trans,
|
|
dp->i_mount->m_ddev_targp,
|
|
dblkno, dblkcnt, XFS_BUF_LOCK);
|
|
xfs_trans_binval(*trans, bp);
|
|
/*
|
|
* Roll to next transaction.
|
|
*/
|
|
if ((error = xfs_attr_rolltrans(trans, dp)))
|
|
return (error);
|
|
}
|
|
|
|
tblkno += map.br_blockcount;
|
|
tblkcnt -= map.br_blockcount;
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Roll from one trans in the sequence of PERMANENT transactions to the next.
|
|
*/
|
|
int
|
|
xfs_attr_rolltrans(xfs_trans_t **transp, xfs_inode_t *dp)
|
|
{
|
|
xfs_trans_t *trans;
|
|
unsigned int logres, count;
|
|
int error;
|
|
|
|
/*
|
|
* Ensure that the inode is always logged.
|
|
*/
|
|
trans = *transp;
|
|
xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
|
|
|
|
/*
|
|
* Copy the critical parameters from one trans to the next.
|
|
*/
|
|
logres = trans->t_log_res;
|
|
count = trans->t_log_count;
|
|
*transp = xfs_trans_dup(trans);
|
|
|
|
/*
|
|
* Commit the current transaction.
|
|
* If this commit failed, then it'd just unlock those items that
|
|
* are not marked ihold. That also means that a filesystem shutdown
|
|
* is in progress. The caller takes the responsibility to cancel
|
|
* the duplicate transaction that gets returned.
|
|
*/
|
|
if ((error = xfs_trans_commit(trans, 0, NULL)))
|
|
return (error);
|
|
|
|
trans = *transp;
|
|
|
|
/*
|
|
* Reserve space in the log for th next transaction.
|
|
* This also pushes items in the "AIL", the list of logged items,
|
|
* out to disk if they are taking up space at the tail of the log
|
|
* that we want to use. This requires that either nothing be locked
|
|
* across this call, or that anything that is locked be logged in
|
|
* the prior and the next transactions.
|
|
*/
|
|
error = xfs_trans_reserve(trans, 0, logres, 0,
|
|
XFS_TRANS_PERM_LOG_RES, count);
|
|
/*
|
|
* Ensure that the inode is in the new transaction and locked.
|
|
*/
|
|
if (!error) {
|
|
xfs_trans_ijoin(trans, dp, XFS_ILOCK_EXCL);
|
|
xfs_trans_ihold(trans, dp);
|
|
}
|
|
return (error);
|
|
|
|
}
|