android_kernel_motorola_sm6225/drivers/net/wireless/rt2x00/rt61pci.c
Ivo van Doorn 4f5af6eb3d [PATCH] rt2x00: Small optimizations
Make some small optimizations by removing
some simple if-statements.

Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2007-10-10 16:55:15 -07:00

2602 lines
76 KiB
C

/*
Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt61pci
Abstract: rt61pci device specific routines.
Supported chipsets: RT2561, RT2561s, RT2661.
*/
/*
* Set enviroment defines for rt2x00.h
*/
#define DRV_NAME "rt61pci"
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>
#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt61pci.h"
/*
* Register access.
* BBP and RF register require indirect register access,
* and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
* These indirect registers work with busy bits,
* and we will try maximal REGISTER_BUSY_COUNT times to access
* the register while taking a REGISTER_BUSY_DELAY us delay
* between each attampt. When the busy bit is still set at that time,
* the access attempt is considered to have failed,
* and we will print an error.
*/
static u32 rt61pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
{
u32 reg;
unsigned int i;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
break;
udelay(REGISTER_BUSY_DELAY);
}
return reg;
}
static void rt61pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u32 reg;
/*
* Wait until the BBP becomes ready.
*/
reg = rt61pci_bbp_check(rt2x00dev);
if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
return;
}
/*
* Write the data into the BBP.
*/
reg = 0;
rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
}
static void rt61pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u32 reg;
/*
* Wait until the BBP becomes ready.
*/
reg = rt61pci_bbp_check(rt2x00dev);
if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
return;
}
/*
* Write the request into the BBP.
*/
reg = 0;
rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
/*
* Wait until the BBP becomes ready.
*/
reg = rt61pci_bbp_check(rt2x00dev);
if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
*value = 0xff;
return;
}
*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
}
static void rt61pci_rf_write(const struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u32 value)
{
u32 reg;
unsigned int i;
if (!word)
return;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
goto rf_write;
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
return;
rf_write:
reg = 0;
rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
rt2x00_rf_write(rt2x00dev, word, value);
}
static void rt61pci_mcu_request(const struct rt2x00_dev *rt2x00dev,
const u8 command, const u8 token,
const u8 arg0, const u8 arg1)
{
u32 reg;
rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
ERROR(rt2x00dev, "mcu request error. "
"Request 0x%02x failed for token 0x%02x.\n",
command, token);
return;
}
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
}
static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg;
rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
eeprom->reg_data_clock =
!!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
eeprom->reg_chip_select =
!!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}
static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg = 0;
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
!!eeprom->reg_data_clock);
rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
!!eeprom->reg_chip_select);
rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
}
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
static void rt61pci_read_csr(const struct rt2x00_dev *rt2x00dev,
const unsigned int word, u32 *data)
{
rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
}
static void rt61pci_write_csr(const struct rt2x00_dev *rt2x00dev,
const unsigned int word, u32 data)
{
rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
}
static const struct rt2x00debug rt61pci_rt2x00debug = {
.owner = THIS_MODULE,
.csr = {
.read = rt61pci_read_csr,
.write = rt61pci_write_csr,
.word_size = sizeof(u32),
.word_count = CSR_REG_SIZE / sizeof(u32),
},
.eeprom = {
.read = rt2x00_eeprom_read,
.write = rt2x00_eeprom_write,
.word_size = sizeof(u16),
.word_count = EEPROM_SIZE / sizeof(u16),
},
.bbp = {
.read = rt61pci_bbp_read,
.write = rt61pci_bbp_write,
.word_size = sizeof(u8),
.word_count = BBP_SIZE / sizeof(u8),
},
.rf = {
.read = rt2x00_rf_read,
.write = rt61pci_rf_write,
.word_size = sizeof(u32),
.word_count = RF_SIZE / sizeof(u32),
},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
#ifdef CONFIG_RT61PCI_RFKILL
static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
return rt2x00_get_field32(reg, MAC_CSR13_BIT5);;
}
#else
#define rt61pci_rfkill_poll NULL
#endif /* CONFIG_RT61PCI_RFKILL */
/*
* Configuration handlers.
*/
static void rt61pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, __le32 *mac)
{
u32 tmp;
tmp = le32_to_cpu(mac[1]);
rt2x00_set_field32(&tmp, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
mac[1] = cpu_to_le32(tmp);
rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, mac,
(2 * sizeof(__le32)));
}
static void rt61pci_config_bssid(struct rt2x00_dev *rt2x00dev, __le32 *bssid)
{
u32 tmp;
tmp = le32_to_cpu(bssid[1]);
rt2x00_set_field32(&tmp, MAC_CSR5_BSS_ID_MASK, 3);
bssid[1] = cpu_to_le32(tmp);
rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, bssid,
(2 * sizeof(__le32)));
}
static void rt61pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
const int tsf_sync)
{
u32 reg;
/*
* Clear current synchronisation setup.
* For the Beacon base registers we only need to clear
* the first byte since that byte contains the VALID and OWNER
* bits which (when set to 0) will invalidate the entire beacon.
*/
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
/*
* Enable synchronisation.
*/
rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, tsf_sync);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
}
static void rt61pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
{
struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
u32 reg;
u32 value;
u32 preamble;
if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
preamble = SHORT_PREAMBLE;
else
preamble = PREAMBLE;
/*
* Extract the allowed ratemask from the device specific rate value,
* We need to set TXRX_CSR5 to the basic rate mask so we need to mask
* off the non-basic rates.
*/
reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, reg);
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
SHORT_DIFS : DIFS) +
PLCP + preamble + get_duration(ACK_SIZE, 10);
rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, value);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
(preamble == SHORT_PREAMBLE));
rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
}
static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
const int phymode)
{
struct ieee80211_hw_mode *mode;
struct ieee80211_rate *rate;
if (phymode == MODE_IEEE80211A)
rt2x00dev->curr_hwmode = HWMODE_A;
else if (phymode == MODE_IEEE80211B)
rt2x00dev->curr_hwmode = HWMODE_B;
else
rt2x00dev->curr_hwmode = HWMODE_G;
mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
rate = &mode->rates[mode->num_rates - 1];
rt61pci_config_rate(rt2x00dev, rate->val2);
}
static void rt61pci_config_lock_channel(struct rt2x00_dev *rt2x00dev,
struct rf_channel *rf,
const int txpower)
{
u8 r3;
u8 r94;
u8 smart;
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
rt2x00_rf(&rt2x00dev->chip, RF2527));
rt61pci_bbp_read(rt2x00dev, 3, &r3);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
rt61pci_bbp_write(rt2x00dev, 3, r3);
r94 = 6;
if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
r94 += txpower - MAX_TXPOWER;
else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
r94 += txpower;
rt61pci_bbp_write(rt2x00dev, 94, r94);
rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
msleep(1);
}
static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
const int index, const int channel,
const int txpower)
{
struct rf_channel rf;
/*
* Fill rf_reg structure.
*/
memcpy(&rf, &rt2x00dev->spec.channels[index], sizeof(rf));
rt61pci_config_lock_channel(rt2x00dev, &rf, txpower);
}
static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
const int txpower)
{
struct rf_channel rf;
rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
rt61pci_config_lock_channel(rt2x00dev, &rf, txpower);
}
static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
const int antenna_tx,
const int antenna_rx)
{
u8 r3;
u8 r4;
u8 r77;
rt61pci_bbp_read(rt2x00dev, 3, &r3);
rt61pci_bbp_read(rt2x00dev, 4, &r4);
rt61pci_bbp_read(rt2x00dev, 77, &r77);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
!rt2x00_rf(&rt2x00dev->chip, RF5225));
switch (antenna_rx) {
case ANTENNA_SW_DIVERSITY:
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
!!(rt2x00dev->curr_hwmode != HWMODE_A));
break;
case ANTENNA_A:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
if (rt2x00dev->curr_hwmode == HWMODE_A)
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
else
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
break;
case ANTENNA_B:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
if (rt2x00dev->curr_hwmode == HWMODE_A)
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
else
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
break;
}
rt61pci_bbp_write(rt2x00dev, 77, r77);
rt61pci_bbp_write(rt2x00dev, 3, r3);
rt61pci_bbp_write(rt2x00dev, 4, r4);
}
static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
const int antenna_tx,
const int antenna_rx)
{
u8 r3;
u8 r4;
u8 r77;
rt61pci_bbp_read(rt2x00dev, 3, &r3);
rt61pci_bbp_read(rt2x00dev, 4, &r4);
rt61pci_bbp_read(rt2x00dev, 77, &r77);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
!rt2x00_rf(&rt2x00dev->chip, RF2527));
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
!test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
switch (antenna_rx) {
case ANTENNA_SW_DIVERSITY:
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
break;
case ANTENNA_A:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
break;
case ANTENNA_B:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
break;
}
rt61pci_bbp_write(rt2x00dev, 77, r77);
rt61pci_bbp_write(rt2x00dev, 3, r3);
rt61pci_bbp_write(rt2x00dev, 4, r4);
}
static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
const int p1, const int p2)
{
u32 reg;
rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
if (p1 != 0xff) {
rt2x00_set_field32(&reg, MAC_CSR13_BIT4, !!p1);
rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
}
if (p2 != 0xff) {
rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
}
}
static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
const int antenna_tx,
const int antenna_rx)
{
u16 eeprom;
u8 r3;
u8 r4;
u8 r77;
rt61pci_bbp_read(rt2x00dev, 3, &r3);
rt61pci_bbp_read(rt2x00dev, 4, &r4);
rt61pci_bbp_read(rt2x00dev, 77, &r77);
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 1);
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
} else if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) {
if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED) >= 2) {
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
rt61pci_bbp_write(rt2x00dev, 77, r77);
}
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
} else if (!rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
case 0:
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
break;
case 1:
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 0);
break;
case 2:
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
break;
case 3:
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
break;
}
} else if (!rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
!rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
case 0:
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
rt61pci_bbp_write(rt2x00dev, 77, r77);
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
break;
case 1:
rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
rt61pci_bbp_write(rt2x00dev, 77, r77);
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 0);
break;
case 2:
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
rt61pci_bbp_write(rt2x00dev, 77, r77);
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
break;
case 3:
rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
rt61pci_bbp_write(rt2x00dev, 77, r77);
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
break;
}
}
rt61pci_bbp_write(rt2x00dev, 3, r3);
rt61pci_bbp_write(rt2x00dev, 4, r4);
}
struct antenna_sel {
u8 word;
/*
* value[0] -> non-LNA
* value[1] -> LNA
*/
u8 value[2];
};
static const struct antenna_sel antenna_sel_a[] = {
{ 96, { 0x58, 0x78 } },
{ 104, { 0x38, 0x48 } },
{ 75, { 0xfe, 0x80 } },
{ 86, { 0xfe, 0x80 } },
{ 88, { 0xfe, 0x80 } },
{ 35, { 0x60, 0x60 } },
{ 97, { 0x58, 0x58 } },
{ 98, { 0x58, 0x58 } },
};
static const struct antenna_sel antenna_sel_bg[] = {
{ 96, { 0x48, 0x68 } },
{ 104, { 0x2c, 0x3c } },
{ 75, { 0xfe, 0x80 } },
{ 86, { 0xfe, 0x80 } },
{ 88, { 0xfe, 0x80 } },
{ 35, { 0x50, 0x50 } },
{ 97, { 0x48, 0x48 } },
{ 98, { 0x48, 0x48 } },
};
static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
const int antenna_tx, const int antenna_rx)
{
const struct antenna_sel *sel;
unsigned int lna;
unsigned int i;
u32 reg;
rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
if (rt2x00dev->curr_hwmode == HWMODE_A) {
sel = antenna_sel_a;
lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG, 0);
rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A, 1);
} else {
sel = antenna_sel_bg;
lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG, 1);
rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A, 0);
}
for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
rt2x00_rf(&rt2x00dev->chip, RF5325))
rt61pci_config_antenna_5x(rt2x00dev, antenna_tx, antenna_rx);
else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
rt61pci_config_antenna_2x(rt2x00dev, antenna_tx, antenna_rx);
else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
rt61pci_config_antenna_2x(rt2x00dev, antenna_tx,
antenna_rx);
else
rt61pci_config_antenna_2529(rt2x00dev, antenna_tx,
antenna_rx);
}
}
static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
const int short_slot_time,
const int beacon_int)
{
u32 reg;
rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME,
short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
rt2x00_set_field32(&reg, MAC_CSR8_SIFS, SIFS);
rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
rt2x00_set_field32(&reg, MAC_CSR8_EIFS, EIFS);
rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, beacon_int * 16);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
}
static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
const unsigned int flags,
struct ieee80211_conf *conf)
{
int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
if (flags & CONFIG_UPDATE_PHYMODE)
rt61pci_config_phymode(rt2x00dev, conf->phymode);
if (flags & CONFIG_UPDATE_CHANNEL)
rt61pci_config_channel(rt2x00dev, conf->channel_val,
conf->channel, conf->power_level);
if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
rt61pci_config_txpower(rt2x00dev, conf->power_level);
if (flags & CONFIG_UPDATE_ANTENNA)
rt61pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
conf->antenna_sel_rx);
if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
rt61pci_config_duration(rt2x00dev, short_slot_time,
conf->beacon_int);
}
/*
* LED functions.
*/
static void rt61pci_enable_led(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 led_reg;
u8 arg0;
u8 arg1;
rt2x00pci_register_read(rt2x00dev, MAC_CSR14, &reg);
rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, 70);
rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, 30);
rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
led_reg = rt2x00dev->led_reg;
rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 1);
if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A)
rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 1);
else
rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 1);
arg0 = led_reg & 0xff;
arg1 = (led_reg >> 8) & 0xff;
rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
}
static void rt61pci_disable_led(struct rt2x00_dev *rt2x00dev)
{
u16 led_reg;
u8 arg0;
u8 arg1;
led_reg = rt2x00dev->led_reg;
rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 0);
rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 0);
rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 0);
arg0 = led_reg & 0xff;
arg1 = (led_reg >> 8) & 0xff;
rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
}
static void rt61pci_activity_led(struct rt2x00_dev *rt2x00dev, int rssi)
{
u8 led;
if (rt2x00dev->led_mode != LED_MODE_SIGNAL_STRENGTH)
return;
/*
* Led handling requires a positive value for the rssi,
* to do that correctly we need to add the correction.
*/
rssi += rt2x00dev->rssi_offset;
if (rssi <= 30)
led = 0;
else if (rssi <= 39)
led = 1;
else if (rssi <= 49)
led = 2;
else if (rssi <= 53)
led = 3;
else if (rssi <= 63)
led = 4;
else
led = 5;
rt61pci_mcu_request(rt2x00dev, MCU_LED_STRENGTH, 0xff, led, 0);
}
/*
* Link tuning
*/
static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
/*
* Update FCS error count from register.
*/
rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
/*
* Update False CCA count from register.
*/
rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
rt2x00dev->link.false_cca =
rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
}
static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
{
rt61pci_bbp_write(rt2x00dev, 17, 0x20);
rt2x00dev->link.vgc_level = 0x20;
}
static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
{
int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
u8 r17;
u8 up_bound;
u8 low_bound;
/*
* Update Led strength
*/
rt61pci_activity_led(rt2x00dev, rssi);
rt61pci_bbp_read(rt2x00dev, 17, &r17);
/*
* Determine r17 bounds.
*/
if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
low_bound = 0x28;
up_bound = 0x48;
if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
low_bound += 0x10;
up_bound += 0x10;
}
} else {
low_bound = 0x20;
up_bound = 0x40;
if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
low_bound += 0x10;
up_bound += 0x10;
}
}
/*
* Special big-R17 for very short distance
*/
if (rssi >= -35) {
if (r17 != 0x60)
rt61pci_bbp_write(rt2x00dev, 17, 0x60);
return;
}
/*
* Special big-R17 for short distance
*/
if (rssi >= -58) {
if (r17 != up_bound)
rt61pci_bbp_write(rt2x00dev, 17, up_bound);
return;
}
/*
* Special big-R17 for middle-short distance
*/
if (rssi >= -66) {
low_bound += 0x10;
if (r17 != low_bound)
rt61pci_bbp_write(rt2x00dev, 17, low_bound);
return;
}
/*
* Special mid-R17 for middle distance
*/
if (rssi >= -74) {
low_bound += 0x08;
if (r17 != low_bound)
rt61pci_bbp_write(rt2x00dev, 17, low_bound);
return;
}
/*
* Special case: Change up_bound based on the rssi.
* Lower up_bound when rssi is weaker then -74 dBm.
*/
up_bound -= 2 * (-74 - rssi);
if (low_bound > up_bound)
up_bound = low_bound;
if (r17 > up_bound) {
rt61pci_bbp_write(rt2x00dev, 17, up_bound);
return;
}
/*
* r17 does not yet exceed upper limit, continue and base
* the r17 tuning on the false CCA count.
*/
if (rt2x00dev->link.false_cca > 512 && r17 < up_bound) {
if (++r17 > up_bound)
r17 = up_bound;
rt61pci_bbp_write(rt2x00dev, 17, r17);
} else if (rt2x00dev->link.false_cca < 100 && r17 > low_bound) {
if (--r17 < low_bound)
r17 = low_bound;
rt61pci_bbp_write(rt2x00dev, 17, r17);
}
}
/*
* Firmware name function.
*/
static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
char *fw_name;
switch (rt2x00dev->chip.rt) {
case RT2561:
fw_name = FIRMWARE_RT2561;
break;
case RT2561s:
fw_name = FIRMWARE_RT2561s;
break;
case RT2661:
fw_name = FIRMWARE_RT2661;
break;
default:
fw_name = NULL;
break;
}
return fw_name;
}
/*
* Initialization functions.
*/
static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
const size_t len)
{
int i;
u32 reg;
/*
* Wait for stable hardware.
*/
for (i = 0; i < 100; i++) {
rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
if (reg)
break;
msleep(1);
}
if (!reg) {
ERROR(rt2x00dev, "Unstable hardware.\n");
return -EBUSY;
}
/*
* Prepare MCU and mailbox for firmware loading.
*/
reg = 0;
rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
/*
* Write firmware to device.
*/
reg = 0;
rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
data, len);
rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
for (i = 0; i < 100; i++) {
rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
break;
msleep(1);
}
if (i == 100) {
ERROR(rt2x00dev, "MCU Control register not ready.\n");
return -EBUSY;
}
/*
* Reset MAC and BBP registers.
*/
reg = 0;
rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
return 0;
}
static void rt61pci_init_rxring(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring = rt2x00dev->rx;
struct data_desc *rxd;
unsigned int i;
u32 word;
memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
for (i = 0; i < ring->stats.limit; i++) {
rxd = ring->entry[i].priv;
rt2x00_desc_read(rxd, 5, &word);
rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
ring->entry[i].data_dma);
rt2x00_desc_write(rxd, 5, word);
rt2x00_desc_read(rxd, 0, &word);
rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
rt2x00_desc_write(rxd, 0, word);
}
rt2x00_ring_index_clear(rt2x00dev->rx);
}
static void rt61pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
{
struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
struct data_desc *txd;
unsigned int i;
u32 word;
memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
for (i = 0; i < ring->stats.limit; i++) {
txd = ring->entry[i].priv;
rt2x00_desc_read(txd, 1, &word);
rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
rt2x00_desc_write(txd, 1, word);
rt2x00_desc_read(txd, 5, &word);
rt2x00_set_field32(&word, TXD_W5_PID_TYPE, queue);
rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, i);
rt2x00_desc_write(txd, 5, word);
rt2x00_desc_read(txd, 6, &word);
rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
ring->entry[i].data_dma);
rt2x00_desc_write(txd, 6, word);
rt2x00_desc_read(txd, 0, &word);
rt2x00_set_field32(&word, TXD_W0_VALID, 0);
rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
rt2x00_desc_write(txd, 0, word);
}
rt2x00_ring_index_clear(ring);
}
static int rt61pci_init_rings(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
/*
* Initialize rings.
*/
rt61pci_init_rxring(rt2x00dev);
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA2);
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA3);
rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA4);
/*
* Initialize registers.
*/
rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].stats.limit);
rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].stats.limit);
rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
rt2x00_set_field32(&reg, TX_RING_CSR1_MGMT_RING_SIZE,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].stats.limit);
rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size /
4);
rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].data_dma);
rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].data_dma);
rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
rt2x00pci_register_read(rt2x00dev, MGMT_BASE_CSR, &reg);
rt2x00_set_field32(&reg, MGMT_BASE_CSR_RING_REGISTER,
rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].data_dma);
rt2x00pci_register_write(rt2x00dev, MGMT_BASE_CSR, reg);
rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE,
rt2x00dev->rx->stats.limit);
rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
rt2x00dev->rx->desc_size / 4);
rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
rt2x00dev->rx->data_dma);
rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_MGMT, 0);
rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_MGMT, 1);
rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
return 0;
}
static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
/*
* CCK TXD BBP registers
*/
rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
/*
* OFDM TXD BBP registers
*/
rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
return -EBUSY;
rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
/*
* Invalidate all Shared Keys (SEC_CSR0),
* and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
*/
rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
/*
* We must clear the error counters.
* These registers are cleared on read,
* so we may pass a useless variable to store the value.
*/
rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
/*
* Reset MAC and BBP registers.
*/
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
return 0;
}
static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u16 eeprom;
u8 reg_id;
u8 value;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt61pci_bbp_read(rt2x00dev, 0, &value);
if ((value != 0xff) && (value != 0x00))
goto continue_csr_init;
NOTICE(rt2x00dev, "Waiting for BBP register.\n");
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
return -EACCES;
continue_csr_init:
rt61pci_bbp_write(rt2x00dev, 3, 0x00);
rt61pci_bbp_write(rt2x00dev, 15, 0x30);
rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
rt61pci_bbp_write(rt2x00dev, 22, 0x38);
rt61pci_bbp_write(rt2x00dev, 23, 0x06);
rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
rt61pci_bbp_write(rt2x00dev, 34, 0x12);
rt61pci_bbp_write(rt2x00dev, 37, 0x07);
rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
rt61pci_bbp_write(rt2x00dev, 41, 0x60);
rt61pci_bbp_write(rt2x00dev, 53, 0x10);
rt61pci_bbp_write(rt2x00dev, 54, 0x18);
rt61pci_bbp_write(rt2x00dev, 60, 0x10);
rt61pci_bbp_write(rt2x00dev, 61, 0x04);
rt61pci_bbp_write(rt2x00dev, 62, 0x04);
rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
rt61pci_bbp_write(rt2x00dev, 99, 0x00);
rt61pci_bbp_write(rt2x00dev, 102, 0x16);
rt61pci_bbp_write(rt2x00dev, 107, 0x04);
DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
if (eeprom != 0xffff && eeprom != 0x0000) {
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
reg_id, value);
rt61pci_bbp_write(rt2x00dev, reg_id, value);
}
}
DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
return 0;
}
/*
* Device state switch handlers.
*/
static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u32 reg;
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
state == STATE_RADIO_RX_OFF);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}
static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int mask = (state == STATE_RADIO_IRQ_OFF);
u32 reg;
/*
* When interrupts are being enabled, the interrupt registers
* should clear the register to assure a clean state.
*/
if (state == STATE_RADIO_IRQ_ON) {
rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
}
/*
* Only toggle the interrupts bits we are going to use.
* Non-checked interrupt bits are disabled by default.
*/
rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
}
static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
/*
* Initialize all registers.
*/
if (rt61pci_init_rings(rt2x00dev) ||
rt61pci_init_registers(rt2x00dev) ||
rt61pci_init_bbp(rt2x00dev)) {
ERROR(rt2x00dev, "Register initialization failed.\n");
return -EIO;
}
/*
* Enable interrupts.
*/
rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
/*
* Enable RX.
*/
rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
/*
* Enable LED
*/
rt61pci_enable_led(rt2x00dev);
return 0;
}
static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
/*
* Disable LED
*/
rt61pci_disable_led(rt2x00dev);
rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
/*
* Disable synchronisation.
*/
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
/*
* Cancel RX and TX.
*/
rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_MGMT, 1);
rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
/*
* Disable interrupts.
*/
rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
}
static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
u32 reg;
unsigned int i;
char put_to_sleep;
char current_state;
put_to_sleep = (state != STATE_AWAKE);
rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
/*
* Device is not guaranteed to be in the requested state yet.
* We must wait until the register indicates that the
* device has entered the correct state.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
current_state =
rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
if (current_state == !put_to_sleep)
return 0;
msleep(10);
}
NOTICE(rt2x00dev, "Device failed to enter state %d, "
"current device state %d.\n", !put_to_sleep, current_state);
return -EBUSY;
}
static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int retval = 0;
switch (state) {
case STATE_RADIO_ON:
retval = rt61pci_enable_radio(rt2x00dev);
break;
case STATE_RADIO_OFF:
rt61pci_disable_radio(rt2x00dev);
break;
case STATE_RADIO_RX_ON:
case STATE_RADIO_RX_OFF:
rt61pci_toggle_rx(rt2x00dev, state);
break;
case STATE_DEEP_SLEEP:
case STATE_SLEEP:
case STATE_STANDBY:
case STATE_AWAKE:
retval = rt61pci_set_state(rt2x00dev, state);
break;
default:
retval = -ENOTSUPP;
break;
}
return retval;
}
/*
* TX descriptor initialization
*/
static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
struct data_desc *txd,
struct txdata_entry_desc *desc,
struct ieee80211_hdr *ieee80211hdr,
unsigned int length,
struct ieee80211_tx_control *control)
{
u32 word;
/*
* Start writing the descriptor words.
*/
rt2x00_desc_read(txd, 1, &word);
rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, desc->queue);
rt2x00_set_field32(&word, TXD_W1_AIFSN, desc->aifs);
rt2x00_set_field32(&word, TXD_W1_CWMIN, desc->cw_min);
rt2x00_set_field32(&word, TXD_W1_CWMAX, desc->cw_max);
rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
rt2x00_desc_write(txd, 1, word);
rt2x00_desc_read(txd, 2, &word);
rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
rt2x00_desc_write(txd, 2, word);
rt2x00_desc_read(txd, 5, &word);
rt2x00_set_field32(&word, TXD_W5_TX_POWER,
TXPOWER_TO_DEV(control->power_level));
rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
rt2x00_desc_write(txd, 5, word);
rt2x00_desc_read(txd, 11, &word);
rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, length);
rt2x00_desc_write(txd, 11, word);
rt2x00_desc_read(txd, 0, &word);
rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
rt2x00_set_field32(&word, TXD_W0_VALID, 1);
rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
rt2x00_set_field32(&word, TXD_W0_ACK,
!(control->flags & IEEE80211_TXCTL_NO_ACK));
rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
rt2x00_set_field32(&word, TXD_W0_OFDM,
test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
!!(control->flags &
IEEE80211_TXCTL_LONG_RETRY_LIMIT));
rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
rt2x00_set_field32(&word, TXD_W0_BURST,
test_bit(ENTRY_TXD_BURST, &desc->flags));
rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
rt2x00_desc_write(txd, 0, word);
}
/*
* TX data initialization
*/
static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
unsigned int queue)
{
u32 reg;
if (queue == IEEE80211_TX_QUEUE_BEACON) {
/*
* For Wi-Fi faily generated beacons between participating
* stations. Set TBTT phase adaptive adjustment step to 8us.
*/
rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
}
return;
}
rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
if (queue == IEEE80211_TX_QUEUE_DATA0)
rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
else if (queue == IEEE80211_TX_QUEUE_DATA1)
rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
else if (queue == IEEE80211_TX_QUEUE_DATA2)
rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
else if (queue == IEEE80211_TX_QUEUE_DATA3)
rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
else if (queue == IEEE80211_TX_QUEUE_DATA4)
rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_MGMT, 1);
rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
}
/*
* RX control handlers
*/
static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
{
u16 eeprom;
u8 offset;
u8 lna;
lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
switch (lna) {
case 3:
offset = 90;
break;
case 2:
offset = 74;
break;
case 1:
offset = 64;
break;
default:
return 0;
}
if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
offset += 14;
if (lna == 3 || lna == 2)
offset += 10;
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
} else {
if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
offset += 14;
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
}
return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
}
static void rt61pci_fill_rxdone(struct data_entry *entry,
struct rxdata_entry_desc *desc)
{
struct data_desc *rxd = entry->priv;
u32 word0;
u32 word1;
rt2x00_desc_read(rxd, 0, &word0);
rt2x00_desc_read(rxd, 1, &word1);
desc->flags = 0;
if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
desc->flags |= RX_FLAG_FAILED_FCS_CRC;
/*
* Obtain the status about this packet.
*/
desc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
desc->rssi = rt61pci_agc_to_rssi(entry->ring->rt2x00dev, word1);
desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
return;
}
/*
* Interrupt functions.
*/
static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
struct data_entry *entry;
struct data_desc *txd;
u32 word;
u32 reg;
u32 old_reg;
int type;
int index;
int tx_status;
int retry;
/*
* During each loop we will compare the freshly read
* STA_CSR4 register value with the value read from
* the previous loop. If the 2 values are equal then
* we should stop processing because the chance it
* quite big that the device has been unplugged and
* we risk going into an endless loop.
*/
old_reg = 0;
while (1) {
rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
break;
if (old_reg == reg)
break;
old_reg = reg;
/*
* Skip this entry when it contains an invalid
* ring identication number.
*/
type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
ring = rt2x00lib_get_ring(rt2x00dev, type);
if (unlikely(!ring))
continue;
/*
* Skip this entry when it contains an invalid
* index number.
*/
index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
if (unlikely(index >= ring->stats.limit))
continue;
entry = &ring->entry[index];
txd = entry->priv;
rt2x00_desc_read(txd, 0, &word);
if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
!rt2x00_get_field32(word, TXD_W0_VALID))
return;
/*
* Obtain the status about this packet.
*/
tx_status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
rt2x00lib_txdone(entry, tx_status, retry);
/*
* Make this entry available for reuse.
*/
entry->flags = 0;
rt2x00_set_field32(&word, TXD_W0_VALID, 0);
rt2x00_desc_write(txd, 0, word);
rt2x00_ring_index_done_inc(entry->ring);
/*
* If the data ring was full before the txdone handler
* we must make sure the packet queue in the mac80211 stack
* is reenabled when the txdone handler has finished.
*/
if (!rt2x00_ring_full(ring))
ieee80211_wake_queue(rt2x00dev->hw,
entry->tx_status.control.queue);
}
}
static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
{
struct rt2x00_dev *rt2x00dev = dev_instance;
u32 reg_mcu;
u32 reg;
/*
* Get the interrupt sources & saved to local variable.
* Write register value back to clear pending interrupts.
*/
rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
if (!reg && !reg_mcu)
return IRQ_NONE;
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return IRQ_HANDLED;
/*
* Handle interrupts, walk through all bits
* and run the tasks, the bits are checked in order of
* priority.
*/
/*
* 1 - Rx ring done interrupt.
*/
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
rt2x00pci_rxdone(rt2x00dev);
/*
* 2 - Tx ring done interrupt.
*/
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
rt61pci_txdone(rt2x00dev);
/*
* 3 - Handle MCU command done.
*/
if (reg_mcu)
rt2x00pci_register_write(rt2x00dev,
M2H_CMD_DONE_CSR, 0xffffffff);
return IRQ_HANDLED;
}
/*
* Device probe functions.
*/
static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
struct eeprom_93cx6 eeprom;
u32 reg;
u16 word;
u8 *mac;
s8 value;
rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom.data = rt2x00dev;
eeprom.register_read = rt61pci_eepromregister_read;
eeprom.register_write = rt61pci_eepromregister_write;
eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
eeprom.reg_data_in = 0;
eeprom.reg_data_out = 0;
eeprom.reg_data_clock = 0;
eeprom.reg_chip_select = 0;
eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
EEPROM_SIZE / sizeof(u16));
/*
* Start validation of the data that has been read.
*/
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
if (!is_valid_ether_addr(mac)) {
DECLARE_MAC_BUF(macbuf);
random_ether_addr(mac);
EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 2);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 2);
rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
LED_MODE_DEFAULT);
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
} else {
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
if (value < -10 || value > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
if (value < -10 || value > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
} else {
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
if (value < -10 || value > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
if (value < -10 || value > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
}
return 0;
}
static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 value;
u16 eeprom;
u16 device;
/*
* Read EEPROM word for configuration.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
/*
* Identify RF chipset.
* To determine the RT chip we have to read the
* PCI header of the device.
*/
pci_read_config_word(rt2x00dev_pci(rt2x00dev),
PCI_CONFIG_HEADER_DEVICE, &device);
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
rt2x00_set_chip(rt2x00dev, device, value, reg);
if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
!rt2x00_rf(&rt2x00dev->chip, RF5325) &&
!rt2x00_rf(&rt2x00dev->chip, RF2527) &&
!rt2x00_rf(&rt2x00dev->chip, RF2529)) {
ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
return -ENODEV;
}
/*
* Identify default antenna configuration.
*/
rt2x00dev->hw->conf.antenna_sel_tx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
rt2x00dev->hw->conf.antenna_sel_rx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
/*
* Read the Frame type.
*/
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
__set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
/*
* Determine number of antenna's.
*/
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
__set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
/*
* Detect if this device has an hardware controlled radio.
*/
#ifdef CONFIG_RT61PCI_RFKILL
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
#endif /* CONFIG_RT61PCI_RFKILL */
/*
* Read frequency offset and RF programming sequence.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
__set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
/*
* Read external LNA informations.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
/*
* Store led settings, for correct led behaviour.
* If the eeprom value is invalid,
* switch to default led mode.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
rt2x00dev->led_mode = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LED_MODE,
rt2x00dev->led_mode);
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_0,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_0));
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_1,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_1));
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_2,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_2));
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_3,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_3));
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_4,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_4));
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_ACT,
rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_BG,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_RDY_G));
rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_A,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_RDY_A));
return 0;
}
/*
* RF value list for RF5225 & RF5325
* Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
*/
static const struct rf_channel rf_vals_noseq[] = {
{ 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
{ 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
{ 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
{ 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
{ 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
{ 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
{ 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
{ 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
{ 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
/* 802.11 UNI / HyperLan 2 */
{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
/* 802.11 HyperLan 2 */
{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
/* 802.11 UNII */
{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
/* MMAC(Japan)J52 ch 34,38,42,46 */
{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
};
/*
* RF value list for RF5225 & RF5325
* Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
*/
static const struct rf_channel rf_vals_seq[] = {
{ 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
{ 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
{ 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
{ 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
{ 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
{ 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
{ 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
{ 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
{ 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
/* 802.11 UNI / HyperLan 2 */
{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
/* 802.11 HyperLan 2 */
{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
/* 802.11 UNII */
{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
/* MMAC(Japan)J52 ch 34,38,42,46 */
{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
};
static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
u8 *txpower;
unsigned int i;
/*
* Initialize all hw fields.
*/
rt2x00dev->hw->flags =
IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
rt2x00dev->hw->extra_tx_headroom = 0;
rt2x00dev->hw->max_signal = MAX_SIGNAL;
rt2x00dev->hw->max_rssi = MAX_RX_SSI;
rt2x00dev->hw->queues = 5;
SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
rt2x00_eeprom_addr(rt2x00dev,
EEPROM_MAC_ADDR_0));
/*
* Convert tx_power array in eeprom.
*/
txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
for (i = 0; i < 14; i++)
txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
/*
* Initialize hw_mode information.
*/
spec->num_modes = 2;
spec->num_rates = 12;
spec->tx_power_a = NULL;
spec->tx_power_bg = txpower;
spec->tx_power_default = DEFAULT_TXPOWER;
if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
spec->num_channels = 14;
spec->channels = rf_vals_noseq;
} else {
spec->num_channels = 14;
spec->channels = rf_vals_seq;
}
if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
rt2x00_rf(&rt2x00dev->chip, RF5325)) {
spec->num_modes = 3;
spec->num_channels = ARRAY_SIZE(rf_vals_seq);
txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
for (i = 0; i < 14; i++)
txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
spec->tx_power_a = txpower;
}
}
static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
int retval;
/*
* Allocate eeprom data.
*/
retval = rt61pci_validate_eeprom(rt2x00dev);
if (retval)
return retval;
retval = rt61pci_init_eeprom(rt2x00dev);
if (retval)
return retval;
/*
* Initialize hw specifications.
*/
rt61pci_probe_hw_mode(rt2x00dev);
/*
* This device requires firmware
*/
__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
/*
* Set the rssi offset.
*/
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
return 0;
}
/*
* IEEE80211 stack callback functions.
*/
static void rt61pci_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count,
struct dev_addr_list *mc_list)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
struct interface *intf = &rt2x00dev->interface;
u32 reg;
/*
* Mask off any flags we are going to ignore from
* the total_flags field.
*/
*total_flags &=
FIF_ALLMULTI |
FIF_FCSFAIL |
FIF_PLCPFAIL |
FIF_CONTROL |
FIF_OTHER_BSS |
FIF_PROMISC_IN_BSS;
/*
* Apply some rules to the filters:
* - Some filters imply different filters to be set.
* - Some things we can't filter out at all.
* - Some filters are set based on interface type.
*/
if (mc_count)
*total_flags |= FIF_ALLMULTI;
if (*total_flags & FIF_OTHER_BSS ||
*total_flags & FIF_PROMISC_IN_BSS)
*total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
*total_flags |= FIF_PROMISC_IN_BSS;
/*
* Check if there is any work left for us.
*/
if (intf->filter == *total_flags)
return;
intf->filter = *total_flags;
/*
* Start configuration steps.
* Note that the version error will always be dropped
* and broadcast frames will always be accepted since
* there is no filter for it at this time.
*/
rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
!(*total_flags & FIF_FCSFAIL));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
!(*total_flags & FIF_PLCPFAIL));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
!(*total_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
!(*total_flags & FIF_PROMISC_IN_BSS));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
!(*total_flags & FIF_PROMISC_IN_BSS));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
!(*total_flags & FIF_ALLMULTI));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BORADCAST, 0);
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS, 1);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}
static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
u32 short_retry, u32 long_retry)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
u32 reg;
rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
return 0;
}
static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
u64 tsf;
u32 reg;
rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
return tsf;
}
static void rt61pci_reset_tsf(struct ieee80211_hw *hw)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
rt2x00pci_register_write(rt2x00dev, TXRX_CSR12, 0);
rt2x00pci_register_write(rt2x00dev, TXRX_CSR13, 0);
}
static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_tx_control *control)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
/*
* Just in case the ieee80211 doesn't set this,
* but we need this queue set for the descriptor
* initialization.
*/
control->queue = IEEE80211_TX_QUEUE_BEACON;
/*
* We need to append the descriptor in front of the
* beacon frame.
*/
if (skb_headroom(skb) < TXD_DESC_SIZE) {
if (pskb_expand_head(skb, TXD_DESC_SIZE, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return -ENOMEM;
}
}
/*
* First we create the beacon.
*/
skb_push(skb, TXD_DESC_SIZE);
rt2x00lib_write_tx_desc(rt2x00dev, (struct data_desc *)skb->data,
(struct ieee80211_hdr *)(skb->data +
TXD_DESC_SIZE),
skb->len - TXD_DESC_SIZE, control);
/*
* Write entire beacon with descriptor to register,
* and kick the beacon generator.
*/
rt2x00pci_register_multiwrite(rt2x00dev, HW_BEACON_BASE0,
skb->data, skb->len);
rt61pci_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
return 0;
}
static const struct ieee80211_ops rt61pci_mac80211_ops = {
.tx = rt2x00mac_tx,
.start = rt2x00mac_start,
.stop = rt2x00mac_stop,
.add_interface = rt2x00mac_add_interface,
.remove_interface = rt2x00mac_remove_interface,
.config = rt2x00mac_config,
.config_interface = rt2x00mac_config_interface,
.configure_filter = rt61pci_configure_filter,
.get_stats = rt2x00mac_get_stats,
.set_retry_limit = rt61pci_set_retry_limit,
.conf_tx = rt2x00mac_conf_tx,
.get_tx_stats = rt2x00mac_get_tx_stats,
.get_tsf = rt61pci_get_tsf,
.reset_tsf = rt61pci_reset_tsf,
.beacon_update = rt61pci_beacon_update,
};
static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
.irq_handler = rt61pci_interrupt,
.probe_hw = rt61pci_probe_hw,
.get_firmware_name = rt61pci_get_firmware_name,
.load_firmware = rt61pci_load_firmware,
.initialize = rt2x00pci_initialize,
.uninitialize = rt2x00pci_uninitialize,
.set_device_state = rt61pci_set_device_state,
.rfkill_poll = rt61pci_rfkill_poll,
.link_stats = rt61pci_link_stats,
.reset_tuner = rt61pci_reset_tuner,
.link_tuner = rt61pci_link_tuner,
.write_tx_desc = rt61pci_write_tx_desc,
.write_tx_data = rt2x00pci_write_tx_data,
.kick_tx_queue = rt61pci_kick_tx_queue,
.fill_rxdone = rt61pci_fill_rxdone,
.config_mac_addr = rt61pci_config_mac_addr,
.config_bssid = rt61pci_config_bssid,
.config_type = rt61pci_config_type,
.config = rt61pci_config,
};
static const struct rt2x00_ops rt61pci_ops = {
.name = DRV_NAME,
.rxd_size = RXD_DESC_SIZE,
.txd_size = TXD_DESC_SIZE,
.eeprom_size = EEPROM_SIZE,
.rf_size = RF_SIZE,
.lib = &rt61pci_rt2x00_ops,
.hw = &rt61pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
.debugfs = &rt61pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};
/*
* RT61pci module information.
*/
static struct pci_device_id rt61pci_device_table[] = {
/* RT2561s */
{ PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
/* RT2561 v2 */
{ PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
/* RT2661 */
{ PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
{ 0, }
};
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
"PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
MODULE_FIRMWARE(FIRMWARE_RT2561);
MODULE_FIRMWARE(FIRMWARE_RT2561s);
MODULE_FIRMWARE(FIRMWARE_RT2661);
MODULE_LICENSE("GPL");
static struct pci_driver rt61pci_driver = {
.name = DRV_NAME,
.id_table = rt61pci_device_table,
.probe = rt2x00pci_probe,
.remove = __devexit_p(rt2x00pci_remove),
.suspend = rt2x00pci_suspend,
.resume = rt2x00pci_resume,
};
static int __init rt61pci_init(void)
{
return pci_register_driver(&rt61pci_driver);
}
static void __exit rt61pci_exit(void)
{
pci_unregister_driver(&rt61pci_driver);
}
module_init(rt61pci_init);
module_exit(rt61pci_exit);