android_kernel_motorola_sm6225/arch/ia64/pci/pci.c
Christoph Lameter 514604c6d1 [IA64] pcibus_to_node implementation for IA64
pcibus_to_node provides a way for the Linux kernel to identify to which
node a certain pcibus connects to. Allocations of control structures
for devices can then be made on the node where the pci bus is located
to allow local access during interrupt and other device manipulation.

This patch provides a new "node" field in the the pci_controller
structure. The node field will be set based on ACPI information (thanks
to Alex Williamson  <alex.williamson@hp.com for that piece).

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-07-12 11:04:22 -07:00

751 lines
18 KiB
C

/*
* pci.c - Low-Level PCI Access in IA-64
*
* Derived from bios32.c of i386 tree.
*
* (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Bjorn Helgaas <bjorn.helgaas@hp.com>
* Copyright (C) 2004 Silicon Graphics, Inc.
*
* Note: Above list of copyright holders is incomplete...
*/
#include <linux/config.h>
#include <linux/acpi.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/sal.h>
#include <asm/smp.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
/*
* Low-level SAL-based PCI configuration access functions. Note that SAL
* calls are already serialized (via sal_lock), so we don't need another
* synchronization mechanism here.
*/
#define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
/* SAL 3.2 adds support for extended config space. */
#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
static int
pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 *value)
{
u64 addr, data = 0;
int mode, result;
if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
}
result = ia64_sal_pci_config_read(addr, mode, len, &data);
if (result != 0)
return -EINVAL;
*value = (u32) data;
return 0;
}
static int
pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 value)
{
u64 addr;
int mode, result;
if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
}
result = ia64_sal_pci_config_write(addr, mode, len, value);
if (result != 0)
return -EINVAL;
return 0;
}
static struct pci_raw_ops pci_sal_ops = {
.read = pci_sal_read,
.write = pci_sal_write
};
struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
static int
pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
{
return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
static int
pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
{
return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
struct pci_ops pci_root_ops = {
.read = pci_read,
.write = pci_write,
};
#ifdef CONFIG_NUMA
extern acpi_status acpi_map_iosapic(acpi_handle, u32, void *, void **);
static void acpi_map_iosapics(void)
{
acpi_get_devices(NULL, acpi_map_iosapic, NULL, NULL);
}
#else
static void acpi_map_iosapics(void)
{
return;
}
#endif /* CONFIG_NUMA */
static int __init
pci_acpi_init (void)
{
acpi_map_iosapics();
return 0;
}
subsys_initcall(pci_acpi_init);
/* Called by ACPI when it finds a new root bus. */
static struct pci_controller * __devinit
alloc_pci_controller (int seg)
{
struct pci_controller *controller;
controller = kmalloc(sizeof(*controller), GFP_KERNEL);
if (!controller)
return NULL;
memset(controller, 0, sizeof(*controller));
controller->segment = seg;
controller->node = -1;
return controller;
}
static u64 __devinit
add_io_space (struct acpi_resource_address64 *addr)
{
u64 offset;
int sparse = 0;
int i;
if (addr->address_translation_offset == 0)
return IO_SPACE_BASE(0); /* part of legacy IO space */
if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
sparse = 1;
offset = (u64) ioremap(addr->address_translation_offset, 0);
for (i = 0; i < num_io_spaces; i++)
if (io_space[i].mmio_base == offset &&
io_space[i].sparse == sparse)
return IO_SPACE_BASE(i);
if (num_io_spaces == MAX_IO_SPACES) {
printk("Too many IO port spaces\n");
return ~0;
}
i = num_io_spaces++;
io_space[i].mmio_base = offset;
io_space[i].sparse = sparse;
return IO_SPACE_BASE(i);
}
static acpi_status __devinit
count_window (struct acpi_resource *resource, void *data)
{
unsigned int *windows = (unsigned int *) data;
struct acpi_resource_address64 addr;
acpi_status status;
status = acpi_resource_to_address64(resource, &addr);
if (ACPI_SUCCESS(status))
if (addr.resource_type == ACPI_MEMORY_RANGE ||
addr.resource_type == ACPI_IO_RANGE)
(*windows)++;
return AE_OK;
}
struct pci_root_info {
struct pci_controller *controller;
char *name;
};
static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
{
struct pci_root_info *info = data;
struct pci_window *window;
struct acpi_resource_address64 addr;
acpi_status status;
unsigned long flags, offset = 0;
struct resource *root;
status = acpi_resource_to_address64(res, &addr);
if (!ACPI_SUCCESS(status))
return AE_OK;
if (!addr.address_length)
return AE_OK;
if (addr.resource_type == ACPI_MEMORY_RANGE) {
flags = IORESOURCE_MEM;
root = &iomem_resource;
offset = addr.address_translation_offset;
} else if (addr.resource_type == ACPI_IO_RANGE) {
flags = IORESOURCE_IO;
root = &ioport_resource;
offset = add_io_space(&addr);
if (offset == ~0)
return AE_OK;
} else
return AE_OK;
window = &info->controller->window[info->controller->windows++];
window->resource.name = info->name;
window->resource.flags = flags;
window->resource.start = addr.min_address_range + offset;
window->resource.end = addr.max_address_range + offset;
window->resource.child = NULL;
window->offset = offset;
if (insert_resource(root, &window->resource)) {
printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
window->resource.start, window->resource.end,
root->name, info->name);
}
return AE_OK;
}
static void __devinit
pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
{
int i, j;
j = 0;
for (i = 0; i < ctrl->windows; i++) {
struct resource *res = &ctrl->window[i].resource;
/* HP's firmware has a hack to work around a Windows bug.
* Ignore these tiny memory ranges */
if ((res->flags & IORESOURCE_MEM) &&
(res->end - res->start < 16))
continue;
if (j >= PCI_BUS_NUM_RESOURCES) {
printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
res->end, res->flags);
continue;
}
bus->resource[j++] = res;
}
}
struct pci_bus * __devinit
pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
{
struct pci_root_info info;
struct pci_controller *controller;
unsigned int windows = 0;
struct pci_bus *pbus;
char *name;
int pxm;
controller = alloc_pci_controller(domain);
if (!controller)
goto out1;
controller->acpi_handle = device->handle;
pxm = acpi_get_pxm(controller->acpi_handle);
#ifdef CONFIG_NUMA
if (pxm >= 0)
controller->node = pxm_to_nid_map[pxm];
#endif
acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
&windows);
controller->window = kmalloc_node(sizeof(*controller->window) * windows,
GFP_KERNEL, controller->node);
if (!controller->window)
goto out2;
name = kmalloc(16, GFP_KERNEL);
if (!name)
goto out3;
sprintf(name, "PCI Bus %04x:%02x", domain, bus);
info.controller = controller;
info.name = name;
acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
&info);
pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
if (pbus)
pcibios_setup_root_windows(pbus, controller);
return pbus;
out3:
kfree(controller->window);
out2:
kfree(controller);
out1:
return NULL;
}
void pcibios_resource_to_bus(struct pci_dev *dev,
struct pci_bus_region *region, struct resource *res)
{
struct pci_controller *controller = PCI_CONTROLLER(dev);
unsigned long offset = 0;
int i;
for (i = 0; i < controller->windows; i++) {
struct pci_window *window = &controller->window[i];
if (!(window->resource.flags & res->flags))
continue;
if (window->resource.start > res->start)
continue;
if (window->resource.end < res->end)
continue;
offset = window->offset;
break;
}
region->start = res->start - offset;
region->end = res->end - offset;
}
EXPORT_SYMBOL(pcibios_resource_to_bus);
void pcibios_bus_to_resource(struct pci_dev *dev,
struct resource *res, struct pci_bus_region *region)
{
struct pci_controller *controller = PCI_CONTROLLER(dev);
unsigned long offset = 0;
int i;
for (i = 0; i < controller->windows; i++) {
struct pci_window *window = &controller->window[i];
if (!(window->resource.flags & res->flags))
continue;
if (window->resource.start - window->offset > region->start)
continue;
if (window->resource.end - window->offset < region->end)
continue;
offset = window->offset;
break;
}
res->start = region->start + offset;
res->end = region->end + offset;
}
static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
{
unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
struct resource *devr = &dev->resource[idx];
if (!dev->bus)
return 0;
for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
struct resource *busr = dev->bus->resource[i];
if (!busr || ((busr->flags ^ devr->flags) & type_mask))
continue;
if ((devr->start) && (devr->start >= busr->start) &&
(devr->end <= busr->end))
return 1;
}
return 0;
}
static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
{
struct pci_bus_region region;
int i;
int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
for (i = 0; i < limit; i++) {
if (!dev->resource[i].flags)
continue;
region.start = dev->resource[i].start;
region.end = dev->resource[i].end;
pcibios_bus_to_resource(dev, &dev->resource[i], &region);
if ((is_valid_resource(dev, i)))
pci_claim_resource(dev, i);
}
}
/*
* Called after each bus is probed, but before its children are examined.
*/
void __devinit
pcibios_fixup_bus (struct pci_bus *b)
{
struct pci_dev *dev;
if (b->self) {
pci_read_bridge_bases(b);
pcibios_fixup_device_resources(b->self);
}
list_for_each_entry(dev, &b->devices, bus_list)
pcibios_fixup_device_resources(dev);
return;
}
void __devinit
pcibios_update_irq (struct pci_dev *dev, int irq)
{
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
/* ??? FIXME -- record old value for shutdown. */
}
static inline int
pcibios_enable_resources (struct pci_dev *dev, int mask)
{
u16 cmd, old_cmd;
int idx;
struct resource *r;
unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
if (!dev)
return -EINVAL;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
old_cmd = cmd;
for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
/* Only set up the desired resources. */
if (!(mask & (1 << idx)))
continue;
r = &dev->resource[idx];
if (!(r->flags & type_mask))
continue;
if ((idx == PCI_ROM_RESOURCE) &&
(!(r->flags & IORESOURCE_ROM_ENABLE)))
continue;
if (!r->start && r->end) {
printk(KERN_ERR
"PCI: Device %s not available because of resource collisions\n",
pci_name(dev));
return -EINVAL;
}
if (r->flags & IORESOURCE_IO)
cmd |= PCI_COMMAND_IO;
if (r->flags & IORESOURCE_MEM)
cmd |= PCI_COMMAND_MEMORY;
}
if (cmd != old_cmd) {
printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
return 0;
}
int
pcibios_enable_device (struct pci_dev *dev, int mask)
{
int ret;
ret = pcibios_enable_resources(dev, mask);
if (ret < 0)
return ret;
return acpi_pci_irq_enable(dev);
}
#ifdef CONFIG_ACPI_DEALLOCATE_IRQ
void
pcibios_disable_device (struct pci_dev *dev)
{
acpi_pci_irq_disable(dev);
}
#endif /* CONFIG_ACPI_DEALLOCATE_IRQ */
void
pcibios_align_resource (void *data, struct resource *res,
unsigned long size, unsigned long align)
{
}
/*
* PCI BIOS setup, always defaults to SAL interface
*/
char * __init
pcibios_setup (char *str)
{
return NULL;
}
int
pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state, int write_combine)
{
/*
* I/O space cannot be accessed via normal processor loads and
* stores on this platform.
*/
if (mmap_state == pci_mmap_io)
/*
* XXX we could relax this for I/O spaces for which ACPI
* indicates that the space is 1-to-1 mapped. But at the
* moment, we don't support multiple PCI address spaces and
* the legacy I/O space is not 1-to-1 mapped, so this is moot.
*/
return -EINVAL;
/*
* Leave vm_pgoff as-is, the PCI space address is the physical
* address on this platform.
*/
vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
if (write_combine && efi_range_is_wc(vma->vm_start,
vma->vm_end - vma->vm_start))
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
else
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
/**
* ia64_pci_get_legacy_mem - generic legacy mem routine
* @bus: bus to get legacy memory base address for
*
* Find the base of legacy memory for @bus. This is typically the first
* megabyte of bus address space for @bus or is simply 0 on platforms whose
* chipsets support legacy I/O and memory routing. Returns the base address
* or an error pointer if an error occurred.
*
* This is the ia64 generic version of this routine. Other platforms
* are free to override it with a machine vector.
*/
char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
{
return (char *)__IA64_UNCACHED_OFFSET;
}
/**
* pci_mmap_legacy_page_range - map legacy memory space to userland
* @bus: bus whose legacy space we're mapping
* @vma: vma passed in by mmap
*
* Map legacy memory space for this device back to userspace using a machine
* vector to get the base address.
*/
int
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
{
char *addr;
addr = pci_get_legacy_mem(bus);
if (IS_ERR(addr))
return PTR_ERR(addr);
vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
/**
* ia64_pci_legacy_read - read from legacy I/O space
* @bus: bus to read
* @port: legacy port value
* @val: caller allocated storage for returned value
* @size: number of bytes to read
*
* Simply reads @size bytes from @port and puts the result in @val.
*
* Again, this (and the write routine) are generic versions that can be
* overridden by the platform. This is necessary on platforms that don't
* support legacy I/O routing or that hard fail on legacy I/O timeouts.
*/
int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
{
int ret = size;
switch (size) {
case 1:
*val = inb(port);
break;
case 2:
*val = inw(port);
break;
case 4:
*val = inl(port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* ia64_pci_legacy_write - perform a legacy I/O write
* @bus: bus pointer
* @port: port to write
* @val: value to write
* @size: number of bytes to write from @val
*
* Simply writes @size bytes of @val to @port.
*/
int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
{
int ret = 0;
switch (size) {
case 1:
outb(val, port);
break;
case 2:
outw(val, port);
break;
case 4:
outl(val, port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* pci_cacheline_size - determine cacheline size for PCI devices
* @dev: void
*
* We want to use the line-size of the outer-most cache. We assume
* that this line-size is the same for all CPUs.
*
* Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
*
* RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
*/
static unsigned long
pci_cacheline_size (void)
{
u64 levels, unique_caches;
s64 status;
pal_cache_config_info_t cci;
static u8 cacheline_size;
if (cacheline_size)
return cacheline_size;
status = ia64_pal_cache_summary(&levels, &unique_caches);
if (status != 0) {
printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
__FUNCTION__, status);
return SMP_CACHE_BYTES;
}
status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
&cci);
if (status != 0) {
printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
__FUNCTION__, status);
return SMP_CACHE_BYTES;
}
cacheline_size = 1 << cci.pcci_line_size;
return cacheline_size;
}
/**
* pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
* @dev: the PCI device for which MWI is enabled
*
* For ia64, we can get the cacheline sizes from PAL.
*
* RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
*/
int
pcibios_prep_mwi (struct pci_dev *dev)
{
unsigned long desired_linesize, current_linesize;
int rc = 0;
u8 pci_linesize;
desired_linesize = pci_cacheline_size();
pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
current_linesize = 4 * pci_linesize;
if (desired_linesize != current_linesize) {
printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
pci_name(dev), current_linesize);
if (current_linesize > desired_linesize) {
printk(" expected %lu bytes instead\n", desired_linesize);
rc = -EINVAL;
} else {
printk(" correcting to %lu\n", desired_linesize);
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
}
}
return rc;
}
int pci_vector_resources(int last, int nr_released)
{
int count = nr_released;
count += (IA64_LAST_DEVICE_VECTOR - last);
return count;
}