2e8ecb9db0
As of now, the kernel defaults to non-unicode and XLATE for the keyboard. We've been changing this in Fedora, but that requires patching the defaults in the kernel. The attached introduces CONFIG_VT_UNICODE, which sets the console in unicode mode by default on boot, including both the virtual terminal and the keyboard driver. Signed-off-by: Bill Nottingham <notting@redhat.com> Cc: Samuel Thibault <samuel.thibault@ens-lyon.org> Cc: Dmitry Torokhov <dtor@mail.ru> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1304 lines
30 KiB
C
1304 lines
30 KiB
C
/*
|
|
* linux/drivers/char/vt_ioctl.c
|
|
*
|
|
* Copyright (C) 1992 obz under the linux copyright
|
|
*
|
|
* Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
|
|
* Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
|
|
* Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
|
|
* Some code moved for less code duplication - Andi Kleen - Mar 1997
|
|
* Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kd.h>
|
|
#include <linux/vt.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/major.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/console.h>
|
|
#include <linux/consolemap.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/timex.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <linux/kbd_kern.h>
|
|
#include <linux/vt_kern.h>
|
|
#include <linux/kbd_diacr.h>
|
|
#include <linux/selection.h>
|
|
|
|
char vt_dont_switch;
|
|
extern struct tty_driver *console_driver;
|
|
|
|
#define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count)
|
|
#define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons)
|
|
|
|
/*
|
|
* Console (vt and kd) routines, as defined by USL SVR4 manual, and by
|
|
* experimentation and study of X386 SYSV handling.
|
|
*
|
|
* One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
|
|
* /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
|
|
* and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
|
|
* always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
|
|
* ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
|
|
* /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
|
|
* to the current console is done by the main ioctl code.
|
|
*/
|
|
|
|
#ifdef CONFIG_X86
|
|
#include <linux/syscalls.h>
|
|
#endif
|
|
|
|
static void complete_change_console(struct vc_data *vc);
|
|
|
|
/*
|
|
* these are the valid i/o ports we're allowed to change. they map all the
|
|
* video ports
|
|
*/
|
|
#define GPFIRST 0x3b4
|
|
#define GPLAST 0x3df
|
|
#define GPNUM (GPLAST - GPFIRST + 1)
|
|
|
|
#define i (tmp.kb_index)
|
|
#define s (tmp.kb_table)
|
|
#define v (tmp.kb_value)
|
|
static inline int
|
|
do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd)
|
|
{
|
|
struct kbentry tmp;
|
|
ushort *key_map, val, ov;
|
|
|
|
if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
|
|
return -EFAULT;
|
|
|
|
if (!capable(CAP_SYS_TTY_CONFIG))
|
|
perm = 0;
|
|
|
|
switch (cmd) {
|
|
case KDGKBENT:
|
|
key_map = key_maps[s];
|
|
if (key_map) {
|
|
val = U(key_map[i]);
|
|
if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
|
|
val = K_HOLE;
|
|
} else
|
|
val = (i ? K_HOLE : K_NOSUCHMAP);
|
|
return put_user(val, &user_kbe->kb_value);
|
|
case KDSKBENT:
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (!i && v == K_NOSUCHMAP) {
|
|
/* deallocate map */
|
|
key_map = key_maps[s];
|
|
if (s && key_map) {
|
|
key_maps[s] = NULL;
|
|
if (key_map[0] == U(K_ALLOCATED)) {
|
|
kfree(key_map);
|
|
keymap_count--;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (KTYP(v) < NR_TYPES) {
|
|
if (KVAL(v) > max_vals[KTYP(v)])
|
|
return -EINVAL;
|
|
} else
|
|
if (kbd->kbdmode != VC_UNICODE)
|
|
return -EINVAL;
|
|
|
|
/* ++Geert: non-PC keyboards may generate keycode zero */
|
|
#if !defined(__mc68000__) && !defined(__powerpc__)
|
|
/* assignment to entry 0 only tests validity of args */
|
|
if (!i)
|
|
break;
|
|
#endif
|
|
|
|
if (!(key_map = key_maps[s])) {
|
|
int j;
|
|
|
|
if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
|
|
!capable(CAP_SYS_RESOURCE))
|
|
return -EPERM;
|
|
|
|
key_map = kmalloc(sizeof(plain_map),
|
|
GFP_KERNEL);
|
|
if (!key_map)
|
|
return -ENOMEM;
|
|
key_maps[s] = key_map;
|
|
key_map[0] = U(K_ALLOCATED);
|
|
for (j = 1; j < NR_KEYS; j++)
|
|
key_map[j] = U(K_HOLE);
|
|
keymap_count++;
|
|
}
|
|
ov = U(key_map[i]);
|
|
if (v == ov)
|
|
break; /* nothing to do */
|
|
/*
|
|
* Attention Key.
|
|
*/
|
|
if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
key_map[i] = U(v);
|
|
if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
|
|
compute_shiftstate();
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
#undef i
|
|
#undef s
|
|
#undef v
|
|
|
|
static inline int
|
|
do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm)
|
|
{
|
|
struct kbkeycode tmp;
|
|
int kc = 0;
|
|
|
|
if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
|
|
return -EFAULT;
|
|
switch (cmd) {
|
|
case KDGETKEYCODE:
|
|
kc = getkeycode(tmp.scancode);
|
|
if (kc >= 0)
|
|
kc = put_user(kc, &user_kbkc->keycode);
|
|
break;
|
|
case KDSETKEYCODE:
|
|
if (!perm)
|
|
return -EPERM;
|
|
kc = setkeycode(tmp.scancode, tmp.keycode);
|
|
break;
|
|
}
|
|
return kc;
|
|
}
|
|
|
|
static inline int
|
|
do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
|
|
{
|
|
struct kbsentry *kbs;
|
|
char *p;
|
|
u_char *q;
|
|
u_char __user *up;
|
|
int sz;
|
|
int delta;
|
|
char *first_free, *fj, *fnw;
|
|
int i, j, k;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_TTY_CONFIG))
|
|
perm = 0;
|
|
|
|
kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
|
|
if (!kbs) {
|
|
ret = -ENOMEM;
|
|
goto reterr;
|
|
}
|
|
|
|
/* we mostly copy too much here (512bytes), but who cares ;) */
|
|
if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
|
|
ret = -EFAULT;
|
|
goto reterr;
|
|
}
|
|
kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
|
|
i = kbs->kb_func;
|
|
|
|
switch (cmd) {
|
|
case KDGKBSENT:
|
|
sz = sizeof(kbs->kb_string) - 1; /* sz should have been
|
|
a struct member */
|
|
up = user_kdgkb->kb_string;
|
|
p = func_table[i];
|
|
if(p)
|
|
for ( ; *p && sz; p++, sz--)
|
|
if (put_user(*p, up++)) {
|
|
ret = -EFAULT;
|
|
goto reterr;
|
|
}
|
|
if (put_user('\0', up)) {
|
|
ret = -EFAULT;
|
|
goto reterr;
|
|
}
|
|
kfree(kbs);
|
|
return ((p && *p) ? -EOVERFLOW : 0);
|
|
case KDSKBSENT:
|
|
if (!perm) {
|
|
ret = -EPERM;
|
|
goto reterr;
|
|
}
|
|
|
|
q = func_table[i];
|
|
first_free = funcbufptr + (funcbufsize - funcbufleft);
|
|
for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
|
|
;
|
|
if (j < MAX_NR_FUNC)
|
|
fj = func_table[j];
|
|
else
|
|
fj = first_free;
|
|
|
|
delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
|
|
if (delta <= funcbufleft) { /* it fits in current buf */
|
|
if (j < MAX_NR_FUNC) {
|
|
memmove(fj + delta, fj, first_free - fj);
|
|
for (k = j; k < MAX_NR_FUNC; k++)
|
|
if (func_table[k])
|
|
func_table[k] += delta;
|
|
}
|
|
if (!q)
|
|
func_table[i] = fj;
|
|
funcbufleft -= delta;
|
|
} else { /* allocate a larger buffer */
|
|
sz = 256;
|
|
while (sz < funcbufsize - funcbufleft + delta)
|
|
sz <<= 1;
|
|
fnw = kmalloc(sz, GFP_KERNEL);
|
|
if(!fnw) {
|
|
ret = -ENOMEM;
|
|
goto reterr;
|
|
}
|
|
|
|
if (!q)
|
|
func_table[i] = fj;
|
|
if (fj > funcbufptr)
|
|
memmove(fnw, funcbufptr, fj - funcbufptr);
|
|
for (k = 0; k < j; k++)
|
|
if (func_table[k])
|
|
func_table[k] = fnw + (func_table[k] - funcbufptr);
|
|
|
|
if (first_free > fj) {
|
|
memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
|
|
for (k = j; k < MAX_NR_FUNC; k++)
|
|
if (func_table[k])
|
|
func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
|
|
}
|
|
if (funcbufptr != func_buf)
|
|
kfree(funcbufptr);
|
|
funcbufptr = fnw;
|
|
funcbufleft = funcbufleft - delta + sz - funcbufsize;
|
|
funcbufsize = sz;
|
|
}
|
|
strcpy(func_table[i], kbs->kb_string);
|
|
break;
|
|
}
|
|
ret = 0;
|
|
reterr:
|
|
kfree(kbs);
|
|
return ret;
|
|
}
|
|
|
|
static inline int
|
|
do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op)
|
|
{
|
|
struct consolefontdesc cfdarg;
|
|
int i;
|
|
|
|
if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc)))
|
|
return -EFAULT;
|
|
|
|
switch (cmd) {
|
|
case PIO_FONTX:
|
|
if (!perm)
|
|
return -EPERM;
|
|
op->op = KD_FONT_OP_SET;
|
|
op->flags = KD_FONT_FLAG_OLD;
|
|
op->width = 8;
|
|
op->height = cfdarg.charheight;
|
|
op->charcount = cfdarg.charcount;
|
|
op->data = cfdarg.chardata;
|
|
return con_font_op(vc_cons[fg_console].d, op);
|
|
case GIO_FONTX: {
|
|
op->op = KD_FONT_OP_GET;
|
|
op->flags = KD_FONT_FLAG_OLD;
|
|
op->width = 8;
|
|
op->height = cfdarg.charheight;
|
|
op->charcount = cfdarg.charcount;
|
|
op->data = cfdarg.chardata;
|
|
i = con_font_op(vc_cons[fg_console].d, op);
|
|
if (i)
|
|
return i;
|
|
cfdarg.charheight = op->height;
|
|
cfdarg.charcount = op->charcount;
|
|
if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static inline int
|
|
do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc)
|
|
{
|
|
struct unimapdesc tmp;
|
|
|
|
if (copy_from_user(&tmp, user_ud, sizeof tmp))
|
|
return -EFAULT;
|
|
if (tmp.entries)
|
|
if (!access_ok(VERIFY_WRITE, tmp.entries,
|
|
tmp.entry_ct*sizeof(struct unipair)))
|
|
return -EFAULT;
|
|
switch (cmd) {
|
|
case PIO_UNIMAP:
|
|
if (!perm)
|
|
return -EPERM;
|
|
return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
|
|
case GIO_UNIMAP:
|
|
if (!perm && fg_console != vc->vc_num)
|
|
return -EPERM;
|
|
return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We handle the console-specific ioctl's here. We allow the
|
|
* capability to modify any console, not just the fg_console.
|
|
*/
|
|
int vt_ioctl(struct tty_struct *tty, struct file * file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct vc_data *vc = (struct vc_data *)tty->driver_data;
|
|
struct console_font_op op; /* used in multiple places here */
|
|
struct kbd_struct * kbd;
|
|
unsigned int console;
|
|
unsigned char ucval;
|
|
void __user *up = (void __user *)arg;
|
|
int i, perm;
|
|
|
|
console = vc->vc_num;
|
|
|
|
if (!vc_cons_allocated(console)) /* impossible? */
|
|
return -ENOIOCTLCMD;
|
|
|
|
/*
|
|
* To have permissions to do most of the vt ioctls, we either have
|
|
* to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
|
|
*/
|
|
perm = 0;
|
|
if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
|
|
perm = 1;
|
|
|
|
kbd = kbd_table + console;
|
|
switch (cmd) {
|
|
case KIOCSOUND:
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (arg)
|
|
arg = CLOCK_TICK_RATE / arg;
|
|
kd_mksound(arg, 0);
|
|
return 0;
|
|
|
|
case KDMKTONE:
|
|
if (!perm)
|
|
return -EPERM;
|
|
{
|
|
unsigned int ticks, count;
|
|
|
|
/*
|
|
* Generate the tone for the appropriate number of ticks.
|
|
* If the time is zero, turn off sound ourselves.
|
|
*/
|
|
ticks = HZ * ((arg >> 16) & 0xffff) / 1000;
|
|
count = ticks ? (arg & 0xffff) : 0;
|
|
if (count)
|
|
count = CLOCK_TICK_RATE / count;
|
|
kd_mksound(count, ticks);
|
|
return 0;
|
|
}
|
|
|
|
case KDGKBTYPE:
|
|
/*
|
|
* this is naive.
|
|
*/
|
|
ucval = KB_101;
|
|
goto setchar;
|
|
|
|
/*
|
|
* These cannot be implemented on any machine that implements
|
|
* ioperm() in user level (such as Alpha PCs) or not at all.
|
|
*
|
|
* XXX: you should never use these, just call ioperm directly..
|
|
*/
|
|
#ifdef CONFIG_X86
|
|
case KDADDIO:
|
|
case KDDELIO:
|
|
/*
|
|
* KDADDIO and KDDELIO may be able to add ports beyond what
|
|
* we reject here, but to be safe...
|
|
*/
|
|
if (arg < GPFIRST || arg > GPLAST)
|
|
return -EINVAL;
|
|
return sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
|
|
|
|
case KDENABIO:
|
|
case KDDISABIO:
|
|
return sys_ioperm(GPFIRST, GPNUM,
|
|
(cmd == KDENABIO)) ? -ENXIO : 0;
|
|
#endif
|
|
|
|
/* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
|
|
|
|
case KDKBDREP:
|
|
{
|
|
struct kbd_repeat kbrep;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_TTY_CONFIG))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat)))
|
|
return -EFAULT;
|
|
err = kbd_rate(&kbrep);
|
|
if (err)
|
|
return err;
|
|
if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
case KDSETMODE:
|
|
/*
|
|
* currently, setting the mode from KD_TEXT to KD_GRAPHICS
|
|
* doesn't do a whole lot. i'm not sure if it should do any
|
|
* restoration of modes or what...
|
|
*
|
|
* XXX It should at least call into the driver, fbdev's definitely
|
|
* need to restore their engine state. --BenH
|
|
*/
|
|
if (!perm)
|
|
return -EPERM;
|
|
switch (arg) {
|
|
case KD_GRAPHICS:
|
|
break;
|
|
case KD_TEXT0:
|
|
case KD_TEXT1:
|
|
arg = KD_TEXT;
|
|
case KD_TEXT:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (vc->vc_mode == (unsigned char) arg)
|
|
return 0;
|
|
vc->vc_mode = (unsigned char) arg;
|
|
if (console != fg_console)
|
|
return 0;
|
|
/*
|
|
* explicitly blank/unblank the screen if switching modes
|
|
*/
|
|
acquire_console_sem();
|
|
if (arg == KD_TEXT)
|
|
do_unblank_screen(1);
|
|
else
|
|
do_blank_screen(1);
|
|
release_console_sem();
|
|
return 0;
|
|
|
|
case KDGETMODE:
|
|
ucval = vc->vc_mode;
|
|
goto setint;
|
|
|
|
case KDMAPDISP:
|
|
case KDUNMAPDISP:
|
|
/*
|
|
* these work like a combination of mmap and KDENABIO.
|
|
* this could be easily finished.
|
|
*/
|
|
return -EINVAL;
|
|
|
|
case KDSKBMODE:
|
|
if (!perm)
|
|
return -EPERM;
|
|
switch(arg) {
|
|
case K_RAW:
|
|
kbd->kbdmode = VC_RAW;
|
|
break;
|
|
case K_MEDIUMRAW:
|
|
kbd->kbdmode = VC_MEDIUMRAW;
|
|
break;
|
|
case K_XLATE:
|
|
kbd->kbdmode = VC_XLATE;
|
|
compute_shiftstate();
|
|
break;
|
|
case K_UNICODE:
|
|
kbd->kbdmode = VC_UNICODE;
|
|
compute_shiftstate();
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
tty_ldisc_flush(tty);
|
|
return 0;
|
|
|
|
case KDGKBMODE:
|
|
ucval = ((kbd->kbdmode == VC_RAW) ? K_RAW :
|
|
(kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW :
|
|
(kbd->kbdmode == VC_UNICODE) ? K_UNICODE :
|
|
K_XLATE);
|
|
goto setint;
|
|
|
|
/* this could be folded into KDSKBMODE, but for compatibility
|
|
reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
|
|
case KDSKBMETA:
|
|
switch(arg) {
|
|
case K_METABIT:
|
|
clr_vc_kbd_mode(kbd, VC_META);
|
|
break;
|
|
case K_ESCPREFIX:
|
|
set_vc_kbd_mode(kbd, VC_META);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
|
|
case KDGKBMETA:
|
|
ucval = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT);
|
|
setint:
|
|
return put_user(ucval, (int __user *)arg);
|
|
|
|
case KDGETKEYCODE:
|
|
case KDSETKEYCODE:
|
|
if(!capable(CAP_SYS_TTY_CONFIG))
|
|
perm=0;
|
|
return do_kbkeycode_ioctl(cmd, up, perm);
|
|
|
|
case KDGKBENT:
|
|
case KDSKBENT:
|
|
return do_kdsk_ioctl(cmd, up, perm, kbd);
|
|
|
|
case KDGKBSENT:
|
|
case KDSKBSENT:
|
|
return do_kdgkb_ioctl(cmd, up, perm);
|
|
|
|
case KDGKBDIACR:
|
|
{
|
|
struct kbdiacrs __user *a = up;
|
|
struct kbdiacr diacr;
|
|
int i;
|
|
|
|
if (put_user(accent_table_size, &a->kb_cnt))
|
|
return -EFAULT;
|
|
for (i = 0; i < accent_table_size; i++) {
|
|
diacr.diacr = conv_uni_to_8bit(accent_table[i].diacr);
|
|
diacr.base = conv_uni_to_8bit(accent_table[i].base);
|
|
diacr.result = conv_uni_to_8bit(accent_table[i].result);
|
|
if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr)))
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
case KDGKBDIACRUC:
|
|
{
|
|
struct kbdiacrsuc __user *a = up;
|
|
|
|
if (put_user(accent_table_size, &a->kb_cnt))
|
|
return -EFAULT;
|
|
if (copy_to_user(a->kbdiacruc, accent_table, accent_table_size*sizeof(struct kbdiacruc)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
case KDSKBDIACR:
|
|
{
|
|
struct kbdiacrs __user *a = up;
|
|
struct kbdiacr diacr;
|
|
unsigned int ct;
|
|
int i;
|
|
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (get_user(ct,&a->kb_cnt))
|
|
return -EFAULT;
|
|
if (ct >= MAX_DIACR)
|
|
return -EINVAL;
|
|
accent_table_size = ct;
|
|
for (i = 0; i < ct; i++) {
|
|
if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr)))
|
|
return -EFAULT;
|
|
accent_table[i].diacr = conv_8bit_to_uni(diacr.diacr);
|
|
accent_table[i].base = conv_8bit_to_uni(diacr.base);
|
|
accent_table[i].result = conv_8bit_to_uni(diacr.result);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
case KDSKBDIACRUC:
|
|
{
|
|
struct kbdiacrsuc __user *a = up;
|
|
unsigned int ct;
|
|
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (get_user(ct,&a->kb_cnt))
|
|
return -EFAULT;
|
|
if (ct >= MAX_DIACR)
|
|
return -EINVAL;
|
|
accent_table_size = ct;
|
|
if (copy_from_user(accent_table, a->kbdiacruc, ct*sizeof(struct kbdiacruc)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* the ioctls below read/set the flags usually shown in the leds */
|
|
/* don't use them - they will go away without warning */
|
|
case KDGKBLED:
|
|
ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
|
|
goto setchar;
|
|
|
|
case KDSKBLED:
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (arg & ~0x77)
|
|
return -EINVAL;
|
|
kbd->ledflagstate = (arg & 7);
|
|
kbd->default_ledflagstate = ((arg >> 4) & 7);
|
|
set_leds();
|
|
return 0;
|
|
|
|
/* the ioctls below only set the lights, not the functions */
|
|
/* for those, see KDGKBLED and KDSKBLED above */
|
|
case KDGETLED:
|
|
ucval = getledstate();
|
|
setchar:
|
|
return put_user(ucval, (char __user *)arg);
|
|
|
|
case KDSETLED:
|
|
if (!perm)
|
|
return -EPERM;
|
|
setledstate(kbd, arg);
|
|
return 0;
|
|
|
|
/*
|
|
* A process can indicate its willingness to accept signals
|
|
* generated by pressing an appropriate key combination.
|
|
* Thus, one can have a daemon that e.g. spawns a new console
|
|
* upon a keypress and then changes to it.
|
|
* See also the kbrequest field of inittab(5).
|
|
*/
|
|
case KDSIGACCEPT:
|
|
{
|
|
if (!perm || !capable(CAP_KILL))
|
|
return -EPERM;
|
|
if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irq(&vt_spawn_con.lock);
|
|
put_pid(vt_spawn_con.pid);
|
|
vt_spawn_con.pid = get_pid(task_pid(current));
|
|
vt_spawn_con.sig = arg;
|
|
spin_unlock_irq(&vt_spawn_con.lock);
|
|
return 0;
|
|
}
|
|
|
|
case VT_SETMODE:
|
|
{
|
|
struct vt_mode tmp;
|
|
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (copy_from_user(&tmp, up, sizeof(struct vt_mode)))
|
|
return -EFAULT;
|
|
if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS)
|
|
return -EINVAL;
|
|
acquire_console_sem();
|
|
vc->vt_mode = tmp;
|
|
/* the frsig is ignored, so we set it to 0 */
|
|
vc->vt_mode.frsig = 0;
|
|
put_pid(vc->vt_pid);
|
|
vc->vt_pid = get_pid(task_pid(current));
|
|
/* no switch is required -- saw@shade.msu.ru */
|
|
vc->vt_newvt = -1;
|
|
release_console_sem();
|
|
return 0;
|
|
}
|
|
|
|
case VT_GETMODE:
|
|
{
|
|
struct vt_mode tmp;
|
|
int rc;
|
|
|
|
acquire_console_sem();
|
|
memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
|
|
release_console_sem();
|
|
|
|
rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
|
|
return rc ? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Returns global vt state. Note that VT 0 is always open, since
|
|
* it's an alias for the current VT, and people can't use it here.
|
|
* We cannot return state for more than 16 VTs, since v_state is short.
|
|
*/
|
|
case VT_GETSTATE:
|
|
{
|
|
struct vt_stat __user *vtstat = up;
|
|
unsigned short state, mask;
|
|
|
|
if (put_user(fg_console + 1, &vtstat->v_active))
|
|
return -EFAULT;
|
|
state = 1; /* /dev/tty0 is always open */
|
|
for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; ++i, mask <<= 1)
|
|
if (VT_IS_IN_USE(i))
|
|
state |= mask;
|
|
return put_user(state, &vtstat->v_state);
|
|
}
|
|
|
|
/*
|
|
* Returns the first available (non-opened) console.
|
|
*/
|
|
case VT_OPENQRY:
|
|
for (i = 0; i < MAX_NR_CONSOLES; ++i)
|
|
if (! VT_IS_IN_USE(i))
|
|
break;
|
|
ucval = i < MAX_NR_CONSOLES ? (i+1) : -1;
|
|
goto setint;
|
|
|
|
/*
|
|
* ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
|
|
* with num >= 1 (switches to vt 0, our console, are not allowed, just
|
|
* to preserve sanity).
|
|
*/
|
|
case VT_ACTIVATE:
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (arg == 0 || arg > MAX_NR_CONSOLES)
|
|
return -ENXIO;
|
|
arg--;
|
|
acquire_console_sem();
|
|
i = vc_allocate(arg);
|
|
release_console_sem();
|
|
if (i)
|
|
return i;
|
|
set_console(arg);
|
|
return 0;
|
|
|
|
/*
|
|
* wait until the specified VT has been activated
|
|
*/
|
|
case VT_WAITACTIVE:
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (arg == 0 || arg > MAX_NR_CONSOLES)
|
|
return -ENXIO;
|
|
return vt_waitactive(arg-1);
|
|
|
|
/*
|
|
* If a vt is under process control, the kernel will not switch to it
|
|
* immediately, but postpone the operation until the process calls this
|
|
* ioctl, allowing the switch to complete.
|
|
*
|
|
* According to the X sources this is the behavior:
|
|
* 0: pending switch-from not OK
|
|
* 1: pending switch-from OK
|
|
* 2: completed switch-to OK
|
|
*/
|
|
case VT_RELDISP:
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (vc->vt_mode.mode != VT_PROCESS)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Switching-from response
|
|
*/
|
|
acquire_console_sem();
|
|
if (vc->vt_newvt >= 0) {
|
|
if (arg == 0)
|
|
/*
|
|
* Switch disallowed, so forget we were trying
|
|
* to do it.
|
|
*/
|
|
vc->vt_newvt = -1;
|
|
|
|
else {
|
|
/*
|
|
* The current vt has been released, so
|
|
* complete the switch.
|
|
*/
|
|
int newvt;
|
|
newvt = vc->vt_newvt;
|
|
vc->vt_newvt = -1;
|
|
i = vc_allocate(newvt);
|
|
if (i) {
|
|
release_console_sem();
|
|
return i;
|
|
}
|
|
/*
|
|
* When we actually do the console switch,
|
|
* make sure we are atomic with respect to
|
|
* other console switches..
|
|
*/
|
|
complete_change_console(vc_cons[newvt].d);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Switched-to response
|
|
*/
|
|
else
|
|
{
|
|
/*
|
|
* If it's just an ACK, ignore it
|
|
*/
|
|
if (arg != VT_ACKACQ) {
|
|
release_console_sem();
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
release_console_sem();
|
|
|
|
return 0;
|
|
|
|
/*
|
|
* Disallocate memory associated to VT (but leave VT1)
|
|
*/
|
|
case VT_DISALLOCATE:
|
|
if (arg > MAX_NR_CONSOLES)
|
|
return -ENXIO;
|
|
if (arg == 0) {
|
|
/* deallocate all unused consoles, but leave 0 */
|
|
acquire_console_sem();
|
|
for (i=1; i<MAX_NR_CONSOLES; i++)
|
|
if (! VT_BUSY(i))
|
|
vc_deallocate(i);
|
|
release_console_sem();
|
|
} else {
|
|
/* deallocate a single console, if possible */
|
|
arg--;
|
|
if (VT_BUSY(arg))
|
|
return -EBUSY;
|
|
if (arg) { /* leave 0 */
|
|
acquire_console_sem();
|
|
vc_deallocate(arg);
|
|
release_console_sem();
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
case VT_RESIZE:
|
|
{
|
|
struct vt_sizes __user *vtsizes = up;
|
|
struct vc_data *vc;
|
|
|
|
ushort ll,cc;
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (get_user(ll, &vtsizes->v_rows) ||
|
|
get_user(cc, &vtsizes->v_cols))
|
|
return -EFAULT;
|
|
|
|
for (i = 0; i < MAX_NR_CONSOLES; i++) {
|
|
vc = vc_cons[i].d;
|
|
|
|
if (vc) {
|
|
vc->vc_resize_user = 1;
|
|
vc_lock_resize(vc_cons[i].d, cc, ll);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
case VT_RESIZEX:
|
|
{
|
|
struct vt_consize __user *vtconsize = up;
|
|
ushort ll,cc,vlin,clin,vcol,ccol;
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (!access_ok(VERIFY_READ, vtconsize,
|
|
sizeof(struct vt_consize)))
|
|
return -EFAULT;
|
|
__get_user(ll, &vtconsize->v_rows);
|
|
__get_user(cc, &vtconsize->v_cols);
|
|
__get_user(vlin, &vtconsize->v_vlin);
|
|
__get_user(clin, &vtconsize->v_clin);
|
|
__get_user(vcol, &vtconsize->v_vcol);
|
|
__get_user(ccol, &vtconsize->v_ccol);
|
|
vlin = vlin ? vlin : vc->vc_scan_lines;
|
|
if (clin) {
|
|
if (ll) {
|
|
if (ll != vlin/clin)
|
|
return -EINVAL; /* Parameters don't add up */
|
|
} else
|
|
ll = vlin/clin;
|
|
}
|
|
if (vcol && ccol) {
|
|
if (cc) {
|
|
if (cc != vcol/ccol)
|
|
return -EINVAL;
|
|
} else
|
|
cc = vcol/ccol;
|
|
}
|
|
|
|
if (clin > 32)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < MAX_NR_CONSOLES; i++) {
|
|
if (!vc_cons[i].d)
|
|
continue;
|
|
acquire_console_sem();
|
|
if (vlin)
|
|
vc_cons[i].d->vc_scan_lines = vlin;
|
|
if (clin)
|
|
vc_cons[i].d->vc_font.height = clin;
|
|
vc_cons[i].d->vc_resize_user = 1;
|
|
vc_resize(vc_cons[i].d, cc, ll);
|
|
release_console_sem();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
case PIO_FONT: {
|
|
if (!perm)
|
|
return -EPERM;
|
|
op.op = KD_FONT_OP_SET;
|
|
op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */
|
|
op.width = 8;
|
|
op.height = 0;
|
|
op.charcount = 256;
|
|
op.data = up;
|
|
return con_font_op(vc_cons[fg_console].d, &op);
|
|
}
|
|
|
|
case GIO_FONT: {
|
|
op.op = KD_FONT_OP_GET;
|
|
op.flags = KD_FONT_FLAG_OLD;
|
|
op.width = 8;
|
|
op.height = 32;
|
|
op.charcount = 256;
|
|
op.data = up;
|
|
return con_font_op(vc_cons[fg_console].d, &op);
|
|
}
|
|
|
|
case PIO_CMAP:
|
|
if (!perm)
|
|
return -EPERM;
|
|
return con_set_cmap(up);
|
|
|
|
case GIO_CMAP:
|
|
return con_get_cmap(up);
|
|
|
|
case PIO_FONTX:
|
|
case GIO_FONTX:
|
|
return do_fontx_ioctl(cmd, up, perm, &op);
|
|
|
|
case PIO_FONTRESET:
|
|
{
|
|
if (!perm)
|
|
return -EPERM;
|
|
|
|
#ifdef BROKEN_GRAPHICS_PROGRAMS
|
|
/* With BROKEN_GRAPHICS_PROGRAMS defined, the default
|
|
font is not saved. */
|
|
return -ENOSYS;
|
|
#else
|
|
{
|
|
op.op = KD_FONT_OP_SET_DEFAULT;
|
|
op.data = NULL;
|
|
i = con_font_op(vc_cons[fg_console].d, &op);
|
|
if (i)
|
|
return i;
|
|
con_set_default_unimap(vc_cons[fg_console].d);
|
|
return 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
case KDFONTOP: {
|
|
if (copy_from_user(&op, up, sizeof(op)))
|
|
return -EFAULT;
|
|
if (!perm && op.op != KD_FONT_OP_GET)
|
|
return -EPERM;
|
|
i = con_font_op(vc, &op);
|
|
if (i) return i;
|
|
if (copy_to_user(up, &op, sizeof(op)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
case PIO_SCRNMAP:
|
|
if (!perm)
|
|
return -EPERM;
|
|
return con_set_trans_old(up);
|
|
|
|
case GIO_SCRNMAP:
|
|
return con_get_trans_old(up);
|
|
|
|
case PIO_UNISCRNMAP:
|
|
if (!perm)
|
|
return -EPERM;
|
|
return con_set_trans_new(up);
|
|
|
|
case GIO_UNISCRNMAP:
|
|
return con_get_trans_new(up);
|
|
|
|
case PIO_UNIMAPCLR:
|
|
{ struct unimapinit ui;
|
|
if (!perm)
|
|
return -EPERM;
|
|
i = copy_from_user(&ui, up, sizeof(struct unimapinit));
|
|
if (i) return -EFAULT;
|
|
con_clear_unimap(vc, &ui);
|
|
return 0;
|
|
}
|
|
|
|
case PIO_UNIMAP:
|
|
case GIO_UNIMAP:
|
|
return do_unimap_ioctl(cmd, up, perm, vc);
|
|
|
|
case VT_LOCKSWITCH:
|
|
if (!capable(CAP_SYS_TTY_CONFIG))
|
|
return -EPERM;
|
|
vt_dont_switch = 1;
|
|
return 0;
|
|
case VT_UNLOCKSWITCH:
|
|
if (!capable(CAP_SYS_TTY_CONFIG))
|
|
return -EPERM;
|
|
vt_dont_switch = 0;
|
|
return 0;
|
|
case VT_GETHIFONTMASK:
|
|
return put_user(vc->vc_hi_font_mask, (unsigned short __user *)arg);
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sometimes we want to wait until a particular VT has been activated. We
|
|
* do it in a very simple manner. Everybody waits on a single queue and
|
|
* get woken up at once. Those that are satisfied go on with their business,
|
|
* while those not ready go back to sleep. Seems overkill to add a wait
|
|
* to each vt just for this - usually this does nothing!
|
|
*/
|
|
static DECLARE_WAIT_QUEUE_HEAD(vt_activate_queue);
|
|
|
|
/*
|
|
* Sleeps until a vt is activated, or the task is interrupted. Returns
|
|
* 0 if activation, -EINTR if interrupted by a signal handler.
|
|
*/
|
|
int vt_waitactive(int vt)
|
|
{
|
|
int retval;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
add_wait_queue(&vt_activate_queue, &wait);
|
|
for (;;) {
|
|
retval = 0;
|
|
|
|
/*
|
|
* Synchronize with redraw_screen(). By acquiring the console
|
|
* semaphore we make sure that the console switch is completed
|
|
* before we return. If we didn't wait for the semaphore, we
|
|
* could return at a point where fg_console has already been
|
|
* updated, but the console switch hasn't been completed.
|
|
*/
|
|
acquire_console_sem();
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (vt == fg_console) {
|
|
release_console_sem();
|
|
break;
|
|
}
|
|
release_console_sem();
|
|
retval = -ERESTARTNOHAND;
|
|
if (signal_pending(current))
|
|
break;
|
|
schedule();
|
|
}
|
|
remove_wait_queue(&vt_activate_queue, &wait);
|
|
__set_current_state(TASK_RUNNING);
|
|
return retval;
|
|
}
|
|
|
|
#define vt_wake_waitactive() wake_up(&vt_activate_queue)
|
|
|
|
void reset_vc(struct vc_data *vc)
|
|
{
|
|
vc->vc_mode = KD_TEXT;
|
|
kbd_table[vc->vc_num].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
|
|
vc->vt_mode.mode = VT_AUTO;
|
|
vc->vt_mode.waitv = 0;
|
|
vc->vt_mode.relsig = 0;
|
|
vc->vt_mode.acqsig = 0;
|
|
vc->vt_mode.frsig = 0;
|
|
put_pid(vc->vt_pid);
|
|
vc->vt_pid = NULL;
|
|
vc->vt_newvt = -1;
|
|
if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */
|
|
reset_palette(vc);
|
|
}
|
|
|
|
void vc_SAK(struct work_struct *work)
|
|
{
|
|
struct vc *vc_con =
|
|
container_of(work, struct vc, SAK_work);
|
|
struct vc_data *vc;
|
|
struct tty_struct *tty;
|
|
|
|
acquire_console_sem();
|
|
vc = vc_con->d;
|
|
if (vc) {
|
|
tty = vc->vc_tty;
|
|
/*
|
|
* SAK should also work in all raw modes and reset
|
|
* them properly.
|
|
*/
|
|
if (tty)
|
|
__do_SAK(tty);
|
|
reset_vc(vc);
|
|
}
|
|
release_console_sem();
|
|
}
|
|
|
|
/*
|
|
* Performs the back end of a vt switch
|
|
*/
|
|
static void complete_change_console(struct vc_data *vc)
|
|
{
|
|
unsigned char old_vc_mode;
|
|
|
|
last_console = fg_console;
|
|
|
|
/*
|
|
* If we're switching, we could be going from KD_GRAPHICS to
|
|
* KD_TEXT mode or vice versa, which means we need to blank or
|
|
* unblank the screen later.
|
|
*/
|
|
old_vc_mode = vc_cons[fg_console].d->vc_mode;
|
|
switch_screen(vc);
|
|
|
|
/*
|
|
* This can't appear below a successful kill_pid(). If it did,
|
|
* then the *blank_screen operation could occur while X, having
|
|
* received acqsig, is waking up on another processor. This
|
|
* condition can lead to overlapping accesses to the VGA range
|
|
* and the framebuffer (causing system lockups).
|
|
*
|
|
* To account for this we duplicate this code below only if the
|
|
* controlling process is gone and we've called reset_vc.
|
|
*/
|
|
if (old_vc_mode != vc->vc_mode) {
|
|
if (vc->vc_mode == KD_TEXT)
|
|
do_unblank_screen(1);
|
|
else
|
|
do_blank_screen(1);
|
|
}
|
|
|
|
/*
|
|
* If this new console is under process control, send it a signal
|
|
* telling it that it has acquired. Also check if it has died and
|
|
* clean up (similar to logic employed in change_console())
|
|
*/
|
|
if (vc->vt_mode.mode == VT_PROCESS) {
|
|
/*
|
|
* Send the signal as privileged - kill_pid() will
|
|
* tell us if the process has gone or something else
|
|
* is awry
|
|
*/
|
|
if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
|
|
/*
|
|
* The controlling process has died, so we revert back to
|
|
* normal operation. In this case, we'll also change back
|
|
* to KD_TEXT mode. I'm not sure if this is strictly correct
|
|
* but it saves the agony when the X server dies and the screen
|
|
* remains blanked due to KD_GRAPHICS! It would be nice to do
|
|
* this outside of VT_PROCESS but there is no single process
|
|
* to account for and tracking tty count may be undesirable.
|
|
*/
|
|
reset_vc(vc);
|
|
|
|
if (old_vc_mode != vc->vc_mode) {
|
|
if (vc->vc_mode == KD_TEXT)
|
|
do_unblank_screen(1);
|
|
else
|
|
do_blank_screen(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wake anyone waiting for their VT to activate
|
|
*/
|
|
vt_wake_waitactive();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Performs the front-end of a vt switch
|
|
*/
|
|
void change_console(struct vc_data *new_vc)
|
|
{
|
|
struct vc_data *vc;
|
|
|
|
if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
|
|
return;
|
|
|
|
/*
|
|
* If this vt is in process mode, then we need to handshake with
|
|
* that process before switching. Essentially, we store where that
|
|
* vt wants to switch to and wait for it to tell us when it's done
|
|
* (via VT_RELDISP ioctl).
|
|
*
|
|
* We also check to see if the controlling process still exists.
|
|
* If it doesn't, we reset this vt to auto mode and continue.
|
|
* This is a cheap way to track process control. The worst thing
|
|
* that can happen is: we send a signal to a process, it dies, and
|
|
* the switch gets "lost" waiting for a response; hopefully, the
|
|
* user will try again, we'll detect the process is gone (unless
|
|
* the user waits just the right amount of time :-) and revert the
|
|
* vt to auto control.
|
|
*/
|
|
vc = vc_cons[fg_console].d;
|
|
if (vc->vt_mode.mode == VT_PROCESS) {
|
|
/*
|
|
* Send the signal as privileged - kill_pid() will
|
|
* tell us if the process has gone or something else
|
|
* is awry.
|
|
*
|
|
* We need to set vt_newvt *before* sending the signal or we
|
|
* have a race.
|
|
*/
|
|
vc->vt_newvt = new_vc->vc_num;
|
|
if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
|
|
/*
|
|
* It worked. Mark the vt to switch to and
|
|
* return. The process needs to send us a
|
|
* VT_RELDISP ioctl to complete the switch.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The controlling process has died, so we revert back to
|
|
* normal operation. In this case, we'll also change back
|
|
* to KD_TEXT mode. I'm not sure if this is strictly correct
|
|
* but it saves the agony when the X server dies and the screen
|
|
* remains blanked due to KD_GRAPHICS! It would be nice to do
|
|
* this outside of VT_PROCESS but there is no single process
|
|
* to account for and tracking tty count may be undesirable.
|
|
*/
|
|
reset_vc(vc);
|
|
|
|
/*
|
|
* Fall through to normal (VT_AUTO) handling of the switch...
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Ignore all switches in KD_GRAPHICS+VT_AUTO mode
|
|
*/
|
|
if (vc->vc_mode == KD_GRAPHICS)
|
|
return;
|
|
|
|
complete_change_console(new_vc);
|
|
}
|