android_kernel_motorola_sm6225/drivers/mtd/nand/s3c2410.c
Matt Reimer b773bb2e70 [MTD] [NAND] add s3c2440-specific read_buf/write_buf
Add read_buf/write_buf for s3c2440, which can read/write 32 bits at a
time rather than just 8. In my testing on an s3c2440a running at 400 MHz
with a 100 MHz HCLK, read performance improves by 36% (from 5.19 MB/s
to 7.07 MB/s).

Signed-off-by: Matt Reimer <mreimer@vpop.net>
Acked-by: Ben Dooks <ben-linux@fluff.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2007-10-20 14:54:26 +01:00

911 lines
22 KiB
C

/* linux/drivers/mtd/nand/s3c2410.c
*
* Copyright (c) 2004,2005 Simtec Electronics
* http://www.simtec.co.uk/products/SWLINUX/
* Ben Dooks <ben@simtec.co.uk>
*
* Samsung S3C2410/S3C240 NAND driver
*
* Changelog:
* 21-Sep-2004 BJD Initial version
* 23-Sep-2004 BJD Mulitple device support
* 28-Sep-2004 BJD Fixed ECC placement for Hardware mode
* 12-Oct-2004 BJD Fixed errors in use of platform data
* 18-Feb-2005 BJD Fix sparse errors
* 14-Mar-2005 BJD Applied tglx's code reduction patch
* 02-May-2005 BJD Fixed s3c2440 support
* 02-May-2005 BJD Reduced hwcontrol decode
* 20-Jun-2005 BJD Updated s3c2440 support, fixed timing bug
* 08-Jul-2005 BJD Fix OOPS when no platform data supplied
* 20-Oct-2005 BJD Fix timing calculation bug
* 14-Jan-2006 BJD Allow clock to be stopped when idle
*
* $Id: s3c2410.c,v 1.23 2006/04/01 18:06:29 bjd Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
#define DEBUG
#endif
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include <asm/plat-s3c/regs-nand.h>
#include <asm/plat-s3c/nand.h>
#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
static int hardware_ecc = 1;
#else
static int hardware_ecc = 0;
#endif
#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
static int clock_stop = 1;
#else
static const int clock_stop = 0;
#endif
/* new oob placement block for use with hardware ecc generation
*/
static struct nand_ecclayout nand_hw_eccoob = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {{8, 8}}
};
/* controller and mtd information */
struct s3c2410_nand_info;
struct s3c2410_nand_mtd {
struct mtd_info mtd;
struct nand_chip chip;
struct s3c2410_nand_set *set;
struct s3c2410_nand_info *info;
int scan_res;
};
enum s3c_cpu_type {
TYPE_S3C2410,
TYPE_S3C2412,
TYPE_S3C2440,
};
/* overview of the s3c2410 nand state */
struct s3c2410_nand_info {
/* mtd info */
struct nand_hw_control controller;
struct s3c2410_nand_mtd *mtds;
struct s3c2410_platform_nand *platform;
/* device info */
struct device *device;
struct resource *area;
struct clk *clk;
void __iomem *regs;
void __iomem *sel_reg;
int sel_bit;
int mtd_count;
enum s3c_cpu_type cpu_type;
};
/* conversion functions */
static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
{
return container_of(mtd, struct s3c2410_nand_mtd, mtd);
}
static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
{
return s3c2410_nand_mtd_toours(mtd)->info;
}
static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
{
return platform_get_drvdata(dev);
}
static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
{
return dev->dev.platform_data;
}
static inline int allow_clk_stop(struct s3c2410_nand_info *info)
{
return clock_stop;
}
/* timing calculations */
#define NS_IN_KHZ 1000000
static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
{
int result;
result = (wanted * clk) / NS_IN_KHZ;
result++;
pr_debug("result %d from %ld, %d\n", result, clk, wanted);
if (result > max) {
printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
return -1;
}
if (result < 1)
result = 1;
return result;
}
#define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
/* controller setup */
static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
struct platform_device *pdev)
{
struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
unsigned long clkrate = clk_get_rate(info->clk);
int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
int tacls, twrph0, twrph1;
unsigned long cfg = 0;
/* calculate the timing information for the controller */
clkrate /= 1000; /* turn clock into kHz for ease of use */
if (plat != NULL) {
tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
} else {
/* default timings */
tacls = tacls_max;
twrph0 = 8;
twrph1 = 8;
}
if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
dev_err(info->device, "cannot get suitable timings\n");
return -EINVAL;
}
dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
switch (info->cpu_type) {
case TYPE_S3C2410:
cfg = S3C2410_NFCONF_EN;
cfg |= S3C2410_NFCONF_TACLS(tacls - 1);
cfg |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
cfg |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
break;
case TYPE_S3C2440:
case TYPE_S3C2412:
cfg = S3C2440_NFCONF_TACLS(tacls - 1);
cfg |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
cfg |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
/* enable the controller and de-assert nFCE */
writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
}
dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
writel(cfg, info->regs + S3C2410_NFCONF);
return 0;
}
/* select chip */
static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct s3c2410_nand_info *info;
struct s3c2410_nand_mtd *nmtd;
struct nand_chip *this = mtd->priv;
unsigned long cur;
nmtd = this->priv;
info = nmtd->info;
if (chip != -1 && allow_clk_stop(info))
clk_enable(info->clk);
cur = readl(info->sel_reg);
if (chip == -1) {
cur |= info->sel_bit;
} else {
if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
dev_err(info->device, "invalid chip %d\n", chip);
return;
}
if (info->platform != NULL) {
if (info->platform->select_chip != NULL)
(info->platform->select_chip) (nmtd->set, chip);
}
cur &= ~info->sel_bit;
}
writel(cur, info->sel_reg);
if (chip == -1 && allow_clk_stop(info))
clk_disable(info->clk);
}
/* s3c2410_nand_hwcontrol
*
* Issue command and address cycles to the chip
*/
static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd, info->regs + S3C2410_NFCMD);
else
writeb(cmd, info->regs + S3C2410_NFADDR);
}
/* command and control functions */
static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd, info->regs + S3C2440_NFCMD);
else
writeb(cmd, info->regs + S3C2440_NFADDR);
}
/* s3c2410_nand_devready()
*
* returns 0 if the nand is busy, 1 if it is ready
*/
static int s3c2410_nand_devready(struct mtd_info *mtd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
}
static int s3c2440_nand_devready(struct mtd_info *mtd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
}
static int s3c2412_nand_devready(struct mtd_info *mtd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
}
/* ECC handling functions */
static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned int diff0, diff1, diff2;
unsigned int bit, byte;
pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
diff0 = read_ecc[0] ^ calc_ecc[0];
diff1 = read_ecc[1] ^ calc_ecc[1];
diff2 = read_ecc[2] ^ calc_ecc[2];
pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
__func__,
read_ecc[0], read_ecc[1], read_ecc[2],
calc_ecc[0], calc_ecc[1], calc_ecc[2],
diff0, diff1, diff2);
if (diff0 == 0 && diff1 == 0 && diff2 == 0)
return 0; /* ECC is ok */
/* Can we correct this ECC (ie, one row and column change).
* Note, this is similar to the 256 error code on smartmedia */
if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
/* calculate the bit position of the error */
bit = (diff2 >> 2) & 1;
bit |= (diff2 >> 3) & 2;
bit |= (diff2 >> 4) & 4;
/* calculate the byte position of the error */
byte = (diff1 << 1) & 0x80;
byte |= (diff1 << 2) & 0x40;
byte |= (diff1 << 3) & 0x20;
byte |= (diff1 << 4) & 0x10;
byte |= (diff0 >> 3) & 0x08;
byte |= (diff0 >> 2) & 0x04;
byte |= (diff0 >> 1) & 0x02;
byte |= (diff0 >> 0) & 0x01;
byte |= (diff2 << 8) & 0x100;
dev_dbg(info->device, "correcting error bit %d, byte %d\n",
bit, byte);
dat[byte] ^= (1 << bit);
return 1;
}
/* if there is only one bit difference in the ECC, then
* one of only a row or column parity has changed, which
* means the error is most probably in the ECC itself */
diff0 |= (diff1 << 8);
diff0 |= (diff2 << 16);
if ((diff0 & ~(1<<fls(diff0))) == 0)
return 1;
return 0;
}
/* ECC functions
*
* These allow the s3c2410 and s3c2440 to use the controller's ECC
* generator block to ECC the data as it passes through]
*/
static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ctrl;
ctrl = readl(info->regs + S3C2410_NFCONF);
ctrl |= S3C2410_NFCONF_INITECC;
writel(ctrl, info->regs + S3C2410_NFCONF);
}
static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ctrl;
ctrl = readl(info->regs + S3C2440_NFCONT);
writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
}
static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ctrl;
ctrl = readl(info->regs + S3C2440_NFCONT);
writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
}
static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
ecc_code[0], ecc_code[1], ecc_code[2]);
return 0;
}
static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
ecc_code[0] = ecc;
ecc_code[1] = ecc >> 8;
ecc_code[2] = ecc >> 16;
pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
return 0;
}
static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
ecc_code[0] = ecc;
ecc_code[1] = ecc >> 8;
ecc_code[2] = ecc >> 16;
pr_debug("%s: returning ecc %06lx\n", __func__, ecc);
return 0;
}
/* over-ride the standard functions for a little more speed. We can
* use read/write block to move the data buffers to/from the controller
*/
static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
readsb(this->IO_ADDR_R, buf, len);
}
static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
readsl(info->regs + S3C2440_NFDATA, buf, len / 4);
}
static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
writesb(this->IO_ADDR_W, buf, len);
}
static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
writesl(info->regs + S3C2440_NFDATA, buf, len / 4);
}
/* device management functions */
static int s3c2410_nand_remove(struct platform_device *pdev)
{
struct s3c2410_nand_info *info = to_nand_info(pdev);
platform_set_drvdata(pdev, NULL);
if (info == NULL)
return 0;
/* first thing we need to do is release all our mtds
* and their partitions, then go through freeing the
* resources used
*/
if (info->mtds != NULL) {
struct s3c2410_nand_mtd *ptr = info->mtds;
int mtdno;
for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
nand_release(&ptr->mtd);
}
kfree(info->mtds);
}
/* free the common resources */
if (info->clk != NULL && !IS_ERR(info->clk)) {
if (!allow_clk_stop(info))
clk_disable(info->clk);
clk_put(info->clk);
}
if (info->regs != NULL) {
iounmap(info->regs);
info->regs = NULL;
}
if (info->area != NULL) {
release_resource(info->area);
kfree(info->area);
info->area = NULL;
}
kfree(info);
return 0;
}
#ifdef CONFIG_MTD_PARTITIONS
static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
struct s3c2410_nand_mtd *mtd,
struct s3c2410_nand_set *set)
{
if (set == NULL)
return add_mtd_device(&mtd->mtd);
if (set->nr_partitions > 0 && set->partitions != NULL) {
return add_mtd_partitions(&mtd->mtd, set->partitions, set->nr_partitions);
}
return add_mtd_device(&mtd->mtd);
}
#else
static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
struct s3c2410_nand_mtd *mtd,
struct s3c2410_nand_set *set)
{
return add_mtd_device(&mtd->mtd);
}
#endif
/* s3c2410_nand_init_chip
*
* init a single instance of an chip
*/
static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
struct s3c2410_nand_mtd *nmtd,
struct s3c2410_nand_set *set)
{
struct nand_chip *chip = &nmtd->chip;
void __iomem *regs = info->regs;
chip->write_buf = s3c2410_nand_write_buf;
chip->read_buf = s3c2410_nand_read_buf;
chip->select_chip = s3c2410_nand_select_chip;
chip->chip_delay = 50;
chip->priv = nmtd;
chip->options = 0;
chip->controller = &info->controller;
switch (info->cpu_type) {
case TYPE_S3C2410:
chip->IO_ADDR_W = regs + S3C2410_NFDATA;
info->sel_reg = regs + S3C2410_NFCONF;
info->sel_bit = S3C2410_NFCONF_nFCE;
chip->cmd_ctrl = s3c2410_nand_hwcontrol;
chip->dev_ready = s3c2410_nand_devready;
break;
case TYPE_S3C2440:
chip->IO_ADDR_W = regs + S3C2440_NFDATA;
info->sel_reg = regs + S3C2440_NFCONT;
info->sel_bit = S3C2440_NFCONT_nFCE;
chip->cmd_ctrl = s3c2440_nand_hwcontrol;
chip->dev_ready = s3c2440_nand_devready;
chip->read_buf = s3c2440_nand_read_buf;
chip->write_buf = s3c2440_nand_write_buf;
break;
case TYPE_S3C2412:
chip->IO_ADDR_W = regs + S3C2440_NFDATA;
info->sel_reg = regs + S3C2440_NFCONT;
info->sel_bit = S3C2412_NFCONT_nFCE0;
chip->cmd_ctrl = s3c2440_nand_hwcontrol;
chip->dev_ready = s3c2412_nand_devready;
if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
dev_info(info->device, "System booted from NAND\n");
break;
}
chip->IO_ADDR_R = chip->IO_ADDR_W;
nmtd->info = info;
nmtd->mtd.priv = chip;
nmtd->mtd.owner = THIS_MODULE;
nmtd->set = set;
if (hardware_ecc) {
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
chip->ecc.correct = s3c2410_nand_correct_data;
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = 512;
chip->ecc.bytes = 3;
chip->ecc.layout = &nand_hw_eccoob;
switch (info->cpu_type) {
case TYPE_S3C2410:
chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
break;
case TYPE_S3C2412:
chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
chip->ecc.calculate = s3c2412_nand_calculate_ecc;
break;
case TYPE_S3C2440:
chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
chip->ecc.calculate = s3c2440_nand_calculate_ecc;
break;
}
} else {
chip->ecc.mode = NAND_ECC_SOFT;
}
}
/* s3c2410_nand_probe
*
* called by device layer when it finds a device matching
* one our driver can handled. This code checks to see if
* it can allocate all necessary resources then calls the
* nand layer to look for devices
*/
static int s3c24xx_nand_probe(struct platform_device *pdev,
enum s3c_cpu_type cpu_type)
{
struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
struct s3c2410_nand_info *info;
struct s3c2410_nand_mtd *nmtd;
struct s3c2410_nand_set *sets;
struct resource *res;
int err = 0;
int size;
int nr_sets;
int setno;
pr_debug("s3c2410_nand_probe(%p)\n", pdev);
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (info == NULL) {
dev_err(&pdev->dev, "no memory for flash info\n");
err = -ENOMEM;
goto exit_error;
}
memzero(info, sizeof(*info));
platform_set_drvdata(pdev, info);
spin_lock_init(&info->controller.lock);
init_waitqueue_head(&info->controller.wq);
/* get the clock source and enable it */
info->clk = clk_get(&pdev->dev, "nand");
if (IS_ERR(info->clk)) {
dev_err(&pdev->dev, "failed to get clock\n");
err = -ENOENT;
goto exit_error;
}
clk_enable(info->clk);
/* allocate and map the resource */
/* currently we assume we have the one resource */
res = pdev->resource;
size = res->end - res->start + 1;
info->area = request_mem_region(res->start, size, pdev->name);
if (info->area == NULL) {
dev_err(&pdev->dev, "cannot reserve register region\n");
err = -ENOENT;
goto exit_error;
}
info->device = &pdev->dev;
info->platform = plat;
info->regs = ioremap(res->start, size);
info->cpu_type = cpu_type;
if (info->regs == NULL) {
dev_err(&pdev->dev, "cannot reserve register region\n");
err = -EIO;
goto exit_error;
}
dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
/* initialise the hardware */
err = s3c2410_nand_inithw(info, pdev);
if (err != 0)
goto exit_error;
sets = (plat != NULL) ? plat->sets : NULL;
nr_sets = (plat != NULL) ? plat->nr_sets : 1;
info->mtd_count = nr_sets;
/* allocate our information */
size = nr_sets * sizeof(*info->mtds);
info->mtds = kmalloc(size, GFP_KERNEL);
if (info->mtds == NULL) {
dev_err(&pdev->dev, "failed to allocate mtd storage\n");
err = -ENOMEM;
goto exit_error;
}
memzero(info->mtds, size);
/* initialise all possible chips */
nmtd = info->mtds;
for (setno = 0; setno < nr_sets; setno++, nmtd++) {
pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
s3c2410_nand_init_chip(info, nmtd, sets);
nmtd->scan_res = nand_scan(&nmtd->mtd, (sets) ? sets->nr_chips : 1);
if (nmtd->scan_res == 0) {
s3c2410_nand_add_partition(info, nmtd, sets);
}
if (sets != NULL)
sets++;
}
if (allow_clk_stop(info)) {
dev_info(&pdev->dev, "clock idle support enabled\n");
clk_disable(info->clk);
}
pr_debug("initialised ok\n");
return 0;
exit_error:
s3c2410_nand_remove(pdev);
if (err == 0)
err = -EINVAL;
return err;
}
/* PM Support */
#ifdef CONFIG_PM
static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
{
struct s3c2410_nand_info *info = platform_get_drvdata(dev);
if (info) {
if (!allow_clk_stop(info))
clk_disable(info->clk);
}
return 0;
}
static int s3c24xx_nand_resume(struct platform_device *dev)
{
struct s3c2410_nand_info *info = platform_get_drvdata(dev);
if (info) {
clk_enable(info->clk);
s3c2410_nand_inithw(info, dev);
if (allow_clk_stop(info))
clk_disable(info->clk);
}
return 0;
}
#else
#define s3c24xx_nand_suspend NULL
#define s3c24xx_nand_resume NULL
#endif
/* driver device registration */
static int s3c2410_nand_probe(struct platform_device *dev)
{
return s3c24xx_nand_probe(dev, TYPE_S3C2410);
}
static int s3c2440_nand_probe(struct platform_device *dev)
{
return s3c24xx_nand_probe(dev, TYPE_S3C2440);
}
static int s3c2412_nand_probe(struct platform_device *dev)
{
return s3c24xx_nand_probe(dev, TYPE_S3C2412);
}
static struct platform_driver s3c2410_nand_driver = {
.probe = s3c2410_nand_probe,
.remove = s3c2410_nand_remove,
.suspend = s3c24xx_nand_suspend,
.resume = s3c24xx_nand_resume,
.driver = {
.name = "s3c2410-nand",
.owner = THIS_MODULE,
},
};
static struct platform_driver s3c2440_nand_driver = {
.probe = s3c2440_nand_probe,
.remove = s3c2410_nand_remove,
.suspend = s3c24xx_nand_suspend,
.resume = s3c24xx_nand_resume,
.driver = {
.name = "s3c2440-nand",
.owner = THIS_MODULE,
},
};
static struct platform_driver s3c2412_nand_driver = {
.probe = s3c2412_nand_probe,
.remove = s3c2410_nand_remove,
.suspend = s3c24xx_nand_suspend,
.resume = s3c24xx_nand_resume,
.driver = {
.name = "s3c2412-nand",
.owner = THIS_MODULE,
},
};
static int __init s3c2410_nand_init(void)
{
printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
platform_driver_register(&s3c2412_nand_driver);
platform_driver_register(&s3c2440_nand_driver);
return platform_driver_register(&s3c2410_nand_driver);
}
static void __exit s3c2410_nand_exit(void)
{
platform_driver_unregister(&s3c2412_nand_driver);
platform_driver_unregister(&s3c2440_nand_driver);
platform_driver_unregister(&s3c2410_nand_driver);
}
module_init(s3c2410_nand_init);
module_exit(s3c2410_nand_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_DESCRIPTION("S3C24XX MTD NAND driver");