android_kernel_motorola_sm6225/drivers/net/wireless/rtl8180_grf5101.c
Johannes Berg 8318d78a44 cfg80211 API for channels/bitrates, mac80211 and driver conversion
This patch creates new cfg80211 wiphy API for channel and bitrate
registration and converts mac80211 and drivers to the new API. The
old mac80211 API is completely ripped out. All drivers (except ath5k)
are updated to the new API, in many cases I expect that optimisations
can be done.

Along with the regulatory code I've also ripped out the
IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED flag, I believe it to be
unnecessary if the hardware simply gives us whatever channels it wants
to support and we then enable/disable them as required, which is pretty
much required for travelling.

Additionally, the patch adds proper "basic" rate handling for STA
mode interface, AP mode interface will have to have new API added
to allow userspace to set the basic rate set, currently it'll be
empty... However, the basic rate handling will need to be moved to
the BSS conf stuff.

I do expect there to be bugs in this, especially wrt. transmit
power handling where I'm basically clueless about how it should work.

Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-02-29 15:19:32 -05:00

180 lines
4.8 KiB
C

/*
* Radio tuning for GCT GRF5101 on RTL8180
*
* Copyright 2007 Andrea Merello <andreamrl@tiscali.it>
*
* Code from the BSD driver and the rtl8181 project have been
* very useful to understand certain things
*
* I want to thanks the Authors of such projects and the Ndiswrapper
* project Authors.
*
* A special Big Thanks also is for all people who donated me cards,
* making possible the creation of the original rtl8180 driver
* from which this code is derived!
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <net/mac80211.h>
#include "rtl8180.h"
#include "rtl8180_grf5101.h"
static const int grf5101_encode[] = {
0x0, 0x8, 0x4, 0xC,
0x2, 0xA, 0x6, 0xE,
0x1, 0x9, 0x5, 0xD,
0x3, 0xB, 0x7, 0xF
};
static void write_grf5101(struct ieee80211_hw *dev, u8 addr, u32 data)
{
struct rtl8180_priv *priv = dev->priv;
u32 phy_config;
phy_config = grf5101_encode[(data >> 8) & 0xF];
phy_config |= grf5101_encode[(data >> 4) & 0xF] << 4;
phy_config |= grf5101_encode[data & 0xF] << 8;
phy_config |= grf5101_encode[(addr >> 1) & 0xF] << 12;
phy_config |= (addr & 1) << 16;
phy_config |= grf5101_encode[(data & 0xf000) >> 12] << 24;
/* MAC will bang bits to the chip */
phy_config |= 0x90000000;
rtl818x_iowrite32(priv,
(__le32 __iomem *) &priv->map->RFPinsOutput, phy_config);
msleep(3);
}
static void grf5101_write_phy_antenna(struct ieee80211_hw *dev, short chan)
{
struct rtl8180_priv *priv = dev->priv;
u8 ant = GRF5101_ANTENNA;
if (priv->rfparam & RF_PARAM_ANTBDEFAULT)
ant |= BB_ANTENNA_B;
if (chan == 14)
ant |= BB_ANTATTEN_CHAN14;
rtl8180_write_phy(dev, 0x10, ant);
}
static void grf5101_rf_set_channel(struct ieee80211_hw *dev,
struct ieee80211_conf *conf)
{
struct rtl8180_priv *priv = dev->priv;
int channel = ieee80211_frequency_to_channel(conf->channel->center_freq);
u32 txpw = priv->channels[channel - 1].hw_value & 0xFF;
u32 chan = channel - 1;
/* set TX power */
write_grf5101(dev, 0x15, 0x0);
write_grf5101(dev, 0x06, txpw);
write_grf5101(dev, 0x15, 0x10);
write_grf5101(dev, 0x15, 0x0);
/* set frequency */
write_grf5101(dev, 0x07, 0x0);
write_grf5101(dev, 0x0B, chan);
write_grf5101(dev, 0x07, 0x1000);
grf5101_write_phy_antenna(dev, chan);
}
static void grf5101_rf_stop(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
u32 anaparam;
anaparam = priv->anaparam;
anaparam &= 0x000fffff;
anaparam |= 0x3f900000;
rtl8180_set_anaparam(priv, anaparam);
write_grf5101(dev, 0x07, 0x0);
write_grf5101(dev, 0x1f, 0x45);
write_grf5101(dev, 0x1f, 0x5);
write_grf5101(dev, 0x00, 0x8e4);
}
static void grf5101_rf_init(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
rtl8180_set_anaparam(priv, priv->anaparam);
write_grf5101(dev, 0x1f, 0x0);
write_grf5101(dev, 0x1f, 0x0);
write_grf5101(dev, 0x1f, 0x40);
write_grf5101(dev, 0x1f, 0x60);
write_grf5101(dev, 0x1f, 0x61);
write_grf5101(dev, 0x1f, 0x61);
write_grf5101(dev, 0x00, 0xae4);
write_grf5101(dev, 0x1f, 0x1);
write_grf5101(dev, 0x1f, 0x41);
write_grf5101(dev, 0x1f, 0x61);
write_grf5101(dev, 0x01, 0x1a23);
write_grf5101(dev, 0x02, 0x4971);
write_grf5101(dev, 0x03, 0x41de);
write_grf5101(dev, 0x04, 0x2d80);
write_grf5101(dev, 0x05, 0x68ff); /* 0x61ff original value */
write_grf5101(dev, 0x06, 0x0);
write_grf5101(dev, 0x07, 0x0);
write_grf5101(dev, 0x08, 0x7533);
write_grf5101(dev, 0x09, 0xc401);
write_grf5101(dev, 0x0a, 0x0);
write_grf5101(dev, 0x0c, 0x1c7);
write_grf5101(dev, 0x0d, 0x29d3);
write_grf5101(dev, 0x0e, 0x2e8);
write_grf5101(dev, 0x10, 0x192);
write_grf5101(dev, 0x11, 0x248);
write_grf5101(dev, 0x12, 0x0);
write_grf5101(dev, 0x13, 0x20c4);
write_grf5101(dev, 0x14, 0xf4fc);
write_grf5101(dev, 0x15, 0x0);
write_grf5101(dev, 0x16, 0x1500);
write_grf5101(dev, 0x07, 0x1000);
/* baseband configuration */
rtl8180_write_phy(dev, 0, 0xa8);
rtl8180_write_phy(dev, 3, 0x0);
rtl8180_write_phy(dev, 4, 0xc0);
rtl8180_write_phy(dev, 5, 0x90);
rtl8180_write_phy(dev, 6, 0x1e);
rtl8180_write_phy(dev, 7, 0x64);
grf5101_write_phy_antenna(dev, 1);
rtl8180_write_phy(dev, 0x11, 0x88);
if (rtl818x_ioread8(priv, &priv->map->CONFIG2) &
RTL818X_CONFIG2_ANTENNA_DIV)
rtl8180_write_phy(dev, 0x12, 0xc0); /* enable ant diversity */
else
rtl8180_write_phy(dev, 0x12, 0x40); /* disable ant diversity */
rtl8180_write_phy(dev, 0x13, 0x90 | priv->csthreshold);
rtl8180_write_phy(dev, 0x19, 0x0);
rtl8180_write_phy(dev, 0x1a, 0xa0);
rtl8180_write_phy(dev, 0x1b, 0x44);
}
const struct rtl818x_rf_ops grf5101_rf_ops = {
.name = "GCT",
.init = grf5101_rf_init,
.stop = grf5101_rf_stop,
.set_chan = grf5101_rf_set_channel
};