android_kernel_motorola_sm6225/kernel/smpboot.c
Frederic Weisbecker 3dd08c0c91 smpboot: make cleanup to mirror setup
The per-cpu kthread cleanup() callback is the mirror of the setup()
callback.  When the per-cpu kthread is started, it first calls setup()
to initialize the resources which are then released by cleanup() when
the kthread exits.

Now since the introduction of a per-cpu kthread cpumask, the kthreads
excluded by the cpumask on boot may happen to be parked immediately
after their creation without taking the setup() stage, waiting to be
asked to unpark to do so.  Then when smpboot_unregister_percpu_thread()
is later called, the kthread is stopped without having ever called
setup().

But this triggers a bug as the kthread unconditionally calls cleanup()
on exit but this doesn't mirror any setup().  Thus the kernel crashes
because we try to free resources that haven't been initialized, as in
the watchdog case:

    WATCHDOG disable 0
    WATCHDOG disable 1
    WATCHDOG disable 2
    BUG: unable to handle kernel NULL pointer dereference at           (null)
    IP: hrtimer_active+0x26/0x60
    [...]
    Call Trace:
      hrtimer_try_to_cancel+0x1c/0x280
      hrtimer_cancel+0x1d/0x30
      watchdog_disable+0x56/0x70
      watchdog_cleanup+0xe/0x10
      smpboot_thread_fn+0x23c/0x2c0
      kthread+0xf8/0x110
      ret_from_fork+0x3f/0x70

This bug is currently masked with explicit kthread unparking before
kthread_stop() on smpboot_destroy_threads(). This forces a call to
setup() and then unpark().

We could fix this by unconditionally calling setup() on kthread entry.
But setup() isn't always cheap.  In the case of watchdog it launches
hrtimer, perf events, etc...  So we may as well like to skip it if there
are chances the kthread will never be used, as in a reduced cpumask value.

So let's simply do a state machine check before calling cleanup() that
makes sure setup() has been called before mirroring it.

And remove the nasty hack workaround.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00

523 lines
13 KiB
C

/*
* Common SMP CPU bringup/teardown functions
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/smp.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/smpboot.h>
#include "smpboot.h"
#ifdef CONFIG_SMP
#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
/*
* For the hotplug case we keep the task structs around and reuse
* them.
*/
static DEFINE_PER_CPU(struct task_struct *, idle_threads);
struct task_struct *idle_thread_get(unsigned int cpu)
{
struct task_struct *tsk = per_cpu(idle_threads, cpu);
if (!tsk)
return ERR_PTR(-ENOMEM);
init_idle(tsk, cpu);
return tsk;
}
void __init idle_thread_set_boot_cpu(void)
{
per_cpu(idle_threads, smp_processor_id()) = current;
}
/**
* idle_init - Initialize the idle thread for a cpu
* @cpu: The cpu for which the idle thread should be initialized
*
* Creates the thread if it does not exist.
*/
static inline void idle_init(unsigned int cpu)
{
struct task_struct *tsk = per_cpu(idle_threads, cpu);
if (!tsk) {
tsk = fork_idle(cpu);
if (IS_ERR(tsk))
pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
else
per_cpu(idle_threads, cpu) = tsk;
}
}
/**
* idle_threads_init - Initialize idle threads for all cpus
*/
void __init idle_threads_init(void)
{
unsigned int cpu, boot_cpu;
boot_cpu = smp_processor_id();
for_each_possible_cpu(cpu) {
if (cpu != boot_cpu)
idle_init(cpu);
}
}
#endif
#endif /* #ifdef CONFIG_SMP */
static LIST_HEAD(hotplug_threads);
static DEFINE_MUTEX(smpboot_threads_lock);
struct smpboot_thread_data {
unsigned int cpu;
unsigned int status;
struct smp_hotplug_thread *ht;
};
enum {
HP_THREAD_NONE = 0,
HP_THREAD_ACTIVE,
HP_THREAD_PARKED,
};
/**
* smpboot_thread_fn - percpu hotplug thread loop function
* @data: thread data pointer
*
* Checks for thread stop and park conditions. Calls the necessary
* setup, cleanup, park and unpark functions for the registered
* thread.
*
* Returns 1 when the thread should exit, 0 otherwise.
*/
static int smpboot_thread_fn(void *data)
{
struct smpboot_thread_data *td = data;
struct smp_hotplug_thread *ht = td->ht;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
preempt_disable();
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
preempt_enable();
/* cleanup must mirror setup */
if (ht->cleanup && td->status != HP_THREAD_NONE)
ht->cleanup(td->cpu, cpu_online(td->cpu));
kfree(td);
return 0;
}
if (kthread_should_park()) {
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->park && td->status == HP_THREAD_ACTIVE) {
BUG_ON(td->cpu != smp_processor_id());
ht->park(td->cpu);
td->status = HP_THREAD_PARKED;
}
kthread_parkme();
/* We might have been woken for stop */
continue;
}
BUG_ON(td->cpu != smp_processor_id());
/* Check for state change setup */
switch (td->status) {
case HP_THREAD_NONE:
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->setup)
ht->setup(td->cpu);
td->status = HP_THREAD_ACTIVE;
continue;
case HP_THREAD_PARKED:
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->unpark)
ht->unpark(td->cpu);
td->status = HP_THREAD_ACTIVE;
continue;
}
if (!ht->thread_should_run(td->cpu)) {
preempt_enable_no_resched();
schedule();
} else {
__set_current_state(TASK_RUNNING);
preempt_enable();
ht->thread_fn(td->cpu);
}
}
}
static int
__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
struct smpboot_thread_data *td;
if (tsk)
return 0;
td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
if (!td)
return -ENOMEM;
td->cpu = cpu;
td->ht = ht;
tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
ht->thread_comm);
if (IS_ERR(tsk)) {
kfree(td);
return PTR_ERR(tsk);
}
get_task_struct(tsk);
*per_cpu_ptr(ht->store, cpu) = tsk;
if (ht->create) {
/*
* Make sure that the task has actually scheduled out
* into park position, before calling the create
* callback. At least the migration thread callback
* requires that the task is off the runqueue.
*/
if (!wait_task_inactive(tsk, TASK_PARKED))
WARN_ON(1);
else
ht->create(cpu);
}
return 0;
}
int smpboot_create_threads(unsigned int cpu)
{
struct smp_hotplug_thread *cur;
int ret = 0;
mutex_lock(&smpboot_threads_lock);
list_for_each_entry(cur, &hotplug_threads, list) {
ret = __smpboot_create_thread(cur, cpu);
if (ret)
break;
}
mutex_unlock(&smpboot_threads_lock);
return ret;
}
static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
if (ht->pre_unpark)
ht->pre_unpark(cpu);
kthread_unpark(tsk);
}
void smpboot_unpark_threads(unsigned int cpu)
{
struct smp_hotplug_thread *cur;
mutex_lock(&smpboot_threads_lock);
list_for_each_entry(cur, &hotplug_threads, list)
if (cpumask_test_cpu(cpu, cur->cpumask))
smpboot_unpark_thread(cur, cpu);
mutex_unlock(&smpboot_threads_lock);
}
static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
if (tsk && !ht->selfparking)
kthread_park(tsk);
}
void smpboot_park_threads(unsigned int cpu)
{
struct smp_hotplug_thread *cur;
mutex_lock(&smpboot_threads_lock);
list_for_each_entry_reverse(cur, &hotplug_threads, list)
smpboot_park_thread(cur, cpu);
mutex_unlock(&smpboot_threads_lock);
}
static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
{
unsigned int cpu;
/* We need to destroy also the parked threads of offline cpus */
for_each_possible_cpu(cpu) {
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
if (tsk) {
kthread_stop(tsk);
put_task_struct(tsk);
*per_cpu_ptr(ht->store, cpu) = NULL;
}
}
}
/**
* smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
* @plug_thread: Hotplug thread descriptor
*
* Creates and starts the threads on all online cpus.
*/
int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
{
unsigned int cpu;
int ret = 0;
if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
return -ENOMEM;
cpumask_copy(plug_thread->cpumask, cpu_possible_mask);
get_online_cpus();
mutex_lock(&smpboot_threads_lock);
for_each_online_cpu(cpu) {
ret = __smpboot_create_thread(plug_thread, cpu);
if (ret) {
smpboot_destroy_threads(plug_thread);
free_cpumask_var(plug_thread->cpumask);
goto out;
}
smpboot_unpark_thread(plug_thread, cpu);
}
list_add(&plug_thread->list, &hotplug_threads);
out:
mutex_unlock(&smpboot_threads_lock);
put_online_cpus();
return ret;
}
EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
/**
* smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
* @plug_thread: Hotplug thread descriptor
*
* Stops all threads on all possible cpus.
*/
void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
{
get_online_cpus();
mutex_lock(&smpboot_threads_lock);
list_del(&plug_thread->list);
smpboot_destroy_threads(plug_thread);
mutex_unlock(&smpboot_threads_lock);
put_online_cpus();
free_cpumask_var(plug_thread->cpumask);
}
EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
/**
* smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
* @plug_thread: Hotplug thread descriptor
* @new: Revised mask to use
*
* The cpumask field in the smp_hotplug_thread must not be updated directly
* by the client, but only by calling this function.
* This function can only be called on a registered smp_hotplug_thread.
*/
int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
const struct cpumask *new)
{
struct cpumask *old = plug_thread->cpumask;
cpumask_var_t tmp;
unsigned int cpu;
if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
return -ENOMEM;
get_online_cpus();
mutex_lock(&smpboot_threads_lock);
/* Park threads that were exclusively enabled on the old mask. */
cpumask_andnot(tmp, old, new);
for_each_cpu_and(cpu, tmp, cpu_online_mask)
smpboot_park_thread(plug_thread, cpu);
/* Unpark threads that are exclusively enabled on the new mask. */
cpumask_andnot(tmp, new, old);
for_each_cpu_and(cpu, tmp, cpu_online_mask)
smpboot_unpark_thread(plug_thread, cpu);
cpumask_copy(old, new);
mutex_unlock(&smpboot_threads_lock);
put_online_cpus();
free_cpumask_var(tmp);
return 0;
}
EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
/*
* Called to poll specified CPU's state, for example, when waiting for
* a CPU to come online.
*/
int cpu_report_state(int cpu)
{
return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
}
/*
* If CPU has died properly, set its state to CPU_UP_PREPARE and
* return success. Otherwise, return -EBUSY if the CPU died after
* cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN
* if cpu_wait_death() timed out and the CPU still hasn't gotten around
* to dying. In the latter two cases, the CPU might not be set up
* properly, but it is up to the arch-specific code to decide.
* Finally, -EIO indicates an unanticipated problem.
*
* Note that it is permissible to omit this call entirely, as is
* done in architectures that do no CPU-hotplug error checking.
*/
int cpu_check_up_prepare(int cpu)
{
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
return 0;
}
switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
case CPU_POST_DEAD:
/* The CPU died properly, so just start it up again. */
atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
return 0;
case CPU_DEAD_FROZEN:
/*
* Timeout during CPU death, so let caller know.
* The outgoing CPU completed its processing, but after
* cpu_wait_death() timed out and reported the error. The
* caller is free to proceed, in which case the state
* will be reset properly by cpu_set_state_online().
* Proceeding despite this -EBUSY return makes sense
* for systems where the outgoing CPUs take themselves
* offline, with no post-death manipulation required from
* a surviving CPU.
*/
return -EBUSY;
case CPU_BROKEN:
/*
* The most likely reason we got here is that there was
* a timeout during CPU death, and the outgoing CPU never
* did complete its processing. This could happen on
* a virtualized system if the outgoing VCPU gets preempted
* for more than five seconds, and the user attempts to
* immediately online that same CPU. Trying again later
* might return -EBUSY above, hence -EAGAIN.
*/
return -EAGAIN;
default:
/* Should not happen. Famous last words. */
return -EIO;
}
}
/*
* Mark the specified CPU online.
*
* Note that it is permissible to omit this call entirely, as is
* done in architectures that do no CPU-hotplug error checking.
*/
void cpu_set_state_online(int cpu)
{
(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Wait for the specified CPU to exit the idle loop and die.
*/
bool cpu_wait_death(unsigned int cpu, int seconds)
{
int jf_left = seconds * HZ;
int oldstate;
bool ret = true;
int sleep_jf = 1;
might_sleep();
/* The outgoing CPU will normally get done quite quickly. */
if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
goto update_state;
udelay(5);
/* But if the outgoing CPU dawdles, wait increasingly long times. */
while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
schedule_timeout_uninterruptible(sleep_jf);
jf_left -= sleep_jf;
if (jf_left <= 0)
break;
sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
}
update_state:
oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
if (oldstate == CPU_DEAD) {
/* Outgoing CPU died normally, update state. */
smp_mb(); /* atomic_read() before update. */
atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
} else {
/* Outgoing CPU still hasn't died, set state accordingly. */
if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
oldstate, CPU_BROKEN) != oldstate)
goto update_state;
ret = false;
}
return ret;
}
/*
* Called by the outgoing CPU to report its successful death. Return
* false if this report follows the surviving CPU's timing out.
*
* A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
* timed out. This approach allows architectures to omit calls to
* cpu_check_up_prepare() and cpu_set_state_online() without defeating
* the next cpu_wait_death()'s polling loop.
*/
bool cpu_report_death(void)
{
int oldstate;
int newstate;
int cpu = smp_processor_id();
do {
oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
if (oldstate != CPU_BROKEN)
newstate = CPU_DEAD;
else
newstate = CPU_DEAD_FROZEN;
} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
oldstate, newstate) != oldstate);
return newstate == CPU_DEAD;
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */