7f9dce3837
* 'sched/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: sched: hrtick_enabled() should use cpu_active() sched, x86: clean up hrtick implementation sched: fix build error, provide partition_sched_domains() unconditionally sched: fix warning in inc_rt_tasks() to not declare variable 'rq' if it's not needed cpu hotplug: Make cpu_active_map synchronization dependency clear cpu hotplug, sched: Introduce cpu_active_map and redo sched domain managment (take 2) sched: rework of "prioritize non-migratable tasks over migratable ones" sched: reduce stack size in isolated_cpu_setup() Revert parts of "ftrace: do not trace scheduler functions" Fixed up conflicts in include/asm-x86/thread_info.h (due to the TIF_SINGLESTEP unification vs TIF_HRTICK_RESCHED removal) and kernel/sched_fair.c (due to cpu_active_map vs for_each_cpu_mask_nr() introduction).
545 lines
19 KiB
C
545 lines
19 KiB
C
#ifndef __LINUX_CPUMASK_H
|
|
#define __LINUX_CPUMASK_H
|
|
|
|
/*
|
|
* Cpumasks provide a bitmap suitable for representing the
|
|
* set of CPU's in a system, one bit position per CPU number.
|
|
*
|
|
* See detailed comments in the file linux/bitmap.h describing the
|
|
* data type on which these cpumasks are based.
|
|
*
|
|
* For details of cpumask_scnprintf() and cpumask_parse_user(),
|
|
* see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c.
|
|
* For details of cpulist_scnprintf() and cpulist_parse(), see
|
|
* bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
|
|
* For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
|
|
* For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
|
|
* For details of cpus_onto(), see bitmap_onto in lib/bitmap.c.
|
|
* For details of cpus_fold(), see bitmap_fold in lib/bitmap.c.
|
|
*
|
|
* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
* Note: The alternate operations with the suffix "_nr" are used
|
|
* to limit the range of the loop to nr_cpu_ids instead of
|
|
* NR_CPUS when NR_CPUS > 64 for performance reasons.
|
|
* If NR_CPUS is <= 64 then most assembler bitmask
|
|
* operators execute faster with a constant range, so
|
|
* the operator will continue to use NR_CPUS.
|
|
*
|
|
* Another consideration is that nr_cpu_ids is initialized
|
|
* to NR_CPUS and isn't lowered until the possible cpus are
|
|
* discovered (including any disabled cpus). So early uses
|
|
* will span the entire range of NR_CPUS.
|
|
* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
*
|
|
* The available cpumask operations are:
|
|
*
|
|
* void cpu_set(cpu, mask) turn on bit 'cpu' in mask
|
|
* void cpu_clear(cpu, mask) turn off bit 'cpu' in mask
|
|
* void cpus_setall(mask) set all bits
|
|
* void cpus_clear(mask) clear all bits
|
|
* int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask
|
|
* int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask
|
|
*
|
|
* void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection]
|
|
* void cpus_or(dst, src1, src2) dst = src1 | src2 [union]
|
|
* void cpus_xor(dst, src1, src2) dst = src1 ^ src2
|
|
* void cpus_andnot(dst, src1, src2) dst = src1 & ~src2
|
|
* void cpus_complement(dst, src) dst = ~src
|
|
*
|
|
* int cpus_equal(mask1, mask2) Does mask1 == mask2?
|
|
* int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect?
|
|
* int cpus_subset(mask1, mask2) Is mask1 a subset of mask2?
|
|
* int cpus_empty(mask) Is mask empty (no bits sets)?
|
|
* int cpus_full(mask) Is mask full (all bits sets)?
|
|
* int cpus_weight(mask) Hamming weigh - number of set bits
|
|
* int cpus_weight_nr(mask) Same using nr_cpu_ids instead of NR_CPUS
|
|
*
|
|
* void cpus_shift_right(dst, src, n) Shift right
|
|
* void cpus_shift_left(dst, src, n) Shift left
|
|
*
|
|
* int first_cpu(mask) Number lowest set bit, or NR_CPUS
|
|
* int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS
|
|
* int next_cpu_nr(cpu, mask) Next cpu past 'cpu', or nr_cpu_ids
|
|
*
|
|
* cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set
|
|
*ifdef CONFIG_HAS_CPUMASK_OF_CPU
|
|
* cpumask_of_cpu_ptr_declare(v) Declares cpumask_t *v
|
|
* cpumask_of_cpu_ptr_next(v, cpu) Sets v = &cpumask_of_cpu_map[cpu]
|
|
* cpumask_of_cpu_ptr(v, cpu) Combines above two operations
|
|
*else
|
|
* cpumask_of_cpu_ptr_declare(v) Declares cpumask_t _v and *v = &_v
|
|
* cpumask_of_cpu_ptr_next(v, cpu) Sets _v = cpumask_of_cpu(cpu)
|
|
* cpumask_of_cpu_ptr(v, cpu) Combines above two operations
|
|
*endif
|
|
* CPU_MASK_ALL Initializer - all bits set
|
|
* CPU_MASK_NONE Initializer - no bits set
|
|
* unsigned long *cpus_addr(mask) Array of unsigned long's in mask
|
|
*
|
|
* CPUMASK_ALLOC kmalloc's a structure that is a composite of many cpumask_t
|
|
* variables, and CPUMASK_PTR provides pointers to each field.
|
|
*
|
|
* The structure should be defined something like this:
|
|
* struct my_cpumasks {
|
|
* cpumask_t mask1;
|
|
* cpumask_t mask2;
|
|
* };
|
|
*
|
|
* Usage is then:
|
|
* CPUMASK_ALLOC(my_cpumasks);
|
|
* CPUMASK_PTR(mask1, my_cpumasks);
|
|
* CPUMASK_PTR(mask2, my_cpumasks);
|
|
*
|
|
* --- DO NOT reference cpumask_t pointers until this check ---
|
|
* if (my_cpumasks == NULL)
|
|
* "kmalloc failed"...
|
|
*
|
|
* References are now pointers to the cpumask_t variables (*mask1, ...)
|
|
*
|
|
*if NR_CPUS > BITS_PER_LONG
|
|
* CPUMASK_ALLOC(m) Declares and allocates struct m *m =
|
|
* kmalloc(sizeof(*m), GFP_KERNEL)
|
|
* CPUMASK_FREE(m) Macro for kfree(m)
|
|
*else
|
|
* CPUMASK_ALLOC(m) Declares struct m _m, *m = &_m
|
|
* CPUMASK_FREE(m) Nop
|
|
*endif
|
|
* CPUMASK_PTR(v, m) Declares cpumask_t *v = &(m->v)
|
|
* ------------------------------------------------------------------------
|
|
*
|
|
* int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
|
|
* int cpumask_parse_user(ubuf, ulen, mask) Parse ascii string as cpumask
|
|
* int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
|
|
* int cpulist_parse(buf, map) Parse ascii string as cpulist
|
|
* int cpu_remap(oldbit, old, new) newbit = map(old, new)(oldbit)
|
|
* void cpus_remap(dst, src, old, new) *dst = map(old, new)(src)
|
|
* void cpus_onto(dst, orig, relmap) *dst = orig relative to relmap
|
|
* void cpus_fold(dst, orig, sz) dst bits = orig bits mod sz
|
|
*
|
|
* for_each_cpu_mask(cpu, mask) for-loop cpu over mask using NR_CPUS
|
|
* for_each_cpu_mask_nr(cpu, mask) for-loop cpu over mask using nr_cpu_ids
|
|
*
|
|
* int num_online_cpus() Number of online CPUs
|
|
* int num_possible_cpus() Number of all possible CPUs
|
|
* int num_present_cpus() Number of present CPUs
|
|
*
|
|
* int cpu_online(cpu) Is some cpu online?
|
|
* int cpu_possible(cpu) Is some cpu possible?
|
|
* int cpu_present(cpu) Is some cpu present (can schedule)?
|
|
*
|
|
* int any_online_cpu(mask) First online cpu in mask
|
|
*
|
|
* for_each_possible_cpu(cpu) for-loop cpu over cpu_possible_map
|
|
* for_each_online_cpu(cpu) for-loop cpu over cpu_online_map
|
|
* for_each_present_cpu(cpu) for-loop cpu over cpu_present_map
|
|
*
|
|
* Subtlety:
|
|
* 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
|
|
* to generate slightly worse code. Note for example the additional
|
|
* 40 lines of assembly code compiling the "for each possible cpu"
|
|
* loops buried in the disk_stat_read() macros calls when compiling
|
|
* drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple
|
|
* one-line #define for cpu_isset(), instead of wrapping an inline
|
|
* inside a macro, the way we do the other calls.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/bitmap.h>
|
|
|
|
typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
|
|
extern cpumask_t _unused_cpumask_arg_;
|
|
|
|
#define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
|
|
static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
|
|
{
|
|
set_bit(cpu, dstp->bits);
|
|
}
|
|
|
|
#define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
|
|
static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
|
|
{
|
|
clear_bit(cpu, dstp->bits);
|
|
}
|
|
|
|
#define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
|
|
static inline void __cpus_setall(cpumask_t *dstp, int nbits)
|
|
{
|
|
bitmap_fill(dstp->bits, nbits);
|
|
}
|
|
|
|
#define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
|
|
static inline void __cpus_clear(cpumask_t *dstp, int nbits)
|
|
{
|
|
bitmap_zero(dstp->bits, nbits);
|
|
}
|
|
|
|
/* No static inline type checking - see Subtlety (1) above. */
|
|
#define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
|
|
|
|
#define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
|
|
static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
|
|
{
|
|
return test_and_set_bit(cpu, addr->bits);
|
|
}
|
|
|
|
#define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
|
|
static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
|
|
const cpumask_t *src2p, int nbits)
|
|
{
|
|
bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
|
|
}
|
|
|
|
#define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
|
|
static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
|
|
const cpumask_t *src2p, int nbits)
|
|
{
|
|
bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
|
|
}
|
|
|
|
#define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
|
|
static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
|
|
const cpumask_t *src2p, int nbits)
|
|
{
|
|
bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
|
|
}
|
|
|
|
#define cpus_andnot(dst, src1, src2) \
|
|
__cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
|
|
static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
|
|
const cpumask_t *src2p, int nbits)
|
|
{
|
|
bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
|
|
}
|
|
|
|
#define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
|
|
static inline void __cpus_complement(cpumask_t *dstp,
|
|
const cpumask_t *srcp, int nbits)
|
|
{
|
|
bitmap_complement(dstp->bits, srcp->bits, nbits);
|
|
}
|
|
|
|
#define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
|
|
static inline int __cpus_equal(const cpumask_t *src1p,
|
|
const cpumask_t *src2p, int nbits)
|
|
{
|
|
return bitmap_equal(src1p->bits, src2p->bits, nbits);
|
|
}
|
|
|
|
#define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
|
|
static inline int __cpus_intersects(const cpumask_t *src1p,
|
|
const cpumask_t *src2p, int nbits)
|
|
{
|
|
return bitmap_intersects(src1p->bits, src2p->bits, nbits);
|
|
}
|
|
|
|
#define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
|
|
static inline int __cpus_subset(const cpumask_t *src1p,
|
|
const cpumask_t *src2p, int nbits)
|
|
{
|
|
return bitmap_subset(src1p->bits, src2p->bits, nbits);
|
|
}
|
|
|
|
#define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
|
|
static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
|
|
{
|
|
return bitmap_empty(srcp->bits, nbits);
|
|
}
|
|
|
|
#define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
|
|
static inline int __cpus_full(const cpumask_t *srcp, int nbits)
|
|
{
|
|
return bitmap_full(srcp->bits, nbits);
|
|
}
|
|
|
|
#define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
|
|
static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
|
|
{
|
|
return bitmap_weight(srcp->bits, nbits);
|
|
}
|
|
|
|
#define cpus_shift_right(dst, src, n) \
|
|
__cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
|
|
static inline void __cpus_shift_right(cpumask_t *dstp,
|
|
const cpumask_t *srcp, int n, int nbits)
|
|
{
|
|
bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
|
|
}
|
|
|
|
#define cpus_shift_left(dst, src, n) \
|
|
__cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
|
|
static inline void __cpus_shift_left(cpumask_t *dstp,
|
|
const cpumask_t *srcp, int n, int nbits)
|
|
{
|
|
bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_HAVE_CPUMASK_OF_CPU_MAP
|
|
extern cpumask_t *cpumask_of_cpu_map;
|
|
#define cpumask_of_cpu(cpu) (cpumask_of_cpu_map[cpu])
|
|
#define cpumask_of_cpu_ptr(v, cpu) \
|
|
const cpumask_t *v = &cpumask_of_cpu(cpu)
|
|
#define cpumask_of_cpu_ptr_declare(v) \
|
|
const cpumask_t *v
|
|
#define cpumask_of_cpu_ptr_next(v, cpu) \
|
|
v = &cpumask_of_cpu(cpu)
|
|
#else
|
|
#define cpumask_of_cpu(cpu) \
|
|
({ \
|
|
typeof(_unused_cpumask_arg_) m; \
|
|
if (sizeof(m) == sizeof(unsigned long)) { \
|
|
m.bits[0] = 1UL<<(cpu); \
|
|
} else { \
|
|
cpus_clear(m); \
|
|
cpu_set((cpu), m); \
|
|
} \
|
|
m; \
|
|
})
|
|
#define cpumask_of_cpu_ptr(v, cpu) \
|
|
cpumask_t _##v = cpumask_of_cpu(cpu); \
|
|
const cpumask_t *v = &_##v
|
|
#define cpumask_of_cpu_ptr_declare(v) \
|
|
cpumask_t _##v; \
|
|
const cpumask_t *v = &_##v
|
|
#define cpumask_of_cpu_ptr_next(v, cpu) \
|
|
_##v = cpumask_of_cpu(cpu)
|
|
#endif
|
|
|
|
#define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
|
|
|
|
#if NR_CPUS <= BITS_PER_LONG
|
|
|
|
#define CPU_MASK_ALL \
|
|
(cpumask_t) { { \
|
|
[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
|
|
} }
|
|
|
|
#define CPU_MASK_ALL_PTR (&CPU_MASK_ALL)
|
|
|
|
#else
|
|
|
|
#define CPU_MASK_ALL \
|
|
(cpumask_t) { { \
|
|
[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
|
|
[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
|
|
} }
|
|
|
|
/* cpu_mask_all is in init/main.c */
|
|
extern cpumask_t cpu_mask_all;
|
|
#define CPU_MASK_ALL_PTR (&cpu_mask_all)
|
|
|
|
#endif
|
|
|
|
#define CPU_MASK_NONE \
|
|
(cpumask_t) { { \
|
|
[0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
|
|
} }
|
|
|
|
#define CPU_MASK_CPU0 \
|
|
(cpumask_t) { { \
|
|
[0] = 1UL \
|
|
} }
|
|
|
|
#define cpus_addr(src) ((src).bits)
|
|
|
|
#if NR_CPUS > BITS_PER_LONG
|
|
#define CPUMASK_ALLOC(m) struct m *m = kmalloc(sizeof(*m), GFP_KERNEL)
|
|
#define CPUMASK_FREE(m) kfree(m)
|
|
#else
|
|
#define CPUMASK_ALLOC(m) struct m _m, *m = &_m
|
|
#define CPUMASK_FREE(m)
|
|
#endif
|
|
#define CPUMASK_PTR(v, m) cpumask_t *v = &(m->v)
|
|
|
|
#define cpumask_scnprintf(buf, len, src) \
|
|
__cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
|
|
static inline int __cpumask_scnprintf(char *buf, int len,
|
|
const cpumask_t *srcp, int nbits)
|
|
{
|
|
return bitmap_scnprintf(buf, len, srcp->bits, nbits);
|
|
}
|
|
|
|
#define cpumask_parse_user(ubuf, ulen, dst) \
|
|
__cpumask_parse_user((ubuf), (ulen), &(dst), NR_CPUS)
|
|
static inline int __cpumask_parse_user(const char __user *buf, int len,
|
|
cpumask_t *dstp, int nbits)
|
|
{
|
|
return bitmap_parse_user(buf, len, dstp->bits, nbits);
|
|
}
|
|
|
|
#define cpulist_scnprintf(buf, len, src) \
|
|
__cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
|
|
static inline int __cpulist_scnprintf(char *buf, int len,
|
|
const cpumask_t *srcp, int nbits)
|
|
{
|
|
return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
|
|
}
|
|
|
|
#define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
|
|
static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
|
|
{
|
|
return bitmap_parselist(buf, dstp->bits, nbits);
|
|
}
|
|
|
|
#define cpu_remap(oldbit, old, new) \
|
|
__cpu_remap((oldbit), &(old), &(new), NR_CPUS)
|
|
static inline int __cpu_remap(int oldbit,
|
|
const cpumask_t *oldp, const cpumask_t *newp, int nbits)
|
|
{
|
|
return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
|
|
}
|
|
|
|
#define cpus_remap(dst, src, old, new) \
|
|
__cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
|
|
static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
|
|
const cpumask_t *oldp, const cpumask_t *newp, int nbits)
|
|
{
|
|
bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
|
|
}
|
|
|
|
#define cpus_onto(dst, orig, relmap) \
|
|
__cpus_onto(&(dst), &(orig), &(relmap), NR_CPUS)
|
|
static inline void __cpus_onto(cpumask_t *dstp, const cpumask_t *origp,
|
|
const cpumask_t *relmapp, int nbits)
|
|
{
|
|
bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits);
|
|
}
|
|
|
|
#define cpus_fold(dst, orig, sz) \
|
|
__cpus_fold(&(dst), &(orig), sz, NR_CPUS)
|
|
static inline void __cpus_fold(cpumask_t *dstp, const cpumask_t *origp,
|
|
int sz, int nbits)
|
|
{
|
|
bitmap_fold(dstp->bits, origp->bits, sz, nbits);
|
|
}
|
|
|
|
#if NR_CPUS == 1
|
|
|
|
#define nr_cpu_ids 1
|
|
#define first_cpu(src) ({ (void)(src); 0; })
|
|
#define next_cpu(n, src) ({ (void)(src); 1; })
|
|
#define any_online_cpu(mask) 0
|
|
#define for_each_cpu_mask(cpu, mask) \
|
|
for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
|
|
|
|
#else /* NR_CPUS > 1 */
|
|
|
|
extern int nr_cpu_ids;
|
|
int __first_cpu(const cpumask_t *srcp);
|
|
int __next_cpu(int n, const cpumask_t *srcp);
|
|
int __any_online_cpu(const cpumask_t *mask);
|
|
|
|
#define first_cpu(src) __first_cpu(&(src))
|
|
#define next_cpu(n, src) __next_cpu((n), &(src))
|
|
#define any_online_cpu(mask) __any_online_cpu(&(mask))
|
|
#define for_each_cpu_mask(cpu, mask) \
|
|
for ((cpu) = -1; \
|
|
(cpu) = next_cpu((cpu), (mask)), \
|
|
(cpu) < NR_CPUS; )
|
|
#endif
|
|
|
|
#if NR_CPUS <= 64
|
|
|
|
#define next_cpu_nr(n, src) next_cpu(n, src)
|
|
#define cpus_weight_nr(cpumask) cpus_weight(cpumask)
|
|
#define for_each_cpu_mask_nr(cpu, mask) for_each_cpu_mask(cpu, mask)
|
|
|
|
#else /* NR_CPUS > 64 */
|
|
|
|
int __next_cpu_nr(int n, const cpumask_t *srcp);
|
|
#define next_cpu_nr(n, src) __next_cpu_nr((n), &(src))
|
|
#define cpus_weight_nr(cpumask) __cpus_weight(&(cpumask), nr_cpu_ids)
|
|
#define for_each_cpu_mask_nr(cpu, mask) \
|
|
for ((cpu) = -1; \
|
|
(cpu) = next_cpu_nr((cpu), (mask)), \
|
|
(cpu) < nr_cpu_ids; )
|
|
|
|
#endif /* NR_CPUS > 64 */
|
|
|
|
/*
|
|
* The following particular system cpumasks and operations manage
|
|
* possible, present, active and online cpus. Each of them is a fixed size
|
|
* bitmap of size NR_CPUS.
|
|
*
|
|
* #ifdef CONFIG_HOTPLUG_CPU
|
|
* cpu_possible_map - has bit 'cpu' set iff cpu is populatable
|
|
* cpu_present_map - has bit 'cpu' set iff cpu is populated
|
|
* cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
|
|
* cpu_active_map - has bit 'cpu' set iff cpu available to migration
|
|
* #else
|
|
* cpu_possible_map - has bit 'cpu' set iff cpu is populated
|
|
* cpu_present_map - copy of cpu_possible_map
|
|
* cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
|
|
* #endif
|
|
*
|
|
* In either case, NR_CPUS is fixed at compile time, as the static
|
|
* size of these bitmaps. The cpu_possible_map is fixed at boot
|
|
* time, as the set of CPU id's that it is possible might ever
|
|
* be plugged in at anytime during the life of that system boot.
|
|
* The cpu_present_map is dynamic(*), representing which CPUs
|
|
* are currently plugged in. And cpu_online_map is the dynamic
|
|
* subset of cpu_present_map, indicating those CPUs available
|
|
* for scheduling.
|
|
*
|
|
* If HOTPLUG is enabled, then cpu_possible_map is forced to have
|
|
* all NR_CPUS bits set, otherwise it is just the set of CPUs that
|
|
* ACPI reports present at boot.
|
|
*
|
|
* If HOTPLUG is enabled, then cpu_present_map varies dynamically,
|
|
* depending on what ACPI reports as currently plugged in, otherwise
|
|
* cpu_present_map is just a copy of cpu_possible_map.
|
|
*
|
|
* (*) Well, cpu_present_map is dynamic in the hotplug case. If not
|
|
* hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
|
|
*
|
|
* Subtleties:
|
|
* 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
|
|
* assumption that their single CPU is online. The UP
|
|
* cpu_{online,possible,present}_maps are placebos. Changing them
|
|
* will have no useful affect on the following num_*_cpus()
|
|
* and cpu_*() macros in the UP case. This ugliness is a UP
|
|
* optimization - don't waste any instructions or memory references
|
|
* asking if you're online or how many CPUs there are if there is
|
|
* only one CPU.
|
|
* 2) Most SMP arch's #define some of these maps to be some
|
|
* other map specific to that arch. Therefore, the following
|
|
* must be #define macros, not inlines. To see why, examine
|
|
* the assembly code produced by the following. Note that
|
|
* set1() writes phys_x_map, but set2() writes x_map:
|
|
* int x_map, phys_x_map;
|
|
* #define set1(a) x_map = a
|
|
* inline void set2(int a) { x_map = a; }
|
|
* #define x_map phys_x_map
|
|
* main(){ set1(3); set2(5); }
|
|
*/
|
|
|
|
extern cpumask_t cpu_possible_map;
|
|
extern cpumask_t cpu_online_map;
|
|
extern cpumask_t cpu_present_map;
|
|
extern cpumask_t cpu_active_map;
|
|
|
|
#if NR_CPUS > 1
|
|
#define num_online_cpus() cpus_weight_nr(cpu_online_map)
|
|
#define num_possible_cpus() cpus_weight_nr(cpu_possible_map)
|
|
#define num_present_cpus() cpus_weight_nr(cpu_present_map)
|
|
#define cpu_online(cpu) cpu_isset((cpu), cpu_online_map)
|
|
#define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map)
|
|
#define cpu_present(cpu) cpu_isset((cpu), cpu_present_map)
|
|
#define cpu_active(cpu) cpu_isset((cpu), cpu_active_map)
|
|
#else
|
|
#define num_online_cpus() 1
|
|
#define num_possible_cpus() 1
|
|
#define num_present_cpus() 1
|
|
#define cpu_online(cpu) ((cpu) == 0)
|
|
#define cpu_possible(cpu) ((cpu) == 0)
|
|
#define cpu_present(cpu) ((cpu) == 0)
|
|
#define cpu_active(cpu) ((cpu) == 0)
|
|
#endif
|
|
|
|
#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
|
|
|
|
#define for_each_possible_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_possible_map)
|
|
#define for_each_online_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_online_map)
|
|
#define for_each_present_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_present_map)
|
|
|
|
#endif /* __LINUX_CPUMASK_H */
|