android_kernel_motorola_sm6225/arch/mips/mips-boards/generic/time.c
Ralf Baechle 4b550488f8 [MIPS] Deforest the function pointer jungle in the time code.
Hard to follow who is pointing what to where and why so it's simply getting
in the way of the time code renovation.

Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2007-10-11 23:46:08 +01:00

312 lines
8 KiB
C

/*
* Carsten Langgaard, carstenl@mips.com
* Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Setting up the clock on the MIPS boards.
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel_stat.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/mc146818rtc.h>
#include <asm/mipsregs.h>
#include <asm/mipsmtregs.h>
#include <asm/hardirq.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <asm/cpu.h>
#include <asm/time.h>
#include <asm/mc146818-time.h>
#include <asm/msc01_ic.h>
#include <asm/mips-boards/generic.h>
#include <asm/mips-boards/prom.h>
#ifdef CONFIG_MIPS_ATLAS
#include <asm/mips-boards/atlasint.h>
#endif
#ifdef CONFIG_MIPS_MALTA
#include <asm/mips-boards/maltaint.h>
#endif
#ifdef CONFIG_MIPS_SEAD
#include <asm/mips-boards/seadint.h>
#endif
unsigned long cpu_khz;
static int mips_cpu_timer_irq;
extern int cp0_perfcount_irq;
extern void smtc_timer_broadcast(void);
static void mips_timer_dispatch(void)
{
do_IRQ(mips_cpu_timer_irq);
}
static void mips_perf_dispatch(void)
{
do_IRQ(cp0_perfcount_irq);
}
/*
* Redeclare until I get around mopping the timer code insanity on MIPS.
*/
extern int null_perf_irq(void);
extern int (*perf_irq)(void);
/*
* Possibly handle a performance counter interrupt.
* Return true if the timer interrupt should not be checked
*/
static inline int handle_perf_irq (int r2)
{
/*
* The performance counter overflow interrupt may be shared with the
* timer interrupt (cp0_perfcount_irq < 0). If it is and a
* performance counter has overflowed (perf_irq() == IRQ_HANDLED)
* and we can't reliably determine if a counter interrupt has also
* happened (!r2) then don't check for a timer interrupt.
*/
return (cp0_perfcount_irq < 0) &&
perf_irq() == IRQ_HANDLED &&
!r2;
}
irqreturn_t mips_timer_interrupt(int irq, void *dev_id)
{
int cpu = smp_processor_id();
#ifdef CONFIG_MIPS_MT_SMTC
/*
* In an SMTC system, one Count/Compare set exists per VPE.
* Which TC within a VPE gets the interrupt is essentially
* random - we only know that it shouldn't be one with
* IXMT set. Whichever TC gets the interrupt needs to
* send special interprocessor interrupts to the other
* TCs to make sure that they schedule, etc.
*
* That code is specific to the SMTC kernel, not to
* the a particular platform, so it's invoked from
* the general MIPS timer_interrupt routine.
*/
/*
* We could be here due to timer interrupt,
* perf counter overflow, or both.
*/
(void) handle_perf_irq(1);
if (read_c0_cause() & (1 << 30)) {
/*
* There are things we only want to do once per tick
* in an "MP" system. One TC of each VPE will take
* the actual timer interrupt. The others will get
* timer broadcast IPIs. We use whoever it is that takes
* the tick on VPE 0 to run the full timer_interrupt().
*/
if (cpu_data[cpu].vpe_id == 0) {
timer_interrupt(irq, NULL);
} else {
write_c0_compare(read_c0_count() +
(mips_hpt_frequency/HZ));
local_timer_interrupt(irq, dev_id);
}
smtc_timer_broadcast();
}
#else /* CONFIG_MIPS_MT_SMTC */
int r2 = cpu_has_mips_r2;
if (handle_perf_irq(r2))
goto out;
if (r2 && ((read_c0_cause() & (1 << 30)) == 0))
goto out;
if (cpu == 0) {
/*
* CPU 0 handles the global timer interrupt job and process
* accounting resets count/compare registers to trigger next
* timer int.
*/
timer_interrupt(irq, NULL);
} else {
/* Everyone else needs to reset the timer int here as
ll_local_timer_interrupt doesn't */
/*
* FIXME: need to cope with counter underflow.
* More support needs to be added to kernel/time for
* counter/timer interrupts on multiple CPU's
*/
write_c0_compare(read_c0_count() + (mips_hpt_frequency/HZ));
/*
* Other CPUs should do profiling and process accounting
*/
local_timer_interrupt(irq, dev_id);
}
out:
#endif /* CONFIG_MIPS_MT_SMTC */
return IRQ_HANDLED;
}
/*
* Estimate CPU frequency. Sets mips_hpt_frequency as a side-effect
*/
static unsigned int __init estimate_cpu_frequency(void)
{
unsigned int prid = read_c0_prid() & 0xffff00;
unsigned int count;
#if defined(CONFIG_MIPS_SEAD) || defined(CONFIG_MIPS_SIM)
/*
* The SEAD board doesn't have a real time clock, so we can't
* really calculate the timer frequency
* For now we hardwire the SEAD board frequency to 12MHz.
*/
if ((prid == (PRID_COMP_MIPS | PRID_IMP_20KC)) ||
(prid == (PRID_COMP_MIPS | PRID_IMP_25KF)))
count = 12000000;
else
count = 6000000;
#endif
#if defined(CONFIG_MIPS_ATLAS) || defined(CONFIG_MIPS_MALTA)
unsigned long flags;
unsigned int start;
local_irq_save(flags);
/* Start counter exactly on falling edge of update flag */
while (CMOS_READ(RTC_REG_A) & RTC_UIP);
while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));
/* Start r4k counter. */
start = read_c0_count();
/* Read counter exactly on falling edge of update flag */
while (CMOS_READ(RTC_REG_A) & RTC_UIP);
while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));
count = read_c0_count() - start;
/* restore interrupts */
local_irq_restore(flags);
#endif
mips_hpt_frequency = count;
if ((prid != (PRID_COMP_MIPS | PRID_IMP_20KC)) &&
(prid != (PRID_COMP_MIPS | PRID_IMP_25KF)))
count *= 2;
count += 5000; /* round */
count -= count%10000;
return count;
}
unsigned long read_persistent_clock(void)
{
return mc146818_get_cmos_time();
}
void __init plat_time_init(void)
{
unsigned int est_freq;
/* Set Data mode - binary. */
CMOS_WRITE(CMOS_READ(RTC_CONTROL) | RTC_DM_BINARY, RTC_CONTROL);
est_freq = estimate_cpu_frequency ();
printk("CPU frequency %d.%02d MHz\n", est_freq/1000000,
(est_freq%1000000)*100/1000000);
cpu_khz = est_freq / 1000;
mips_scroll_message();
}
irqreturn_t mips_perf_interrupt(int irq, void *dev_id)
{
return perf_irq();
}
static struct irqaction perf_irqaction = {
.handler = mips_perf_interrupt,
.flags = IRQF_DISABLED | IRQF_PERCPU,
.name = "performance",
};
void __init plat_perf_setup(struct irqaction *irq)
{
cp0_perfcount_irq = -1;
#ifdef MSC01E_INT_BASE
if (cpu_has_veic) {
set_vi_handler (MSC01E_INT_PERFCTR, mips_perf_dispatch);
cp0_perfcount_irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
} else
#endif
if (cp0_perfcount_irq >= 0) {
if (cpu_has_vint)
set_vi_handler(cp0_perfcount_irq, mips_perf_dispatch);
#ifdef CONFIG_MIPS_MT_SMTC
setup_irq_smtc(cp0_perfcount_irq, irq,
0x100 << cp0_perfcount_irq);
#else
setup_irq(cp0_perfcount_irq, irq);
#endif /* CONFIG_MIPS_MT_SMTC */
#ifdef CONFIG_SMP
set_irq_handler(cp0_perfcount_irq, handle_percpu_irq);
#endif
}
}
void __init plat_timer_setup(struct irqaction *irq)
{
#ifdef MSC01E_INT_BASE
if (cpu_has_veic) {
set_vi_handler (MSC01E_INT_CPUCTR, mips_timer_dispatch);
mips_cpu_timer_irq = MSC01E_INT_BASE + MSC01E_INT_CPUCTR;
}
else
#endif
{
if (cpu_has_vint)
set_vi_handler(cp0_compare_irq, mips_timer_dispatch);
mips_cpu_timer_irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq;
}
/* we are using the cpu counter for timer interrupts */
irq->handler = mips_timer_interrupt; /* we use our own handler */
#ifdef CONFIG_MIPS_MT_SMTC
setup_irq_smtc(mips_cpu_timer_irq, irq, 0x100 << cp0_compare_irq);
#else
setup_irq(mips_cpu_timer_irq, irq);
#endif /* CONFIG_MIPS_MT_SMTC */
#ifdef CONFIG_SMP
set_irq_handler(mips_cpu_timer_irq, handle_percpu_irq);
#endif
plat_perf_setup(&perf_irqaction);
}