28faa4298e
Use schedule_timeout_interruptible() instead of set_current_state()/schedule_timeout() to reduce kernel size. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: <geert@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
346 lines
9.6 KiB
C
346 lines
9.6 KiB
C
/*
|
|
* linux/arch/m68k/atari/time.c
|
|
*
|
|
* Atari time and real time clock stuff
|
|
*
|
|
* Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file COPYING in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/bcd.h>
|
|
|
|
#include <asm/atariints.h>
|
|
|
|
void __init
|
|
atari_sched_init(irqreturn_t (*timer_routine)(int, void *, struct pt_regs *))
|
|
{
|
|
/* set Timer C data Register */
|
|
mfp.tim_dt_c = INT_TICKS;
|
|
/* start timer C, div = 1:100 */
|
|
mfp.tim_ct_cd = (mfp.tim_ct_cd & 15) | 0x60;
|
|
/* install interrupt service routine for MFP Timer C */
|
|
request_irq(IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW,
|
|
"timer", timer_routine);
|
|
}
|
|
|
|
/* ++andreas: gettimeoffset fixed to check for pending interrupt */
|
|
|
|
#define TICK_SIZE 10000
|
|
|
|
/* This is always executed with interrupts disabled. */
|
|
unsigned long atari_gettimeoffset (void)
|
|
{
|
|
unsigned long ticks, offset = 0;
|
|
|
|
/* read MFP timer C current value */
|
|
ticks = mfp.tim_dt_c;
|
|
/* The probability of underflow is less than 2% */
|
|
if (ticks > INT_TICKS - INT_TICKS / 50)
|
|
/* Check for pending timer interrupt */
|
|
if (mfp.int_pn_b & (1 << 5))
|
|
offset = TICK_SIZE;
|
|
|
|
ticks = INT_TICKS - ticks;
|
|
ticks = ticks * 10000L / INT_TICKS;
|
|
|
|
return ticks + offset;
|
|
}
|
|
|
|
|
|
static void mste_read(struct MSTE_RTC *val)
|
|
{
|
|
#define COPY(v) val->v=(mste_rtc.v & 0xf)
|
|
do {
|
|
COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
|
|
COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
|
|
COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
|
|
COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
|
|
COPY(year_tens) ;
|
|
/* prevent from reading the clock while it changed */
|
|
} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
|
|
#undef COPY
|
|
}
|
|
|
|
static void mste_write(struct MSTE_RTC *val)
|
|
{
|
|
#define COPY(v) mste_rtc.v=val->v
|
|
do {
|
|
COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
|
|
COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
|
|
COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
|
|
COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
|
|
COPY(year_tens) ;
|
|
/* prevent from writing the clock while it changed */
|
|
} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
|
|
#undef COPY
|
|
}
|
|
|
|
#define RTC_READ(reg) \
|
|
({ unsigned char __val; \
|
|
(void) atari_writeb(reg,&tt_rtc.regsel); \
|
|
__val = tt_rtc.data; \
|
|
__val; \
|
|
})
|
|
|
|
#define RTC_WRITE(reg,val) \
|
|
do { \
|
|
atari_writeb(reg,&tt_rtc.regsel); \
|
|
tt_rtc.data = (val); \
|
|
} while(0)
|
|
|
|
|
|
#define HWCLK_POLL_INTERVAL 5
|
|
|
|
int atari_mste_hwclk( int op, struct rtc_time *t )
|
|
{
|
|
int hour, year;
|
|
int hr24=0;
|
|
struct MSTE_RTC val;
|
|
|
|
mste_rtc.mode=(mste_rtc.mode | 1);
|
|
hr24=mste_rtc.mon_tens & 1;
|
|
mste_rtc.mode=(mste_rtc.mode & ~1);
|
|
|
|
if (op) {
|
|
/* write: prepare values */
|
|
|
|
val.sec_ones = t->tm_sec % 10;
|
|
val.sec_tens = t->tm_sec / 10;
|
|
val.min_ones = t->tm_min % 10;
|
|
val.min_tens = t->tm_min / 10;
|
|
hour = t->tm_hour;
|
|
if (!hr24) {
|
|
if (hour > 11)
|
|
hour += 20 - 12;
|
|
if (hour == 0 || hour == 20)
|
|
hour += 12;
|
|
}
|
|
val.hr_ones = hour % 10;
|
|
val.hr_tens = hour / 10;
|
|
val.day_ones = t->tm_mday % 10;
|
|
val.day_tens = t->tm_mday / 10;
|
|
val.mon_ones = (t->tm_mon+1) % 10;
|
|
val.mon_tens = (t->tm_mon+1) / 10;
|
|
year = t->tm_year - 80;
|
|
val.year_ones = year % 10;
|
|
val.year_tens = year / 10;
|
|
val.weekday = t->tm_wday;
|
|
mste_write(&val);
|
|
mste_rtc.mode=(mste_rtc.mode | 1);
|
|
val.year_ones = (year % 4); /* leap year register */
|
|
mste_rtc.mode=(mste_rtc.mode & ~1);
|
|
}
|
|
else {
|
|
mste_read(&val);
|
|
t->tm_sec = val.sec_ones + val.sec_tens * 10;
|
|
t->tm_min = val.min_ones + val.min_tens * 10;
|
|
hour = val.hr_ones + val.hr_tens * 10;
|
|
if (!hr24) {
|
|
if (hour == 12 || hour == 12 + 20)
|
|
hour -= 12;
|
|
if (hour >= 20)
|
|
hour += 12 - 20;
|
|
}
|
|
t->tm_hour = hour;
|
|
t->tm_mday = val.day_ones + val.day_tens * 10;
|
|
t->tm_mon = val.mon_ones + val.mon_tens * 10 - 1;
|
|
t->tm_year = val.year_ones + val.year_tens * 10 + 80;
|
|
t->tm_wday = val.weekday;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int atari_tt_hwclk( int op, struct rtc_time *t )
|
|
{
|
|
int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0;
|
|
unsigned long flags;
|
|
unsigned char ctrl;
|
|
int pm = 0;
|
|
|
|
ctrl = RTC_READ(RTC_CONTROL); /* control registers are
|
|
* independent from the UIP */
|
|
|
|
if (op) {
|
|
/* write: prepare values */
|
|
|
|
sec = t->tm_sec;
|
|
min = t->tm_min;
|
|
hour = t->tm_hour;
|
|
day = t->tm_mday;
|
|
mon = t->tm_mon + 1;
|
|
year = t->tm_year - atari_rtc_year_offset;
|
|
wday = t->tm_wday + (t->tm_wday >= 0);
|
|
|
|
if (!(ctrl & RTC_24H)) {
|
|
if (hour > 11) {
|
|
pm = 0x80;
|
|
if (hour != 12)
|
|
hour -= 12;
|
|
}
|
|
else if (hour == 0)
|
|
hour = 12;
|
|
}
|
|
|
|
if (!(ctrl & RTC_DM_BINARY)) {
|
|
BIN_TO_BCD(sec);
|
|
BIN_TO_BCD(min);
|
|
BIN_TO_BCD(hour);
|
|
BIN_TO_BCD(day);
|
|
BIN_TO_BCD(mon);
|
|
BIN_TO_BCD(year);
|
|
if (wday >= 0) BIN_TO_BCD(wday);
|
|
}
|
|
}
|
|
|
|
/* Reading/writing the clock registers is a bit critical due to
|
|
* the regular update cycle of the RTC. While an update is in
|
|
* progress, registers 0..9 shouldn't be touched.
|
|
* The problem is solved like that: If an update is currently in
|
|
* progress (the UIP bit is set), the process sleeps for a while
|
|
* (50ms). This really should be enough, since the update cycle
|
|
* normally needs 2 ms.
|
|
* If the UIP bit reads as 0, we have at least 244 usecs until the
|
|
* update starts. This should be enough... But to be sure,
|
|
* additionally the RTC_SET bit is set to prevent an update cycle.
|
|
*/
|
|
|
|
while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP )
|
|
schedule_timeout_interruptible(HWCLK_POLL_INTERVAL);
|
|
|
|
local_irq_save(flags);
|
|
RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
|
|
if (!op) {
|
|
sec = RTC_READ( RTC_SECONDS );
|
|
min = RTC_READ( RTC_MINUTES );
|
|
hour = RTC_READ( RTC_HOURS );
|
|
day = RTC_READ( RTC_DAY_OF_MONTH );
|
|
mon = RTC_READ( RTC_MONTH );
|
|
year = RTC_READ( RTC_YEAR );
|
|
wday = RTC_READ( RTC_DAY_OF_WEEK );
|
|
}
|
|
else {
|
|
RTC_WRITE( RTC_SECONDS, sec );
|
|
RTC_WRITE( RTC_MINUTES, min );
|
|
RTC_WRITE( RTC_HOURS, hour + pm);
|
|
RTC_WRITE( RTC_DAY_OF_MONTH, day );
|
|
RTC_WRITE( RTC_MONTH, mon );
|
|
RTC_WRITE( RTC_YEAR, year );
|
|
if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
|
|
}
|
|
RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
|
|
local_irq_restore(flags);
|
|
|
|
if (!op) {
|
|
/* read: adjust values */
|
|
|
|
if (hour & 0x80) {
|
|
hour &= ~0x80;
|
|
pm = 1;
|
|
}
|
|
|
|
if (!(ctrl & RTC_DM_BINARY)) {
|
|
BCD_TO_BIN(sec);
|
|
BCD_TO_BIN(min);
|
|
BCD_TO_BIN(hour);
|
|
BCD_TO_BIN(day);
|
|
BCD_TO_BIN(mon);
|
|
BCD_TO_BIN(year);
|
|
BCD_TO_BIN(wday);
|
|
}
|
|
|
|
if (!(ctrl & RTC_24H)) {
|
|
if (!pm && hour == 12)
|
|
hour = 0;
|
|
else if (pm && hour != 12)
|
|
hour += 12;
|
|
}
|
|
|
|
t->tm_sec = sec;
|
|
t->tm_min = min;
|
|
t->tm_hour = hour;
|
|
t->tm_mday = day;
|
|
t->tm_mon = mon - 1;
|
|
t->tm_year = year + atari_rtc_year_offset;
|
|
t->tm_wday = wday - 1;
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
|
|
int atari_mste_set_clock_mmss (unsigned long nowtime)
|
|
{
|
|
short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
|
|
struct MSTE_RTC val;
|
|
unsigned char rtc_minutes;
|
|
|
|
mste_read(&val);
|
|
rtc_minutes= val.min_ones + val.min_tens * 10;
|
|
if ((rtc_minutes < real_minutes
|
|
? real_minutes - rtc_minutes
|
|
: rtc_minutes - real_minutes) < 30)
|
|
{
|
|
val.sec_ones = real_seconds % 10;
|
|
val.sec_tens = real_seconds / 10;
|
|
val.min_ones = real_minutes % 10;
|
|
val.min_tens = real_minutes / 10;
|
|
mste_write(&val);
|
|
}
|
|
else
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
int atari_tt_set_clock_mmss (unsigned long nowtime)
|
|
{
|
|
int retval = 0;
|
|
short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
|
|
unsigned char save_control, save_freq_select, rtc_minutes;
|
|
|
|
save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */
|
|
RTC_WRITE (RTC_CONTROL, save_control | RTC_SET);
|
|
|
|
save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */
|
|
RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2);
|
|
|
|
rtc_minutes = RTC_READ (RTC_MINUTES);
|
|
if (!(save_control & RTC_DM_BINARY))
|
|
BCD_TO_BIN (rtc_minutes);
|
|
|
|
/* Since we're only adjusting minutes and seconds, don't interfere
|
|
with hour overflow. This avoids messing with unknown time zones
|
|
but requires your RTC not to be off by more than 30 minutes. */
|
|
if ((rtc_minutes < real_minutes
|
|
? real_minutes - rtc_minutes
|
|
: rtc_minutes - real_minutes) < 30)
|
|
{
|
|
if (!(save_control & RTC_DM_BINARY))
|
|
{
|
|
BIN_TO_BCD (real_seconds);
|
|
BIN_TO_BCD (real_minutes);
|
|
}
|
|
RTC_WRITE (RTC_SECONDS, real_seconds);
|
|
RTC_WRITE (RTC_MINUTES, real_minutes);
|
|
}
|
|
else
|
|
retval = -1;
|
|
|
|
RTC_WRITE (RTC_FREQ_SELECT, save_freq_select);
|
|
RTC_WRITE (RTC_CONTROL, save_control);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 4
|
|
* tab-width: 8
|
|
* End:
|
|
*/
|